Support snapping to multiple ways at an input location

This PR improves routing results by adding support for snapping to
multiple ways at input locations.

This means all edges at the snapped location can act as source/target
candidates for routing search, ensuring we always find the best route,
and not the one dependent on the edge selected.
This commit is contained in:
Michael Bell 2021-01-17 19:11:16 +00:00 committed by Michael Bell
parent bb18a2b428
commit d96960f9cc
59 changed files with 2820 additions and 1964 deletions

View File

@ -49,6 +49,7 @@
- FIXED: Completed support for no_entry and no_exit turn restrictions. [#5988](https://github.com/Project-OSRM/osrm-backend/pull/5988)
- ADDED: Add support for non-round-trips with a single fixed endpoint. [#6050](https://github.com/Project-OSRM/osrm-backend/pull/6050)
- FIXED: Improvements to maneuver override processing [#6125](https://github.com/Project-OSRM/osrm-backend/pull/6125)
- ADDED: Support snapping to multiple ways at an input location. [#5953](https://github.com/Project-OSRM/osrm-backend/pull/5953)
# 5.26.0
- Changes from 5.25.0

View File

@ -28,7 +28,7 @@ Feature: Bicycle - Route around alleys
When I route I should get
| from | to | a:nodes | weight | # |
| a | f | 1:2:3:6 | 200.4 | Avoids d,e,f |
| a | e | 1:2:5 | 176.4 | Take the alley b,e if neccessary |
| d | f | 4:1:2:3:6 | 252.6 | Avoids the alley d,e,f |
| a | f | 1:2:3:6 | 196.2 | Avoids d,e,f |
| a | e | 1:2:5 | 172.2 | Take the alley b,e if neccessary |
| d | f | 4:1:2:3:6 | 248.4 | Avoids the alley d,e,f |

View File

@ -8,7 +8,7 @@ Feature: Car - Destination only, no passing through
Given the node map
"""
a e
b c d
b1 c 2d
x y
"""
@ -23,19 +23,19 @@ Feature: Car - Destination only, no passing through
When I route I should get
| from | to | route |
| a | b | ab,ab |
| a | c | ab,bcd |
| a | d | ab,bcd,bcd |
| a | c | ab,bcd,bcd |
| a | 2 | ab,bcd,bcd |
| a | e | axye,axye |
| e | d | de,de |
| e | c | de,bcd |
| e | b | de,bcd,bcd |
| e | c | de,bcd,bcd |
| e | 1 | de,bcd,bcd |
| e | a | axye,axye |
Scenario: Car - Destination only street
Given the node map
"""
a e
b c d
b1 c 2d
x y
"""
@ -51,12 +51,12 @@ Feature: Car - Destination only, no passing through
When I route I should get
| from | to | route |
| a | b | ab,ab |
| a | c | ab,bc |
| a | d | ab,cd |
| a | c | ab,bc,bc |
| a | 2 | ab,bc,cd |
| a | e | axye,axye |
| e | d | de,de |
| e | c | de,cd |
| e | b | de,bc |
| e | c | de,cd,cd |
| e | 1 | de,cd,bc |
| e | a | axye,axye |
Scenario: Car - Routing inside a destination only area
@ -117,6 +117,7 @@ Feature: Car - Destination only, no passing through
+ \
+ |
d |
1 |
\___e
"""
@ -129,7 +130,7 @@ Feature: Car - Destination only, no passing through
When I route I should get
| from | to | route |
| e | a | acbe,acbe |
| d | a | de,acbe,acbe |
| 1 | a | de,acbe,acbe |
| c | d | cd,cd |
Scenario: Car - Routing through a parking lot tagged access=destination,service

View File

@ -411,7 +411,7 @@ Feature: Car - Turn restrictions
y
i j f b x a e g h
c d
c1 d
"""
And the ways
@ -438,7 +438,7 @@ Feature: Car - Turn restrictions
When I route I should get
| from | to | route |
| e | f | ae,xa,bx,fb,fb |
| c | f | dc,da,ae,ge,hg,hg,ge,ae,xa,bx,fb,fb |
| 1 | f | dc,da,ae,ge,hg,hg,ge,ae,xa,bx,fb,fb |
| d | f | da,ae,ge,hg,hg,ge,ae,xa,bx,fb,fb |
@except

View File

@ -332,10 +332,11 @@ Feature: Merge Segregated Roads
|
.b.
c h
1 |
| 4
| |
| |
1 2
| |
2 |
| 3
d g
'e'
|
@ -356,11 +357,11 @@ Feature: Merge Segregated Roads
When I route I should get
| waypoints | turns | route | intersections |
| a,f | depart,arrive | road,road | true:180,false:0 true:180,false:0 true:180;true:0 |
| c,f | depart,arrive | bridge,road | true:180,false:0 true:180;true:0 |
| 1,f | depart,arrive | bridge,road | true:180,false:0 true:180;true:0 |
| 2,f | depart,arrive | bridge,road | true:180,false:0 true:180;true:0 |
| f,a | depart,arrive | road,road | true:0,true:0 false:180,true:0 false:180;true:180 |
| g,a | depart,arrive | bridge,road | true:0,true:0 false:180;true:180 |
| 2,a | depart,arrive | bridge,road | true:0,true:0 false:180;true:180 |
| 3,a | depart,arrive | bridge,road | true:0,true:0 false:180;true:180 |
| 4,a | depart,arrive | bridge,road | true:0,true:0 false:180;true:180 |
@negative
Scenario: Traffic Circle

View File

@ -67,10 +67,10 @@ Feature: Compass bearing
Scenario: Bearing in a roundabout
Given the node map
"""
k d c j
k d 1c j
e b
f a
l g h i
l g2 h i
"""
And the ways
@ -94,8 +94,8 @@ Feature: Compass bearing
When I route I should get
| from | to | route | bearing |
| c | b | cd,de,ef,fg,gh,ha,ab,ab | 0->270,270->225,225->180,180->135,135->90,90->45,45->0,0->0 |
| g | f | gh,ha,ab,bc,cd,de,ef,ef | 0->90,90->45,45->0,0->315,315->270,270->225,225->180,180->0 |
| 1 | b | cd,de,ef,fg,gh,ha,ab,ab | 0->270,270->225,225->180,180->135,135->90,90->45,45->0,0->0 |
| 2 | f | gh,ha,ab,bc,cd,de,ef,ef | 0->90,90->45,45->0,0->315,315->270,270->225,225->180,180->0 |
Scenario: Bearing should stay constant when zig-zagging
Given the node map

View File

@ -589,12 +589,12 @@ Feature: Basic Distance Matrix
When I request a travel distance matrix I should get
| | a | b | c | d | e | f |
| a | 0 | 100 | 300 | 650 | 1934.5 | 1534.6 |
| b | 760.6 | 0 | 200 | 550.1 | 1834.6 | 1434.6 |
| c | 560.6 | 660.5 | 0 | 350 | 1634.6 | 1234.6 |
| d | 1484.6 | 1584.5| 1784.5 | 0 | 1284.5 | 884.6 |
| e | 200 | 300 | 500 | 710.6 | 0 | 1595.2 |
| f | 600 | 699.9 | 899.9 | 1110.5 | 399.9 | 0 |
| a | 0 | 100 | 300 | 650 | 660.5 | 1534.6 |
| b | 760.6 | 0 | 200 | 550.1 | 560.6 | 1434.6 |
| c | 560.6 | 660.5 | 0 | 350 | 360.5 | 1234.6 |
| d | 1484.6 | 1584.5| 1645.1 | 0 | 1284.5 | 884.6 |
| e | 200 | 300 | 360.5 | 710.6 | 0 | 1595.2 |
| f | 600 | 699.9 | 760.5 | 884.6 | 399.9 | 0 |
Scenario: Testbot - Filling in noroutes with estimates (defaults to input coordinate location)
@ -727,4 +727,3 @@ Feature: Basic Distance Matrix
| 1 | 0 | 1000.1 | 1400.1 |
| 2 | 1000.1 | 0 | 400 |
| 3 | 1400.1 | 400 | 0 |

View File

@ -491,18 +491,18 @@ Feature: Basic Duration Matrix
When I route I should get
| from | to | route | distance | time | weight |
| a | c | ac,ac | 200m | 5s | 5 |
| a | c | ac,ac | 200m | 1s | 1 |
When I request a travel time matrix I should get
| | a | b | c | d |
| a | 0 | 1 | 5 | 10 |
| a | 0 | 1 | 1 | 6 |
When I request a travel time matrix I should get
| | a |
| a | 0 |
| b | 1 |
| c | 15 |
| d | 10 |
| c | 1 |
| d | 6 |
Scenario: Testbot - OneToMany vs ManyToOne
Given the node map

View File

@ -0,0 +1,629 @@
Feature: Snapping at intersections
Background:
# Use turnbot so that we can validate when we are
# snapping to one of many potential candidate ways
Given the profile "turnbot"
# https://github.com/Project-OSRM/osrm-backend/issues/4465
Scenario: Snapping source to intersection with one-way roads
Given the node map
"""
a e c
\ | /
d
1
"""
And the ways
| nodes | oneway |
| da | yes |
| dc | yes |
| de | yes |
When I route I should get
| from | to | route | time |
| 1 | e | de,de | 20s |
| 1 | a | da,da | 28.3s |
| 1 | c | dc,dc | 28.3s |
When I request a travel time matrix I should get
| | a | c | e |
| 1 | 28.3 | 28.3 | 20 |
Scenario: Snapping destination to intersection with one-way roads
Given the node map
"""
a e c
\ | /
d
1
"""
And the ways
| nodes | oneway |
| da | -1 |
| dc | -1 |
| de | -1 |
When I route I should get
| from | to | route | time |
| e | 1 | de,de | 20s |
| a | 1 | da,da | 28.3s |
| c | 1 | dc,dc | 28.3s |
When I request a travel time matrix I should get
| | 1 |
| a | 28.3 |
| c | 28.3 |
| e | 20 |
Scenario: Snapping to intersection with bi-directional roads
Given the node map
"""
a e
| /
d---c
1
"""
And the ways
| nodes |
| ad |
| ed |
| dc |
When I route I should get
| from | to | route | time | weight |
| 1 | c | dc,dc | 20s | 20 |
| 1 | a | ad,ad | 20s | 20 |
| 1 | e | ed,ed | 28.3s | 28.3 |
| c | 1 | dc,dc | 20s | 20 |
| a | 1 | ad,ad | 20s | 20 |
| e | 1 | ed,ed | 28.3s | 28.3 |
When I request a travel time matrix I should get
| | a | c | e |
| 1 | 20 | 20 | 28.3 |
When I request a travel time matrix I should get
| | 1 |
| a | 20 |
| c | 20 |
| e | 28.3 |
Scenario: Snapping at compressible node
Given the node map
"""
a---b---c
"""
And the ways
| nodes |
| abc |
When I route I should get
| from | to | route | time | weight |
| b | c | abc,abc | 20s | 20 |
| b | a | abc,abc | 20s | 20 |
| a | b | abc,abc | 20s | 20 |
| c | b | abc,abc | 20s | 20 |
Scenario: Snapping at compressible node with traffic lights
Given the node map
"""
a---b---c
"""
And the ways
| nodes |
| abc |
# Turnbot will use the turn penalty instead of traffic penalty.
# We do this to induce a penalty between two edges of the same
# segment.
And the nodes
| node | highway |
| b | traffic_signals |
# Snaps to first edge in forward direction
When I route I should get
| from | to | route | time | weight |
| b | c | abc,abc | 40s | 40 |
| b | a | abc,abc | 20s | 20 |
| a | b | abc,abc | 20s | 20 |
| c | b | abc,abc | 40s | 40 |
Scenario: Snapping at compressible node traffic lights, one-way
Given the node map
"""
a-->b-->c
"""
And the ways
| nodes | oneway |
| abc | yes |
# Turnbot will use the turn penalty instead of traffic penalty.
# We do this to induce a penalty between two edges of the same
# segment.
And the nodes
| node | highway |
| b | traffic_signals |
# Snaps to first edge in forward direction
When I route I should get
| from | to | route | time | weight |
| b | c | abc,abc | 40s | 40 |
| a | b | abc,abc | 20s | 20 |
When I route I should get
| from | to | code |
| b | a | NoRoute |
| c | b | NoRoute |
Scenario: Snapping at compressible node traffic lights, reverse one-way
Given the node map
"""
a<--b<--c
"""
And the ways
| nodes | oneway |
| abc | -1 |
# Turnbot will use the turn penalty instead of traffic penalty.
# We do this to induce a penalty between two edges of the same
# segment.
And the nodes
| node | highway |
| b | traffic_signals |
# Snaps to first edge in forward direction - as this is one-way,
# the forward direction has changed.
When I route I should get
| from | to | route | time | weight |
| b | a | abc,abc | 40s | 40 |
| c | b | abc,abc | 20s | 20 |
When I route I should get
| from | to | code |
| b | c | NoRoute |
| a | b | NoRoute |
Scenario: Snapping at traffic lights, reverse disabled
Given the node map
"""
a-->b-->c
"""
And the ways
| nodes |
| abc |
And the contract extra arguments "--segment-speed-file {speeds_file}"
And the customize extra arguments "--segment-speed-file {speeds_file}"
And the speed file
"""
2,1,0
3,2,0
"""
# Turnbot will use the turn penalty instead of traffic penalty.
# We do this to induce a penalty between two edges of the same
# segment.
And the nodes
| node | highway |
| b | traffic_signals |
# Snaps to first edge in forward direction.
When I route I should get
| from | to | route | time | weight |
| b | c | abc,abc | 40s | 40 |
| a | b | abc,abc | 20s | 20 |
When I route I should get
| from | to | code |
| b | a | NoRoute |
| c | b | NoRoute |
Scenario: Snapping at traffic lights, forward disabled
Given the node map
"""
a<--b<--c
"""
And the ways
| nodes |
| abc |
And the contract extra arguments "--segment-speed-file {speeds_file}"
And the customize extra arguments "--segment-speed-file {speeds_file}"
And the speed file
"""
1,2,0
2,3,0
"""
# Turnbot will use the turn penalty instead of traffic penalty.
# We do this to induce a penalty between two edges of the same
# segment.
And the nodes
| node | highway |
| b | traffic_signals |
# Forward direction is disabled, still snaps to first edge in forward direction
When I route I should get
| from | to | route | time | weight |
| b | a | abc,abc | 20s | 20 |
| c | b | abc,abc | 40s | 40 |
When I route I should get
| from | to | code |
| b | c | NoRoute |
| a | b | NoRoute |
Scenario: Snap to target node with next section of segment blocked
Given the node map
"""
a-->b---c---d<--e
"""
And the ways
| nodes |
| abc |
| cde |
And the contract extra arguments "--segment-speed-file {speeds_file}"
And the customize extra arguments "--segment-speed-file {speeds_file}"
And the speed file
"""
2,1,0
4,5,0
"""
When I route I should get
| from | to | route | time | weight |
| a | d | abc,cde,cde | 60s | 60 |
| e | b | cde,abc,abc | 60s | 60 |
When I route I should get
| from | to | code |
| a | e | NoRoute |
| e | a | NoRoute |
Scenario: Snapping to source node with previous section of segment blocked
Given the node map
"""
a<--b---c---d-->e
"""
And the ways
| nodes |
| abc |
| cde |
And the contract extra arguments "--segment-speed-file {speeds_file}"
And the customize extra arguments "--segment-speed-file {speeds_file}"
And the speed file
"""
1,2,0
5,4,0
"""
When I route I should get
| from | to | code |
| a | e | NoRoute |
| b | e | NoRoute |
| e | a | NoRoute |
| d | a | NoRoute |
Scenario: Only snaps to one of many equidistant nearest locations
Given the node map
"""
b-------c
| |
| |
a 1 d
"""
And the ways
| nodes |
| ab |
| bc |
| cd |
When I route I should get
| from | to | route | time | weight |
| 1 | b | ab,ab | 30s | 30 |
| 1 | c | ab,bc,bc | 80s +-1 | 80 +-1 |
Scenario: Snaps to alternative big SCC candidate if nearest candidates are not strongly connected
Given the node map
"""
1
g---h---i
a-----b-----c
|
f-----e-----d
j---k---l
2
"""
Given the extract extra arguments "--small-component-size=4"
And the ways
| nodes |
| abc |
| cd |
| fed |
| ghi |
| jkl |
# As forward direction is disabled...
When I route I should get
| from | to | route | time | weight | locations |
| 1 | 2 | abc,cd,fed,fed | 100s +-1 | 100 +-1 | b,c,d,e |
Scenario: Can use big or small SCC nearest candidates if at same location
Given the node map
"""
1
a-----b-----c
| |
g |
|
f-----e-----d
"""
Given the extract extra arguments "--small-component-size=4"
And the ways
| nodes | oneway |
| ab | no |
| bc | no |
| cd | no |
| fed | no |
| bg | yes | # small SCC
And the relations
| type | way:from | way:to | node:via | restriction |
| restriction | ab | bg | b | no_right_turn |
| restriction | bc | bg | b | no_left_turn |
When I route I should get
| from | to | route | time | weight | locations |
| 1 | g | bg,bg | 20s | 20 | b,g |
| 1 | e | bc,cd,fed,fed | 120s +-1 | 120 +-1 | b,c,d,e |
Scenario: Using small SCC candidates when at same location as big SCC alternatives is not supported
Given the node map
"""
1
g---h---i
a-----b-----c
| |
| |
m |
f-----e-----d
j---k---l
2
"""
Given the extract extra arguments "--small-component-size=4"
And the ways
| nodes | oneway |
| ab | no |
| bc | no |
| cd | no |
| fed | no |
| ghi | no |
| jkl | no |
| bm | yes | # small SCC
And the relations
| type | way:from | way:to | node:via | restriction |
| restriction | ab | bm | b | no_right_turn |
| restriction | bc | bm | b | no_left_turn |
When I route I should get
| from | to | route | time | weight | locations |
| 1 | 2 | bc,cd,fed,fed | 120s +-1 | 120 +-1 | b,c,d,e |
| 1 | m | bc,cd,fed,fed | 120s +-1 | 120 +-1 | b,c,d,e |
Scenario: Shortest via path with continuation, simple loop
Given the node map
"""
a---b
"""
And the ways
| nodes |
| ab |
When I route I should get
| waypoints | route | time | weight |
| a,b,a | ab,ab,ab,ab | 60s | 60 |
Scenario: Shortest via path with uturns, simple loop
Given the node map
"""
a---b
"""
Given the query options
| continue_straight | false |
And the ways
| nodes |
| ab |
# Does not pay the cost of the turn
When I route I should get
| waypoints | route | time | weight |
| a,b,a | ab,ab,ab,ab | 40s | 40 |
Scenario: Shortest path with multiple endpoint snapping candidates
Given the node map
"""
b
c
a d f
e
"""
And the ways
| nodes | oneway |
| ab | no |
| ac | no |
| ad | no |
| ae | no |
| bf | no |
| cf | yes |
| df | yes |
| ef | no |
When I route I should get
| from | to | route | time | weight |
| a | f | ad,df,df | 40s | 40 |
| f | a | ef,ae,ae | 66.6s | 66.6 |
When I request a travel time matrix I should get
| | a | f |
| a | 0 | 40 |
| f | 66.6 | 0 |
Scenario: Shortest via path with continuation, multiple waypoint snapping candidates
Given the node map
"""
b g
c h
a d f i
k
e j
"""
And the ways
| nodes | oneway |
| ab | no |
| ac | no |
| ad | no |
| ae | no |
| bf | no |
| cf | yes |
| df | yes |
| ef | no |
| fg | no |
| fh | -1 |
| fi | -1 |
| fj | no |
| gk | no |
| hk | no |
| ik | no |
| kj | no |
And the relations
| type | way:from | way:to | node:via | restriction |
| restriction | df | fg | f | only_left_turn |
| restriction | fi | bf | f | only_right_turn |
# Longer routes can take different paths from sub-routes
When I route I should get
| waypoints | route | time | weight |
| a,f | ad,df,df | 40s | 40 |
| f,k | fj,kj,kj | 65.6s | 65.6 |
| a,f,k | ac,cf,cf,fj,kj,kj | 132.8s | 132.8 |
| k,f | ik,fi,fi | 54.3s | 54.3 |
| f,a | ef,ae,ae | 66.6s | 66.6 |
| k,f,a | kj,fj,fj,ef,ae,ae | 141.4s | 141.4 |
When I request a travel time matrix I should get
| | a | f | k |
| a | 0 | 40 | 132.8 |
| f | 66.6 | 0 | 65.6 |
| k | 141.4 | 54.3 | 0 |
Scenario: Shortest via path with uturns, multiple waypoint snapping candidates
Given the node map
"""
b g
c h
a d f i
k
e j
"""
Given the query options
| continue_straight | false |
And the ways
| nodes | oneway |
| ab | no |
| ac | no |
| ad | no |
| ae | no |
| bf | no |
| cf | yes |
| df | yes |
| ef | no |
| fg | no |
| fh | -1 |
| fi | -1 |
| fj | no |
| gk | no |
| hk | no |
| ik | no |
| kj | no |
And the relations
| type | way:from | way:to | node:via | restriction |
| restriction | df | fg | f | only_left_turn |
| restriction | fi | bf | f | only_right_turn |
# Longer routes use same path as sub-routes
When I route I should get
| waypoints | route | time | weight |
| a,f | ad,df,df | 40s | 40 |
| f,k | fj,kj,kj | 65.6s | 65.6 |
| a,f,k | ad,df,df,fj,kj,kj | 105.6s | 105.6 |
| k,f | ik,fi,fi | 54.3s | 54.3 |
| f,a | ef,ae,ae | 66.6s | 66.6 |
| k,f,a | ik,fi,fi,ef,ae,ae | 120.9s | 120.9 |

View File

@ -47,7 +47,7 @@ Feature: Traffic - turn penalties applied to turn onto which a phantom node snap
| 1 | e | ab,be,be | 36 km/h | 30s +-1 |
| b | f | bc,cf,cf | 36 km/h | 40s +-1 |
| 2 | f | bc,cf,cf | 36 km/h | 30s +-1 |
| c | g | cd,dg,dg | 144 km/h | 10s +-1 |
| c | g | cd,dg,dg | 72 km/h | 20s +-1 |
| 3 | g | cd,dg,dg | 54 km/h | 20s +-1 |
Scenario: Weighting based on turn penalty file with weights
@ -65,5 +65,5 @@ Feature: Traffic - turn penalties applied to turn onto which a phantom node snap
| 1 | e | ab,be,be | 36 km/h | 30s +-1 | 6.8,20,0 |
| b | f | bc,cf,cf | 36 km/h | 40s +-1 | 20,20,0 |
| 2 | f | bc,cf,cf | 36 km/h | 30s +-1 | 10.1,20,0 |
| c | g | cd,dg,dg | 144 km/h | 10s +-1 | 120.8,20,0 |
| c | g | cd,dg,dg | 72 km/h | 20s +-1 | 120.8,20,0 |
| 3 | g | cd,dg,dg | 54 km/h | 20s +-1 | 110.9,20,0 |

View File

@ -281,7 +281,7 @@ Feature: Weight tests
When I route I should get
| waypoints | route | distance | weights | times |
| a,c | , | 40m +-.1 | 5.12,0 | 290s,0s |
| a,c | , | 40m +-.1 | 2.22,0 | 200s,0s |
| a,e | ,, | 60m +-.1 | 5.12,1.11,0 | 290s,100s,0s |
| e,a | ,, | 60m +-.1 | 2.21,2.22,0 | 10s,200s,0s |
| e,d | ,, | 40m +-.1 | 4.01,1.11,0 | 190s,100s,0s |

View File

@ -9,9 +9,12 @@
#include "engine/hint.hpp"
#include "util/coordinate_calculation.hpp"
#include <boost/algorithm/string/join.hpp>
#include <boost/assert.hpp>
#include <boost/range/adaptor/transformed.hpp>
#include <boost/range/algorithm/transform.hpp>
#include <boost/range/adaptor/filtered.hpp>
#include <memory>
#include <vector>
@ -22,6 +25,8 @@ namespace engine
namespace api
{
static const constexpr char *INTERSECTION_DELIMITER = " / ";
class BaseAPI
{
public:
@ -30,92 +35,129 @@ class BaseAPI
{
}
util::json::Array MakeWaypoints(const std::vector<PhantomNodes> &segment_end_coordinates) const
util::json::Array
MakeWaypoints(const std::vector<PhantomNodeCandidates> &waypoint_candidates) const
{
BOOST_ASSERT(parameters.coordinates.size() > 0);
BOOST_ASSERT(parameters.coordinates.size() == segment_end_coordinates.size() + 1);
BOOST_ASSERT(parameters.coordinates.size() == waypoint_candidates.size());
util::json::Array waypoints;
waypoints.values.resize(parameters.coordinates.size());
waypoints.values[0] = MakeWaypoint(segment_end_coordinates.front().source_phantom);
auto out_iter = std::next(waypoints.values.begin());
boost::range::transform(
segment_end_coordinates, out_iter, [this](const PhantomNodes &phantom_pair) {
return MakeWaypoint(phantom_pair.target_phantom);
});
waypoint_candidates,
waypoints.values.begin(),
[this](const PhantomNodeCandidates &candidates) { return MakeWaypoint(candidates); });
return waypoints;
}
// FIXME: gcc 4.9 does not like MakeWaypoints to be protected
// protected:
util::json::Object MakeWaypoint(const PhantomNode &phantom) const
{
if (parameters.generate_hints)
util::json::Object MakeWaypoint(const PhantomNodeCandidates &candidates) const
{
// TODO: check forward/reverse
const auto toName = [this](const auto &phantom) {
return facade.GetNameForID(facade.GetNameIndex(phantom.forward_segment_id.id))
.to_string();
};
const auto noEmpty = [](const auto &name) { return !name.empty(); };
// At an intersection we may have multiple phantom node candidates.
// Combine them to represent the waypoint name.
std::string waypoint_name = boost::algorithm::join(
candidates | boost::adaptors::transformed(toName) | boost::adaptors::filtered(noEmpty),
INTERSECTION_DELIMITER);
const auto &snapped_location = candidatesSnappedLocation(candidates);
const auto &input_location = candidatesInputLocation(candidates);
if (parameters.generate_hints)
{
std::vector<SegmentHint> seg_hints(candidates.size());
std::transform(candidates.begin(),
candidates.end(),
seg_hints.begin(),
[this](const auto &phantom) {
return SegmentHint{phantom, facade.GetCheckSum()};
});
return json::makeWaypoint(
phantom.location,
util::coordinate_calculation::greatCircleDistance(phantom.location,
phantom.input_location),
facade.GetNameForID(facade.GetNameIndex(phantom.forward_segment_id.id)).to_string(),
Hint{phantom, facade.GetCheckSum()});
snapped_location,
util::coordinate_calculation::greatCircleDistance(snapped_location, input_location),
waypoint_name,
{std::move(seg_hints)});
}
else
{
// TODO: check forward/reverse
return json::makeWaypoint(
phantom.location,
util::coordinate_calculation::greatCircleDistance(phantom.location,
phantom.input_location),
facade.GetNameForID(facade.GetNameIndex(phantom.forward_segment_id.id))
.to_string());
snapped_location,
util::coordinate_calculation::greatCircleDistance(snapped_location, input_location),
waypoint_name);
}
}
flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<fbresult::Waypoint>>>
MakeWaypoints(flatbuffers::FlatBufferBuilder *builder,
const std::vector<PhantomNodes> &segment_end_coordinates) const
const std::vector<PhantomNodeCandidates> &waypoint_candidates) const
{
BOOST_ASSERT(parameters.coordinates.size() > 0);
BOOST_ASSERT(parameters.coordinates.size() == segment_end_coordinates.size() + 1);
BOOST_ASSERT(parameters.coordinates.size() == waypoint_candidates.size());
std::vector<flatbuffers::Offset<fbresult::Waypoint>> waypoints;
waypoints.resize(parameters.coordinates.size());
waypoints[0] =
MakeWaypoint(builder, segment_end_coordinates.front().source_phantom)->Finish();
std::transform(segment_end_coordinates.begin(),
segment_end_coordinates.end(),
std::next(waypoints.begin()),
[this, builder](const PhantomNodes &phantom_pair) {
return MakeWaypoint(builder, phantom_pair.target_phantom)->Finish();
std::transform(waypoint_candidates.begin(),
waypoint_candidates.end(),
waypoints.begin(),
[this, builder](const PhantomNodeCandidates &candidates) {
return MakeWaypoint(builder, candidates)->Finish();
});
return builder->CreateVector(waypoints);
}
// FIXME: gcc 4.9 does not like MakeWaypoints to be protected
// protected:
std::unique_ptr<fbresult::WaypointBuilder> MakeWaypoint(flatbuffers::FlatBufferBuilder *builder,
const PhantomNode &phantom) const
std::unique_ptr<fbresult::WaypointBuilder>
MakeWaypoint(flatbuffers::FlatBufferBuilder *builder,
const PhantomNodeCandidates &candidates) const
{
const auto &snapped_location = candidatesSnappedLocation(candidates);
const auto &input_location = candidatesInputLocation(candidates);
auto location =
fbresult::Position(static_cast<double>(util::toFloating(phantom.location.lon)),
static_cast<double>(util::toFloating(phantom.location.lat)));
auto name_string = builder->CreateString(
facade.GetNameForID(facade.GetNameIndex(phantom.forward_segment_id.id)).to_string());
fbresult::Position(static_cast<double>(util::toFloating(snapped_location.lon)),
static_cast<double>(util::toFloating(snapped_location.lat)));
const auto toName = [this](const auto &phantom) {
return facade.GetNameForID(facade.GetNameIndex(phantom.forward_segment_id.id))
.to_string();
};
const auto noEmpty = [](const auto &name) { return !name.empty(); };
// At an intersection we may have multiple phantom node candidates.
// Combine them to represent the waypoint name.
std::string waypoint_name = boost::algorithm::join(
candidates | boost::adaptors::transformed(toName) | boost::adaptors::filtered(noEmpty),
INTERSECTION_DELIMITER);
auto name_string = builder->CreateString(waypoint_name);
flatbuffers::Offset<flatbuffers::String> hint_string;
if (parameters.generate_hints)
{
hint_string = builder->CreateString(Hint{phantom, facade.GetCheckSum()}.ToBase64());
std::vector<SegmentHint> seg_hints(candidates.size());
std::transform(candidates.begin(),
candidates.end(),
seg_hints.begin(),
[this](const auto &phantom) {
return SegmentHint{phantom, facade.GetCheckSum()};
});
Hint hint{std::move(seg_hints)};
hint_string = builder->CreateString(hint.ToBase64());
}
auto waypoint = std::make_unique<fbresult::WaypointBuilder>(*builder);
waypoint->add_location(&location);
waypoint->add_distance(util::coordinate_calculation::greatCircleDistance(
phantom.location, phantom.input_location));
waypoint->add_distance(
util::coordinate_calculation::greatCircleDistance(snapped_location, input_location));
waypoint->add_name(name_string);
if (parameters.generate_hints)
{

View File

@ -51,14 +51,14 @@ namespace api
* Holds member attributes:
* - coordinates: for specifying location(s) to services
* - hints: hint for the service to derive the position(s) in the road network more efficiently,
* optional per coordinate
* optional per coordinate. Multiple hints can be provided for a coordinate.
* - radiuses: limits the search for segments in the road network to given radius(es) in meter,
* optional per coordinate
* - bearings: limits the search for segments in the road network to given bearing(s) in degree
* towards true north in clockwise direction, optional per coordinate
* - approaches: force the phantom node to start towards the node with the road country side.
*
* \see OSRM, Coordinate, Hint, Bearing, RouteParame, RouteParameters, TableParameters,
* \see OSRM, Coordinate, Hint, Bearing, RouteParameters, TableParameters,
* NearestParameters, TripParameters, MatchParameters and TileParameters
*/
struct BaseParameters

View File

@ -76,7 +76,7 @@ class MatchAPI final : public RouteAPI
routes.values.reserve(number_of_routes);
for (auto index : util::irange<std::size_t>(0UL, sub_matchings.size()))
{
auto route = MakeRoute(sub_routes[index].segment_end_coordinates,
auto route = MakeRoute(sub_routes[index].leg_endpoints,
sub_routes[index].unpacked_path_segments,
sub_routes[index].source_traversed_in_reverse,
sub_routes[index].target_traversed_in_reverse);
@ -146,7 +146,7 @@ class MatchAPI final : public RouteAPI
}
const auto &phantom =
sub_matchings[matching_index.sub_matching_index].nodes[matching_index.point_index];
auto waypoint = BaseAPI::MakeWaypoint(&fb_result, phantom);
auto waypoint = BaseAPI::MakeWaypoint(&fb_result, {phantom});
waypoint->add_matchings_index(matching_index.sub_matching_index);
waypoint->add_alternatives_count(sub_matchings[matching_index.sub_matching_index]
.alternatives_count[matching_index.point_index]);
@ -200,7 +200,7 @@ class MatchAPI final : public RouteAPI
}
const auto &phantom =
sub_matchings[matching_index.sub_matching_index].nodes[matching_index.point_index];
auto waypoint = BaseAPI::MakeWaypoint(phantom);
auto waypoint = BaseAPI::MakeWaypoint({phantom});
waypoint.values["matchings_index"] = matching_index.sub_matching_index;
waypoint.values["waypoint_index"] = matching_index.point_index;
waypoint.values["alternatives_count"] =

View File

@ -71,7 +71,7 @@ class NearestAPI final : public BaseAPI
auto node_values = MakeNodes(phantom_node);
fbresult::Uint64Pair nodes{node_values.first, node_values.second};
auto waypoint = MakeWaypoint(&fb_result, phantom_node);
auto waypoint = MakeWaypoint(&fb_result, {phantom_node});
waypoint->add_nodes(&nodes);
return waypoint->Finish();
});
@ -100,7 +100,7 @@ class NearestAPI final : public BaseAPI
waypoints.values.begin(),
[this](const PhantomNodeWithDistance &phantom_with_distance) {
auto &phantom_node = phantom_with_distance.phantom_node;
auto waypoint = MakeWaypoint(phantom_node);
auto waypoint = MakeWaypoint({phantom_node});
util::json::Array nodes;

View File

@ -47,8 +47,8 @@ class RouteAPI : public BaseAPI
void
MakeResponse(const InternalManyRoutesResult &raw_routes,
const std::vector<PhantomNodes>
&all_start_end_points, // all used coordinates, ignoring waypoints= parameter
const std::vector<PhantomNodeCandidates>
&waypoint_candidates, // all used coordinates, ignoring waypoints= parameter
osrm::engine::api::ResultT &response) const
{
BOOST_ASSERT(!raw_routes.routes.empty());
@ -56,19 +56,19 @@ class RouteAPI : public BaseAPI
if (response.is<flatbuffers::FlatBufferBuilder>())
{
auto &fb_result = response.get<flatbuffers::FlatBufferBuilder>();
MakeResponse(raw_routes, all_start_end_points, fb_result);
MakeResponse(raw_routes, waypoint_candidates, fb_result);
}
else
{
auto &json_result = response.get<util::json::Object>();
MakeResponse(raw_routes, all_start_end_points, json_result);
MakeResponse(raw_routes, waypoint_candidates, json_result);
}
}
void
MakeResponse(const InternalManyRoutesResult &raw_routes,
const std::vector<PhantomNodes>
&all_start_end_points, // all used coordinates, ignoring waypoints= parameter
const std::vector<PhantomNodeCandidates>
&waypoint_candidates, // all used coordinates, ignoring waypoints= parameter
flatbuffers::FlatBufferBuilder &fb_result) const
{
@ -80,8 +80,8 @@ class RouteAPI : public BaseAPI
}
auto response =
MakeFBResponse(raw_routes, fb_result, [this, &all_start_end_points, &fb_result]() {
return BaseAPI::MakeWaypoints(&fb_result, all_start_end_points);
MakeFBResponse(raw_routes, fb_result, [this, &waypoint_candidates, &fb_result]() {
return BaseAPI::MakeWaypoints(&fb_result, waypoint_candidates);
});
if (!data_timestamp.empty())
@ -93,8 +93,8 @@ class RouteAPI : public BaseAPI
void
MakeResponse(const InternalManyRoutesResult &raw_routes,
const std::vector<PhantomNodes>
&all_start_end_points, // all used coordinates, ignoring waypoints= parameter
const std::vector<PhantomNodeCandidates>
&waypoint_candidates, // all used coordinates, ignoring waypoints= parameter
util::json::Object &response) const
{
util::json::Array jsRoutes;
@ -104,7 +104,7 @@ class RouteAPI : public BaseAPI
if (!route.is_valid())
continue;
jsRoutes.values.push_back(MakeRoute(route.segment_end_coordinates,
jsRoutes.values.push_back(MakeRoute(route.leg_endpoints,
route.unpacked_path_segments,
route.source_traversed_in_reverse,
route.target_traversed_in_reverse));
@ -112,7 +112,7 @@ class RouteAPI : public BaseAPI
if (!parameters.skip_waypoints)
{
response.values["waypoints"] = BaseAPI::MakeWaypoints(all_start_end_points);
response.values["waypoints"] = BaseAPI::MakeWaypoints(waypoint_candidates);
}
response.values["routes"] = std::move(jsRoutes);
response.values["code"] = "Ok";
@ -138,7 +138,7 @@ class RouteAPI : public BaseAPI
continue;
routes.push_back(MakeRoute(fb_result,
raw_route.segment_end_coordinates,
raw_route.leg_endpoints,
raw_route.unpacked_path_segments,
raw_route.source_traversed_in_reverse,
raw_route.target_traversed_in_reverse));
@ -328,12 +328,12 @@ class RouteAPI : public BaseAPI
flatbuffers::Offset<fbresult::RouteObject>
MakeRoute(flatbuffers::FlatBufferBuilder &fb_result,
const std::vector<PhantomNodes> &segment_end_coordinates,
const std::vector<PhantomEndpoints> &leg_endpoints,
const std::vector<std::vector<PathData>> &unpacked_path_segments,
const std::vector<bool> &source_traversed_in_reverse,
const std::vector<bool> &target_traversed_in_reverse) const
{
auto legs_info = MakeLegs(segment_end_coordinates,
auto legs_info = MakeLegs(leg_endpoints,
unpacked_path_segments,
source_traversed_in_reverse,
target_traversed_in_reverse);
@ -705,12 +705,12 @@ class RouteAPI : public BaseAPI
return fb_result.CreateVector(intersections);
}
util::json::Object MakeRoute(const std::vector<PhantomNodes> &segment_end_coordinates,
util::json::Object MakeRoute(const std::vector<PhantomEndpoints> &leg_endpoints,
const std::vector<std::vector<PathData>> &unpacked_path_segments,
const std::vector<bool> &source_traversed_in_reverse,
const std::vector<bool> &target_traversed_in_reverse) const
{
auto legs_info = MakeLegs(segment_end_coordinates,
auto legs_info = MakeLegs(leg_endpoints,
unpacked_path_segments,
source_traversed_in_reverse,
target_traversed_in_reverse);
@ -868,7 +868,7 @@ class RouteAPI : public BaseAPI
const RouteParameters &parameters;
std::pair<std::vector<guidance::RouteLeg>, std::vector<guidance::LegGeometry>>
MakeLegs(const std::vector<PhantomNodes> &segment_end_coordinates,
MakeLegs(const std::vector<PhantomEndpoints> &leg_endpoints,
const std::vector<std::vector<PathData>> &unpacked_path_segments,
const std::vector<bool> &source_traversed_in_reverse,
const std::vector<bool> &target_traversed_in_reverse) const
@ -877,13 +877,13 @@ class RouteAPI : public BaseAPI
std::make_pair(std::vector<guidance::RouteLeg>(), std::vector<guidance::LegGeometry>());
auto &legs = result.first;
auto &leg_geometries = result.second;
auto number_of_legs = segment_end_coordinates.size();
auto number_of_legs = leg_endpoints.size();
legs.reserve(number_of_legs);
leg_geometries.reserve(number_of_legs);
for (auto idx : util::irange<std::size_t>(0UL, number_of_legs))
{
const auto &phantoms = segment_end_coordinates[idx];
const auto &phantoms = leg_endpoints[idx];
const auto &path_data = unpacked_path_segments[idx];
const bool reversed_source = source_traversed_in_reverse[idx];

View File

@ -48,25 +48,25 @@ class TableAPI final : public BaseAPI
virtual void
MakeResponse(const std::pair<std::vector<EdgeDuration>, std::vector<EdgeDistance>> &tables,
const std::vector<PhantomNode> &phantoms,
const std::vector<PhantomNodeCandidates> &candidates,
const std::vector<TableCellRef> &fallback_speed_cells,
osrm::engine::api::ResultT &response) const
{
if (response.is<flatbuffers::FlatBufferBuilder>())
{
auto &fb_result = response.get<flatbuffers::FlatBufferBuilder>();
MakeResponse(tables, phantoms, fallback_speed_cells, fb_result);
MakeResponse(tables, candidates, fallback_speed_cells, fb_result);
}
else
{
auto &json_result = response.get<util::json::Object>();
MakeResponse(tables, phantoms, fallback_speed_cells, json_result);
MakeResponse(tables, candidates, fallback_speed_cells, json_result);
}
}
virtual void
MakeResponse(const std::pair<std::vector<EdgeDuration>, std::vector<EdgeDistance>> &tables,
const std::vector<PhantomNode> &phantoms,
const std::vector<PhantomNodeCandidates> &candidates,
const std::vector<TableCellRef> &fallback_speed_cells,
flatbuffers::FlatBufferBuilder &fb_result) const
{
@ -86,15 +86,15 @@ class TableAPI final : public BaseAPI
{
if (!parameters.skip_waypoints)
{
sources = MakeWaypoints(fb_result, phantoms);
sources = MakeWaypoints(fb_result, candidates);
}
number_of_sources = phantoms.size();
number_of_sources = candidates.size();
}
else
{
if (!parameters.skip_waypoints)
{
sources = MakeWaypoints(fb_result, phantoms, parameters.sources);
sources = MakeWaypoints(fb_result, candidates, parameters.sources);
}
}
@ -104,15 +104,15 @@ class TableAPI final : public BaseAPI
{
if (!parameters.skip_waypoints)
{
destinations = MakeWaypoints(fb_result, phantoms);
destinations = MakeWaypoints(fb_result, candidates);
}
number_of_destinations = phantoms.size();
number_of_destinations = candidates.size();
}
else
{
if (!parameters.skip_waypoints)
{
destinations = MakeWaypoints(fb_result, phantoms, parameters.destinations);
destinations = MakeWaypoints(fb_result, candidates, parameters.destinations);
}
}
@ -168,7 +168,7 @@ class TableAPI final : public BaseAPI
virtual void
MakeResponse(const std::pair<std::vector<EdgeDuration>, std::vector<EdgeDistance>> &tables,
const std::vector<PhantomNode> &phantoms,
const std::vector<PhantomNodeCandidates> &candidates,
const std::vector<TableCellRef> &fallback_speed_cells,
util::json::Object &response) const
{
@ -180,15 +180,15 @@ class TableAPI final : public BaseAPI
{
if (!parameters.skip_waypoints)
{
response.values["sources"] = MakeWaypoints(phantoms);
response.values["sources"] = MakeWaypoints(candidates);
}
number_of_sources = phantoms.size();
number_of_sources = candidates.size();
}
else
{
if (!parameters.skip_waypoints)
{
response.values["sources"] = MakeWaypoints(phantoms, parameters.sources);
response.values["sources"] = MakeWaypoints(candidates, parameters.sources);
}
}
@ -196,15 +196,16 @@ class TableAPI final : public BaseAPI
{
if (!parameters.skip_waypoints)
{
response.values["destinations"] = MakeWaypoints(phantoms);
response.values["destinations"] = MakeWaypoints(candidates);
}
number_of_destinations = phantoms.size();
number_of_destinations = candidates.size();
}
else
{
if (!parameters.skip_waypoints)
{
response.values["destinations"] = MakeWaypoints(phantoms, parameters.destinations);
response.values["destinations"] =
MakeWaypoints(candidates, parameters.destinations);
}
}
@ -236,31 +237,33 @@ class TableAPI final : public BaseAPI
protected:
virtual flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<fbresult::Waypoint>>>
MakeWaypoints(flatbuffers::FlatBufferBuilder &builder,
const std::vector<PhantomNode> &phantoms) const
const std::vector<PhantomNodeCandidates> &candidates) const
{
std::vector<flatbuffers::Offset<fbresult::Waypoint>> waypoints;
waypoints.reserve(phantoms.size());
BOOST_ASSERT(phantoms.size() == parameters.coordinates.size());
waypoints.reserve(candidates.size());
BOOST_ASSERT(candidates.size() == parameters.coordinates.size());
boost::range::transform(
phantoms, std::back_inserter(waypoints), [this, &builder](const PhantomNode &phantom) {
return BaseAPI::MakeWaypoint(&builder, phantom)->Finish();
boost::range::transform(candidates,
std::back_inserter(waypoints),
[this, &builder](const PhantomNodeCandidates &candidates) {
return BaseAPI::MakeWaypoint(&builder, candidates)->Finish();
});
return builder.CreateVector(waypoints);
}
virtual flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<fbresult::Waypoint>>>
MakeWaypoints(flatbuffers::FlatBufferBuilder &builder,
const std::vector<PhantomNode> &phantoms,
const std::vector<PhantomNodeCandidates> &candidates,
const std::vector<std::size_t> &indices) const
{
std::vector<flatbuffers::Offset<fbresult::Waypoint>> waypoints;
waypoints.reserve(indices.size());
boost::range::transform(indices,
boost::range::transform(
indices,
std::back_inserter(waypoints),
[this, &builder, phantoms](const std::size_t idx) {
BOOST_ASSERT(idx < phantoms.size());
return BaseAPI::MakeWaypoint(&builder, phantoms[idx])->Finish();
[this, &builder, &candidates](const std::size_t idx) {
BOOST_ASSERT(idx < candidates.size());
return BaseAPI::MakeWaypoint(&builder, candidates[idx])->Finish();
});
return builder.CreateVector(waypoints);
}
@ -313,29 +316,31 @@ class TableAPI final : public BaseAPI
return builder.CreateVector(fb_table);
}
virtual util::json::Array MakeWaypoints(const std::vector<PhantomNode> &phantoms) const
virtual util::json::Array
MakeWaypoints(const std::vector<PhantomNodeCandidates> &candidates) const
{
util::json::Array json_waypoints;
json_waypoints.values.reserve(phantoms.size());
BOOST_ASSERT(phantoms.size() == parameters.coordinates.size());
json_waypoints.values.reserve(candidates.size());
BOOST_ASSERT(candidates.size() == parameters.coordinates.size());
boost::range::transform(
phantoms,
boost::range::transform(candidates,
std::back_inserter(json_waypoints.values),
[this](const PhantomNode &phantom) { return BaseAPI::MakeWaypoint(phantom); });
[this](const PhantomNodeCandidates &candidates) {
return BaseAPI::MakeWaypoint(candidates);
});
return json_waypoints;
}
virtual util::json::Array MakeWaypoints(const std::vector<PhantomNode> &phantoms,
virtual util::json::Array MakeWaypoints(const std::vector<PhantomNodeCandidates> &candidates,
const std::vector<std::size_t> &indices) const
{
util::json::Array json_waypoints;
json_waypoints.values.reserve(indices.size());
boost::range::transform(indices,
std::back_inserter(json_waypoints.values),
[this, phantoms](const std::size_t idx) {
BOOST_ASSERT(idx < phantoms.size());
return BaseAPI::MakeWaypoint(phantoms[idx]);
[this, &candidates](const std::size_t idx) {
BOOST_ASSERT(idx < candidates.size());
return BaseAPI::MakeWaypoint(candidates[idx]);
});
return json_waypoints;
}

View File

@ -26,7 +26,7 @@ class TripAPI final : public RouteAPI
}
void MakeResponse(const std::vector<std::vector<NodeID>> &sub_trips,
const std::vector<InternalRouteResult> &sub_routes,
const std::vector<PhantomNode> &phantoms,
const std::vector<PhantomNodeCandidates> &candidates,
osrm::engine::api::ResultT &response) const
{
BOOST_ASSERT(sub_trips.size() == sub_routes.size());
@ -34,17 +34,17 @@ class TripAPI final : public RouteAPI
if (response.is<flatbuffers::FlatBufferBuilder>())
{
auto &fb_result = response.get<flatbuffers::FlatBufferBuilder>();
MakeResponse(sub_trips, sub_routes, phantoms, fb_result);
MakeResponse(sub_trips, sub_routes, candidates, fb_result);
}
else
{
auto &json_result = response.get<util::json::Object>();
MakeResponse(sub_trips, sub_routes, phantoms, json_result);
MakeResponse(sub_trips, sub_routes, candidates, json_result);
}
}
void MakeResponse(const std::vector<std::vector<NodeID>> &sub_trips,
const std::vector<InternalRouteResult> &sub_routes,
const std::vector<PhantomNode> &phantoms,
const std::vector<PhantomNodeCandidates> &candidates,
flatbuffers::FlatBufferBuilder &fb_result) const
{
auto data_timestamp = facade.GetTimestamp();
@ -55,8 +55,8 @@ class TripAPI final : public RouteAPI
}
auto response =
MakeFBResponse(sub_routes, fb_result, [this, &fb_result, &sub_trips, &phantoms]() {
return MakeWaypoints(fb_result, sub_trips, phantoms);
MakeFBResponse(sub_routes, fb_result, [this, &fb_result, &sub_trips, &candidates]() {
return MakeWaypoints(fb_result, sub_trips, candidates);
});
if (!data_timestamp.empty())
@ -67,7 +67,7 @@ class TripAPI final : public RouteAPI
}
void MakeResponse(const std::vector<std::vector<NodeID>> &sub_trips,
const std::vector<InternalRouteResult> &sub_routes,
const std::vector<PhantomNode> &phantoms,
const std::vector<PhantomNodeCandidates> &candidates,
util::json::Object &response) const
{
auto number_of_routes = sub_trips.size();
@ -75,7 +75,7 @@ class TripAPI final : public RouteAPI
routes.values.reserve(number_of_routes);
for (auto index : util::irange<std::size_t>(0UL, sub_trips.size()))
{
auto route = MakeRoute(sub_routes[index].segment_end_coordinates,
auto route = MakeRoute(sub_routes[index].leg_endpoints,
sub_routes[index].unpacked_path_segments,
sub_routes[index].source_traversed_in_reverse,
sub_routes[index].target_traversed_in_reverse);
@ -83,7 +83,7 @@ class TripAPI final : public RouteAPI
}
if (!parameters.skip_waypoints)
{
response.values["waypoints"] = MakeWaypoints(sub_trips, phantoms);
response.values["waypoints"] = MakeWaypoints(sub_trips, candidates);
}
response.values["trips"] = std::move(routes);
response.values["code"] = "Ok";
@ -120,7 +120,7 @@ class TripAPI final : public RouteAPI
flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<fbresult::Waypoint>>>
MakeWaypoints(flatbuffers::FlatBufferBuilder &fb_result,
const std::vector<std::vector<NodeID>> &sub_trips,
const std::vector<PhantomNode> &phantoms) const
const std::vector<PhantomNodeCandidates> &candidates) const
{
std::vector<flatbuffers::Offset<fbresult::Waypoint>> waypoints;
waypoints.reserve(parameters.coordinates.size());
@ -132,7 +132,7 @@ class TripAPI final : public RouteAPI
auto trip_index = input_idx_to_trip_idx[input_index];
BOOST_ASSERT(!trip_index.NotUsed());
auto waypoint = BaseAPI::MakeWaypoint(&fb_result, phantoms[input_index]);
auto waypoint = BaseAPI::MakeWaypoint(&fb_result, candidates[input_index]);
waypoint->add_waypoint_index(trip_index.point_index);
waypoint->add_trips_index(trip_index.sub_trip_index);
waypoints.push_back(waypoint->Finish());
@ -142,7 +142,7 @@ class TripAPI final : public RouteAPI
}
util::json::Array MakeWaypoints(const std::vector<std::vector<NodeID>> &sub_trips,
const std::vector<PhantomNode> &phantoms) const
const std::vector<PhantomNodeCandidates> &candidates) const
{
util::json::Array waypoints;
waypoints.values.reserve(parameters.coordinates.size());
@ -154,7 +154,7 @@ class TripAPI final : public RouteAPI
auto trip_index = input_idx_to_trip_idx[input_index];
BOOST_ASSERT(!trip_index.NotUsed());
auto waypoint = BaseAPI::MakeWaypoint(phantoms[input_index]);
auto waypoint = BaseAPI::MakeWaypoint(candidates[input_index]);
waypoint.values["trips_index"] = trip_index.sub_trip_index;
waypoint.values["waypoint_index"] = trip_index.point_index;
waypoints.values.push_back(std::move(waypoint));

View File

@ -323,127 +323,41 @@ class ContiguousInternalMemoryDataFacadeBase : public BaseDataFacade
std::vector<PhantomNodeWithDistance>
NearestPhantomNodesInRange(const util::Coordinate input_coordinate,
const float max_distance,
const Approach approach,
const bool use_all_edges) const override final
{
BOOST_ASSERT(m_geospatial_query.get());
return m_geospatial_query->NearestPhantomNodesInRange(
input_coordinate, max_distance, approach, use_all_edges);
}
std::vector<PhantomNodeWithDistance>
NearestPhantomNodesInRange(const util::Coordinate input_coordinate,
const float max_distance,
const int bearing,
const int bearing_range,
const Approach approach,
const bool use_all_edges) const override final
{
BOOST_ASSERT(m_geospatial_query.get());
return m_geospatial_query->NearestPhantomNodesInRange(
input_coordinate, max_distance, bearing, bearing_range, approach, use_all_edges);
}
std::vector<PhantomNodeWithDistance>
NearestPhantomNodes(const util::Coordinate input_coordinate,
const unsigned max_results,
const Approach approach) const override final
{
BOOST_ASSERT(m_geospatial_query.get());
return m_geospatial_query->NearestPhantomNodes(input_coordinate, max_results, approach);
}
std::vector<PhantomNodeWithDistance>
NearestPhantomNodes(const util::Coordinate input_coordinate,
const unsigned max_results,
const double max_distance,
const boost::optional<Bearing> bearing,
const Approach approach,
const bool use_all_edges) const override final
{
BOOST_ASSERT(m_geospatial_query.get());
return m_geospatial_query->NearestPhantomNodes(
input_coordinate, approach, boost::none, max_distance, bearing, use_all_edges);
}
std::vector<PhantomNodeWithDistance>
NearestPhantomNodes(const util::Coordinate input_coordinate,
const size_t max_results,
const boost::optional<double> max_distance,
const boost::optional<Bearing> bearing,
const Approach approach) const override final
{
BOOST_ASSERT(m_geospatial_query.get());
return m_geospatial_query->NearestPhantomNodes(
input_coordinate, max_results, max_distance, approach);
input_coordinate, approach, max_results, max_distance, bearing, boost::none);
}
std::vector<PhantomNodeWithDistance>
NearestPhantomNodes(const util::Coordinate input_coordinate,
const unsigned max_results,
const int bearing,
const int bearing_range,
const Approach approach) const override final
{
BOOST_ASSERT(m_geospatial_query.get());
return m_geospatial_query->NearestPhantomNodes(
input_coordinate, max_results, bearing, bearing_range, approach);
}
std::vector<PhantomNodeWithDistance>
NearestPhantomNodes(const util::Coordinate input_coordinate,
const unsigned max_results,
const double max_distance,
const int bearing,
const int bearing_range,
const Approach approach) const override final
{
BOOST_ASSERT(m_geospatial_query.get());
return m_geospatial_query->NearestPhantomNodes(
input_coordinate, max_results, max_distance, bearing, bearing_range, approach);
}
std::pair<PhantomNode, PhantomNode>
NearestPhantomNodeWithAlternativeFromBigComponent(const util::Coordinate input_coordinate,
PhantomCandidateAlternatives
NearestCandidatesWithAlternativeFromBigComponent(const util::Coordinate input_coordinate,
const boost::optional<double> max_distance,
const boost::optional<Bearing> bearing,
const Approach approach,
const bool use_all_edges) const override final
{
BOOST_ASSERT(m_geospatial_query.get());
return m_geospatial_query->NearestPhantomNodeWithAlternativeFromBigComponent(
input_coordinate, approach, use_all_edges);
}
std::pair<PhantomNode, PhantomNode>
NearestPhantomNodeWithAlternativeFromBigComponent(const util::Coordinate input_coordinate,
const double max_distance,
const Approach approach,
const bool use_all_edges) const override final
{
BOOST_ASSERT(m_geospatial_query.get());
return m_geospatial_query->NearestPhantomNodeWithAlternativeFromBigComponent(
input_coordinate, max_distance, approach, use_all_edges);
}
std::pair<PhantomNode, PhantomNode>
NearestPhantomNodeWithAlternativeFromBigComponent(const util::Coordinate input_coordinate,
const double max_distance,
const int bearing,
const int bearing_range,
const Approach approach,
const bool use_all_edges) const override final
{
BOOST_ASSERT(m_geospatial_query.get());
return m_geospatial_query->NearestPhantomNodeWithAlternativeFromBigComponent(
input_coordinate, max_distance, bearing, bearing_range, approach, use_all_edges);
}
std::pair<PhantomNode, PhantomNode>
NearestPhantomNodeWithAlternativeFromBigComponent(const util::Coordinate input_coordinate,
const int bearing,
const int bearing_range,
const Approach approach,
const bool use_all_edges) const override final
{
BOOST_ASSERT(m_geospatial_query.get());
return m_geospatial_query->NearestPhantomNodeWithAlternativeFromBigComponent(
input_coordinate, bearing, bearing_range, approach, use_all_edges);
return m_geospatial_query->NearestCandidatesWithAlternativeFromBigComponent(
input_coordinate, approach, max_distance, bearing, use_all_edges);
}
std::uint32_t GetCheckSum() const override final { return m_check_sum; }

View File

@ -35,6 +35,7 @@
#include <boost/range/any_range.hpp>
#include <cstddef>
#include <engine/bearing.hpp>
#include <string>
#include <utility>
#include <vector>
@ -130,62 +131,24 @@ class BaseDataFacade
virtual std::vector<PhantomNodeWithDistance>
NearestPhantomNodesInRange(const util::Coordinate input_coordinate,
const float max_distance,
const int bearing,
const int bearing_range,
const Approach approach,
const bool use_all_edges) const = 0;
virtual std::vector<PhantomNodeWithDistance>
NearestPhantomNodesInRange(const util::Coordinate input_coordinate,
const float max_distance,
const double max_distance,
const boost::optional<Bearing> bearing,
const Approach approach,
const bool use_all_edges) const = 0;
virtual std::vector<PhantomNodeWithDistance>
NearestPhantomNodes(const util::Coordinate input_coordinate,
const unsigned max_results,
const double max_distance,
const int bearing,
const int bearing_range,
const Approach approach) const = 0;
virtual std::vector<PhantomNodeWithDistance>
NearestPhantomNodes(const util::Coordinate input_coordinate,
const unsigned max_results,
const int bearing,
const int bearing_range,
const Approach approach) const = 0;
virtual std::vector<PhantomNodeWithDistance>
NearestPhantomNodes(const util::Coordinate input_coordinate,
const unsigned max_results,
const Approach approach) const = 0;
virtual std::vector<PhantomNodeWithDistance>
NearestPhantomNodes(const util::Coordinate input_coordinate,
const unsigned max_results,
const double max_distance,
const size_t max_results,
const boost::optional<double> max_distance,
const boost::optional<Bearing> bearing,
const Approach approach) const = 0;
virtual std::pair<PhantomNode, PhantomNode>
NearestPhantomNodeWithAlternativeFromBigComponent(const util::Coordinate input_coordinate,
virtual PhantomCandidateAlternatives
NearestCandidatesWithAlternativeFromBigComponent(const util::Coordinate input_coordinate,
const boost::optional<double> max_distance,
const boost::optional<Bearing> bearing,
const Approach approach,
const bool use_all_edges) const = 0;
virtual std::pair<PhantomNode, PhantomNode>
NearestPhantomNodeWithAlternativeFromBigComponent(const util::Coordinate input_coordinate,
const double max_distance,
const Approach approach,
const bool use_all_edges) const = 0;
virtual std::pair<PhantomNode, PhantomNode>
NearestPhantomNodeWithAlternativeFromBigComponent(const util::Coordinate input_coordinate,
const double max_distance,
const int bearing,
const int bearing_range,
const Approach approach,
const bool use_all_edges) const = 0;
virtual std::pair<PhantomNode, PhantomNode>
NearestPhantomNodeWithAlternativeFromBigComponent(const util::Coordinate input_coordinate,
const int bearing,
const int bearing_range,
const Approach approach,
const bool use_all_edges = false) const = 0;
virtual bool HasLaneData(const EdgeID edge_based_edge_id) const = 0;
virtual util::guidance::LaneTupleIdPair GetLaneData(const EdgeID edge_based_edge_id) const = 0;

View File

@ -2,6 +2,7 @@
#define GEOSPATIAL_QUERY_HPP
#include "engine/approach.hpp"
#include "engine/bearing.hpp"
#include "engine/phantom_node.hpp"
#include "util/bearing.hpp"
#include "util/coordinate_calculation.hpp"
@ -22,10 +23,10 @@ namespace osrm
namespace engine
{
inline std::pair<bool, bool> boolPairAnd(const std::pair<bool, bool> &A,
const std::pair<bool, bool> &B)
inline std::pair<bool, bool> operator&&(const std::pair<bool, bool> &a,
const std::pair<bool, bool> &b)
{
return std::make_pair(A.first && B.first, A.second && B.second);
return {a.first && b.first, a.second && b.second};
}
// Implements complex queries on top of an RTree and builds PhantomNodes from it.
@ -48,390 +49,241 @@ template <typename RTreeT, typename DataFacadeT> class GeospatialQuery
return rtree.SearchInBox(bbox);
}
// Returns nearest PhantomNodes in the given bearing range within max_distance.
// Returns max_results nearest PhantomNodes that are valid within the provided parameters.
// Does not filter by small/big component!
std::vector<PhantomNodeWithDistance>
NearestPhantomNodesInRange(const util::Coordinate input_coordinate,
const double max_distance,
NearestPhantomNodes(const util::Coordinate input_coordinate,
const Approach approach,
const bool use_all_edges) const
const boost::optional<size_t> max_results,
const boost::optional<double> max_distance,
const boost::optional<Bearing> bearing_with_range,
const boost::optional<bool> use_all_edges) const
{
auto results = rtree.Nearest(
input_coordinate,
[this, approach, &input_coordinate, use_all_edges](const CandidateSegment &segment) {
return boolPairAnd(
boolPairAnd(HasValidEdge(segment, use_all_edges), CheckSegmentExclude(segment)),
CheckApproach(input_coordinate, segment, approach));
},
[this, max_distance, input_coordinate](const std::size_t,
[this, approach, &input_coordinate, &bearing_with_range, &use_all_edges](
const CandidateSegment &segment) {
return CheckSegmentDistance(input_coordinate, segment, max_distance);
auto valid = CheckSegmentExclude(segment) &&
CheckApproach(input_coordinate, segment, approach) &&
(use_all_edges ? HasValidEdge(segment, *use_all_edges)
: HasValidEdge(segment)) &&
(bearing_with_range ? CheckSegmentBearing(segment, *bearing_with_range)
: std::make_pair(true, true));
return valid;
},
[this, &max_distance, &max_results, input_coordinate](const std::size_t num_results,
const CandidateSegment &segment) {
return (max_results && num_results >= *max_results) ||
(max_distance &&
CheckSegmentDistance(input_coordinate, segment, *max_distance));
});
return MakePhantomNodes(input_coordinate, results);
}
// Returns nearest PhantomNodes in the given bearing range within max_distance.
// Does not filter by small/big component!
std::vector<PhantomNodeWithDistance>
NearestPhantomNodesInRange(const util::Coordinate input_coordinate,
const double max_distance,
const int bearing,
const int bearing_range,
// Returns a list of phantom node candidates from the nearest location that are valid
// within the provided parameters. If there is tie between equidistant locations,
// we only pick candidates from one location.
// If candidates do not include a node from a big component, an alternative list of candidates
// from the nearest location which has nodes from a big component is returned.
PhantomCandidateAlternatives NearestCandidatesWithAlternativeFromBigComponent(
const util::Coordinate input_coordinate,
const Approach approach,
const bool use_all_edges) const
const boost::optional<double> max_distance,
const boost::optional<Bearing> bearing_with_range,
const boost::optional<bool> use_all_edges) const
{
auto results = rtree.Nearest(
input_coordinate,
[this, approach, &input_coordinate, bearing, bearing_range, use_all_edges](
const CandidateSegment &segment) {
auto use_direction =
boolPairAnd(CheckSegmentBearing(segment, bearing, bearing_range),
boolPairAnd(HasValidEdge(segment, use_all_edges),
CheckSegmentExclude(segment)));
use_direction =
boolPairAnd(use_direction, CheckApproach(input_coordinate, segment, approach));
return use_direction;
},
[this, max_distance, input_coordinate](const std::size_t,
const CandidateSegment &segment) {
return CheckSegmentDistance(input_coordinate, segment, max_distance);
});
return MakePhantomNodes(input_coordinate, results);
}
// Returns max_results nearest PhantomNodes in the given bearing range.
// Does not filter by small/big component!
std::vector<PhantomNodeWithDistance>
NearestPhantomNodes(const util::Coordinate input_coordinate,
const unsigned max_results,
const int bearing,
const int bearing_range,
const Approach approach) const
{
auto results = rtree.Nearest(
input_coordinate,
[this, approach, &input_coordinate, bearing, bearing_range](
const CandidateSegment &segment) {
auto use_direction =
boolPairAnd(CheckSegmentBearing(segment, bearing, bearing_range),
boolPairAnd(HasValidEdge(segment), CheckSegmentExclude(segment)));
return boolPairAnd(use_direction,
CheckApproach(input_coordinate, segment, approach));
},
[max_results](const std::size_t num_results, const CandidateSegment &) {
return num_results >= max_results;
});
return MakePhantomNodes(input_coordinate, results);
}
// Returns max_results nearest PhantomNodes in the given bearing range within the maximum
// distance.
// Does not filter by small/big component!
std::vector<PhantomNodeWithDistance>
NearestPhantomNodes(const util::Coordinate input_coordinate,
const unsigned max_results,
const double max_distance,
const int bearing,
const int bearing_range,
const Approach approach) const
{
auto results = rtree.Nearest(
input_coordinate,
[this, approach, &input_coordinate, bearing, bearing_range](
const CandidateSegment &segment) {
auto use_direction =
boolPairAnd(CheckSegmentBearing(segment, bearing, bearing_range),
boolPairAnd(HasValidEdge(segment), CheckSegmentExclude(segment)));
return boolPairAnd(use_direction,
CheckApproach(input_coordinate, segment, approach));
},
[this, max_distance, max_results, input_coordinate](const std::size_t num_results,
const CandidateSegment &segment) {
return num_results >= max_results ||
CheckSegmentDistance(input_coordinate, segment, max_distance);
});
return MakePhantomNodes(input_coordinate, results);
}
// Returns max_results nearest PhantomNodes.
// Does not filter by small/big component!
std::vector<PhantomNodeWithDistance>
NearestPhantomNodes(const util::Coordinate input_coordinate,
const unsigned max_results,
const Approach approach) const
{
auto results = rtree.Nearest(
input_coordinate,
[this, approach, &input_coordinate](const CandidateSegment &segment) {
return boolPairAnd(boolPairAnd(HasValidEdge(segment), CheckSegmentExclude(segment)),
CheckApproach(input_coordinate, segment, approach));
},
[max_results](const std::size_t num_results, const CandidateSegment &) {
return num_results >= max_results;
});
return MakePhantomNodes(input_coordinate, results);
}
// Returns max_results nearest PhantomNodes in the given max distance.
// Does not filter by small/big component!
std::vector<PhantomNodeWithDistance>
NearestPhantomNodes(const util::Coordinate input_coordinate,
const unsigned max_results,
const double max_distance,
const Approach approach) const
{
auto results = rtree.Nearest(
input_coordinate,
[this, approach, &input_coordinate](const CandidateSegment &segment) {
return boolPairAnd(boolPairAnd(HasValidEdge(segment), CheckSegmentExclude(segment)),
CheckApproach(input_coordinate, segment, approach));
},
[this, max_distance, max_results, input_coordinate](const std::size_t num_results,
const CandidateSegment &segment) {
return num_results >= max_results ||
CheckSegmentDistance(input_coordinate, segment, max_distance);
});
return MakePhantomNodes(input_coordinate, results);
}
// Returns the nearest phantom node. If this phantom node is not from a big component
// a second phantom node is return that is the nearest coordinate in a big component.
std::pair<PhantomNode, PhantomNode>
NearestPhantomNodeWithAlternativeFromBigComponent(const util::Coordinate input_coordinate,
const double max_distance,
const Approach approach,
const bool use_all_edges) const
{
bool has_small_component = false;
bool has_nearest = false;
bool has_big_component = false;
Coordinate big_component_coord;
double big_component_distance = std::numeric_limits<double>::max();
Coordinate nearest_coord;
auto results = rtree.Nearest(
input_coordinate,
[this,
approach,
&input_coordinate,
&has_nearest,
&has_big_component,
&has_small_component,
&use_all_edges](const CandidateSegment &segment) {
auto use_segment =
(!has_small_component || (!has_big_component && !IsTinyComponent(segment)));
auto use_directions = std::make_pair(use_segment, use_segment);
const auto valid_edges = HasValidEdge(segment, use_all_edges);
const auto admissible_segments = CheckSegmentExclude(segment);
use_directions = boolPairAnd(use_directions, admissible_segments);
use_directions = boolPairAnd(use_directions, valid_edges);
use_directions =
boolPairAnd(use_directions, CheckApproach(input_coordinate, segment, approach));
&nearest_coord,
&big_component_coord,
&big_component_distance,
&use_all_edges,
&bearing_with_range](const CandidateSegment &segment) {
auto is_big_component = !IsTinyComponent(segment);
auto not_nearest =
has_nearest && segment.fixed_projected_coordinate != nearest_coord;
auto not_big =
has_big_component && segment.fixed_projected_coordinate != big_component_coord;
if (use_directions.first || use_directions.second)
/**
*
* Two reasons why we don't want this candidate:
* 1. A non-big component candidate that is not at the nearest location
* 2. A big component candidate that is not at the big location.
*
* It's possible that 1. could end up having the same location as the nearest big
* component node if we have yet to see one. However, we don't know this and it
* could lead to buffering large numbers of candidates before finding the big
* component location.
* By filtering out 1. nodes, this does mean that the alternative list of
* candidates will not have non-big component candidates. Given the alternative
* list of big component candidates is meant as a backup choice, this seems
* reasonable.
*/
if ((!is_big_component && not_nearest) || (is_big_component && not_big))
{
has_big_component = has_big_component || !IsTinyComponent(segment);
has_small_component = has_small_component || IsTinyComponent(segment);
return std::make_pair(false, false);
}
auto use_candidate =
CheckSegmentExclude(segment) &&
CheckApproach(input_coordinate, segment, approach) &&
(use_all_edges ? HasValidEdge(segment, *use_all_edges)
: HasValidEdge(segment)) &&
(bearing_with_range ? CheckSegmentBearing(segment, *bearing_with_range)
: std::make_pair(true, true));
if (use_candidate.first || use_candidate.second)
{
if (!has_nearest)
{
has_nearest = true;
nearest_coord = segment.fixed_projected_coordinate;
}
if (is_big_component && !has_big_component)
{
has_big_component = true;
big_component_coord = segment.fixed_projected_coordinate;
big_component_distance = GetSegmentDistance(input_coordinate, segment);
}
}
return use_directions;
return use_candidate;
},
[this, &has_big_component, max_distance, input_coordinate](
const std::size_t num_results, const CandidateSegment &segment) {
return (num_results > 0 && has_big_component) ||
CheckSegmentDistance(input_coordinate, segment, max_distance);
[this, &has_big_component, &max_distance, input_coordinate, &big_component_distance](
const std::size_t /*num_results*/, const CandidateSegment &segment) {
auto distance = GetSegmentDistance(input_coordinate, segment);
auto further_than_big_component = distance > big_component_distance;
auto no_more_candidates = has_big_component && further_than_big_component;
auto too_far_away = max_distance && distance > *max_distance;
// Time to terminate the search when:
// 1. We've found a node from a big component and the next candidate is further away
// than that node.
// 2. We're further away from the input then our max allowed distance.
return no_more_candidates || too_far_away;
});
if (results.size() == 0)
{
return std::make_pair(PhantomNode{}, PhantomNode{});
}
BOOST_ASSERT(results.size() == 1 || results.size() == 2);
return std::make_pair(MakePhantomNode(input_coordinate, results.front()).phantom_node,
MakePhantomNode(input_coordinate, results.back()).phantom_node);
}
// Returns the nearest phantom node. If this phantom node is not from a big component
// a second phantom node is return that is the nearest coordinate in a big component.
std::pair<PhantomNode, PhantomNode>
NearestPhantomNodeWithAlternativeFromBigComponent(const util::Coordinate input_coordinate,
const Approach approach,
const bool use_all_edges) const
{
bool has_small_component = false;
bool has_big_component = false;
auto results = rtree.Nearest(
input_coordinate,
[this,
approach,
&input_coordinate,
&has_big_component,
&has_small_component,
&use_all_edges](const CandidateSegment &segment) {
auto use_segment =
(!has_small_component || (!has_big_component && !IsTinyComponent(segment)));
auto use_directions = std::make_pair(use_segment, use_segment);
const auto valid_edges = HasValidEdge(segment, use_all_edges);
const auto admissible_segments = CheckSegmentExclude(segment);
use_directions = boolPairAnd(use_directions, admissible_segments);
use_directions = boolPairAnd(use_directions, valid_edges);
use_directions =
boolPairAnd(use_directions, CheckApproach(input_coordinate, segment, approach));
if (use_directions.first || use_directions.second)
{
has_big_component = has_big_component || !IsTinyComponent(segment);
has_small_component = has_small_component || IsTinyComponent(segment);
}
return use_directions;
},
[&has_big_component](const std::size_t num_results, const CandidateSegment &) {
return num_results > 0 && has_big_component;
});
if (results.size() == 0)
{
return std::make_pair(PhantomNode{}, PhantomNode{});
}
BOOST_ASSERT(results.size() == 1 || results.size() == 2);
return std::make_pair(MakePhantomNode(input_coordinate, results.front()).phantom_node,
MakePhantomNode(input_coordinate, results.back()).phantom_node);
}
// Returns the nearest phantom node. If this phantom node is not from a big component
// a second phantom node is return that is the nearest coordinate in a big component.
std::pair<PhantomNode, PhantomNode>
NearestPhantomNodeWithAlternativeFromBigComponent(const util::Coordinate input_coordinate,
const int bearing,
const int bearing_range,
const Approach approach,
const bool use_all_edges) const
{
bool has_small_component = false;
bool has_big_component = false;
auto results = rtree.Nearest(
input_coordinate,
[this,
approach,
&input_coordinate,
bearing,
bearing_range,
&has_big_component,
&has_small_component,
&use_all_edges](const CandidateSegment &segment) {
auto use_segment =
(!has_small_component || (!has_big_component && !IsTinyComponent(segment)));
auto use_directions = std::make_pair(use_segment, use_segment);
const auto admissible_segments = CheckSegmentExclude(segment);
if (use_segment)
{
use_directions =
boolPairAnd(CheckSegmentBearing(segment, bearing, bearing_range),
HasValidEdge(segment, use_all_edges));
use_directions = boolPairAnd(use_directions, admissible_segments);
use_directions = boolPairAnd(
use_directions, CheckApproach(input_coordinate, segment, approach));
if (use_directions.first || use_directions.second)
{
has_big_component = has_big_component || !IsTinyComponent(segment);
has_small_component = has_small_component || IsTinyComponent(segment);
}
}
return use_directions;
},
[&has_big_component](const std::size_t num_results, const CandidateSegment &) {
return num_results > 0 && has_big_component;
});
if (results.size() == 0)
{
return std::make_pair(PhantomNode{}, PhantomNode{});
}
BOOST_ASSERT(results.size() > 0);
return std::make_pair(MakePhantomNode(input_coordinate, results.front()).phantom_node,
MakePhantomNode(input_coordinate, results.back()).phantom_node);
}
// Returns the nearest phantom node. If this phantom node is not from a big component
// a second phantom node is return that is the nearest coordinate in a big component.
std::pair<PhantomNode, PhantomNode>
NearestPhantomNodeWithAlternativeFromBigComponent(const util::Coordinate input_coordinate,
const double max_distance,
const int bearing,
const int bearing_range,
const Approach approach,
const bool use_all_edges) const
{
bool has_small_component = false;
bool has_big_component = false;
auto results = rtree.Nearest(
input_coordinate,
[this,
approach,
&input_coordinate,
bearing,
bearing_range,
&has_big_component,
&has_small_component,
&use_all_edges](const CandidateSegment &segment) {
auto use_segment =
(!has_small_component || (!has_big_component && !IsTinyComponent(segment)));
auto use_directions = std::make_pair(use_segment, use_segment);
const auto admissible_segments = CheckSegmentExclude(segment);
if (use_segment)
{
use_directions =
boolPairAnd(CheckSegmentBearing(segment, bearing, bearing_range),
HasValidEdge(segment, use_all_edges));
use_directions = boolPairAnd(use_directions, admissible_segments);
use_directions = boolPairAnd(
use_directions, CheckApproach(input_coordinate, segment, approach));
if (use_directions.first || use_directions.second)
{
has_big_component = has_big_component || !IsTinyComponent(segment);
has_small_component = has_small_component || IsTinyComponent(segment);
}
}
return use_directions;
},
[this, &has_big_component, max_distance, input_coordinate](
const std::size_t num_results, const CandidateSegment &segment) {
return (num_results > 0 && has_big_component) ||
CheckSegmentDistance(input_coordinate, segment, max_distance);
});
if (results.size() == 0)
{
return std::make_pair(PhantomNode{}, PhantomNode{});
}
BOOST_ASSERT(results.size() > 0);
return std::make_pair(MakePhantomNode(input_coordinate, results.front()).phantom_node,
MakePhantomNode(input_coordinate, results.back()).phantom_node);
return MakeAlternativeBigCandidates(input_coordinate, nearest_coord, results);
}
private:
PhantomCandidateAlternatives
MakeAlternativeBigCandidates(const util::Coordinate input_coordinate,
const Coordinate nearest_coord,
const std::vector<CandidateSegment> &results) const
{
if (results.size() == 0)
{
return std::make_pair(PhantomNodeCandidates{}, PhantomNodeCandidates{});
}
PhantomNodeCandidates nearest_phantoms;
PhantomNodeCandidates big_component_phantoms;
const auto add_to_candidates = [this, &input_coordinate](PhantomNodeCandidates &candidates,
const EdgeData data) {
auto candidate_it =
std::find_if(candidates.begin(), candidates.end(), [&](const PhantomNode &node) {
return data.forward_segment_id.id == node.forward_segment_id.id &&
data.reverse_segment_id.id == node.reverse_segment_id.id;
});
if (candidate_it == candidates.end())
{
// First candidate from this segment
candidates.push_back(MakePhantomNode(input_coordinate, data).phantom_node);
}
else
{
/**
* Second candidate from this segment (there can be at most two).
* We're snapping at the connection between two edges e1,e2 of the segment.
*
* | e1 | e2 |
* | --- f1 --> | --- f2 --> |
* | <-- r1 --- | <-- r2 --- |
*
* Most of the routing algorithms only support one candidate from each segment.
* Therefore, we have to choose between e1 and e2.
*
* It makes sense to pick one edge over another if that edge offers more
* opportunities to act as a source or target for a route.
*
* For consistency, we use the following logic:
* "Pick e1 unless it makes sense to choose e2"
*
* Representing edge enabled as a truth table:
* f1 | r1 | f2 | r2 | selected
* ____________________________
* t | t | t | t | e1
* t | t | t | f | e1
* t | t | f | t | e1
* t | f | t | t | e2
* t | f | t | f | e1
* t | f | f | t | e1
* f | t | t | t | e2
* f | t | t | f | e1
* f | t | f | t | e1
*
* The other rows in truth table don't appear as we discard an edge if both
* forward and reverse are disabled.
*
**/
if (candidate_it->fwd_segment_position < data.fwd_segment_position)
{
if (data.forward_segment_id.enabled && data.reverse_segment_id.enabled &&
!(candidate_it->forward_segment_id.enabled &&
candidate_it->reverse_segment_id.enabled))
{
*candidate_it = MakePhantomNode(input_coordinate, data).phantom_node;
}
}
else
{
if (!candidate_it->forward_segment_id.enabled ||
!candidate_it->reverse_segment_id.enabled ||
(data.forward_segment_id.enabled && data.reverse_segment_id.enabled))
{
*candidate_it = MakePhantomNode(input_coordinate, data).phantom_node;
}
}
}
};
std::for_each(results.begin(), results.end(), [&](const CandidateSegment &segment) {
if (segment.fixed_projected_coordinate == nearest_coord)
{
add_to_candidates(nearest_phantoms, segment.data);
}
else
{
// Can only be from a big component for the alternative candidates
add_to_candidates(big_component_phantoms, segment.data);
}
});
return std::make_pair(std::move(nearest_phantoms), std::move(big_component_phantoms));
}
std::vector<PhantomNodeWithDistance>
MakePhantomNodes(const util::Coordinate input_coordinate,
const std::vector<EdgeData> &results) const
const std::vector<CandidateSegment> &results) const
{
std::vector<PhantomNodeWithDistance> distance_and_phantoms(results.size());
std::transform(results.begin(),
results.end(),
distance_and_phantoms.begin(),
[this, &input_coordinate](const EdgeData &data) {
return MakePhantomNode(input_coordinate, data);
[this, &input_coordinate](const CandidateSegment &segment) {
return MakePhantomNode(input_coordinate, segment.data);
});
return distance_and_phantoms;
}
@ -580,9 +432,8 @@ template <typename RTreeT, typename DataFacadeT> class GeospatialQuery
return transformed;
}
bool CheckSegmentDistance(const Coordinate input_coordinate,
const CandidateSegment &segment,
const double max_distance) const
double GetSegmentDistance(const Coordinate input_coordinate,
const CandidateSegment &segment) const
{
BOOST_ASSERT(segment.data.forward_segment_id.id != SPECIAL_SEGMENTID ||
!segment.data.forward_segment_id.enabled);
@ -593,7 +444,14 @@ template <typename RTreeT, typename DataFacadeT> class GeospatialQuery
util::web_mercator::toWGS84(segment.fixed_projected_coordinate);
return util::coordinate_calculation::greatCircleDistance(input_coordinate,
wsg84_coordinate) > max_distance;
wsg84_coordinate);
}
bool CheckSegmentDistance(const Coordinate input_coordinate,
const CandidateSegment &segment,
const double max_distance) const
{
return GetSegmentDistance(input_coordinate, segment) > max_distance;
}
std::pair<bool, bool> CheckSegmentExclude(const CandidateSegment &segment) const
@ -616,8 +474,7 @@ template <typename RTreeT, typename DataFacadeT> class GeospatialQuery
}
std::pair<bool, bool> CheckSegmentBearing(const CandidateSegment &segment,
const int filter_bearing,
const int filter_bearing_range) const
const Bearing filter_bearing) const
{
BOOST_ASSERT(segment.data.forward_segment_id.id != SPECIAL_SEGMENTID ||
!segment.data.forward_segment_id.enabled);
@ -633,11 +490,11 @@ template <typename RTreeT, typename DataFacadeT> class GeospatialQuery
const bool forward_bearing_valid =
util::bearing::CheckInBounds(
std::round(forward_edge_bearing), filter_bearing, filter_bearing_range) &&
std::round(forward_edge_bearing), filter_bearing.bearing, filter_bearing.range) &&
segment.data.forward_segment_id.enabled;
const bool backward_bearing_valid =
util::bearing::CheckInBounds(
std::round(backward_edge_bearing), filter_bearing, filter_bearing_range) &&
std::round(backward_edge_bearing), filter_bearing.bearing, filter_bearing.range) &&
segment.data.reverse_segment_id.enabled;
return std::make_pair(forward_bearing_valid, backward_bearing_valid);
}
@ -645,7 +502,7 @@ template <typename RTreeT, typename DataFacadeT> class GeospatialQuery
/**
* Checks to see if the edge weights are valid. We might have an edge,
* but a traffic update might set the speed to 0 (weight == INVALID_SEGMENT_WEIGHT).
* which means that this edge is not currently traversible. If this is the case,
* which means that this edge is not currently traversable. If this is the case,
* then we shouldn't snap to this edge.
*/
std::pair<bool, bool> HasValidEdge(const CandidateSegment &segment,
@ -682,7 +539,7 @@ template <typename RTreeT, typename DataFacadeT> class GeospatialQuery
bool IsTinyComponent(const CandidateSegment &segment) const
{
const auto &data = segment.data;
BOOST_ASSERT(data.forward_segment_id.enabled);
BOOST_ASSERT(data.forward_segment_id.enabled || data.reverse_segment_id.enabled);
BOOST_ASSERT(data.forward_segment_id.id != SPECIAL_NODEID);
return datafacade.GetComponentID(data.forward_segment_id.id).is_tiny;
}

View File

@ -47,8 +47,9 @@ namespace datafacade
class BaseDataFacade;
}
// Is returned as a temporary identifier for snapped coodinates
struct Hint
// SegmentHint represents an individual segment position that could be used
// as the waypoint for a given input location
struct SegmentHint
{
PhantomNode phantom;
std::uint32_t data_checksum;
@ -57,16 +58,31 @@ struct Hint
const datafacade::BaseDataFacade &facade) const;
std::string ToBase64() const;
static Hint FromBase64(const std::string &base64Hint);
static SegmentHint FromBase64(const std::string &base64Hint);
friend bool operator==(const Hint &, const Hint &);
friend std::ostream &operator<<(std::ostream &, const Hint &);
friend bool operator==(const SegmentHint &, const SegmentHint &);
friend bool operator!=(const SegmentHint &, const SegmentHint &);
friend std::ostream &operator<<(std::ostream &, const SegmentHint &);
};
static_assert(sizeof(Hint) == 80 + 4, "Hint is bigger than expected");
constexpr std::size_t ENCODED_HINT_SIZE = 112;
static_assert(ENCODED_HINT_SIZE / 4 * 3 >= sizeof(Hint),
"ENCODED_HINT_SIZE does not match size of Hint");
// Hint represents the suggested segment positions that could be used
// as the waypoint for a given input location
struct Hint
{
std::vector<SegmentHint> segment_hints;
bool IsValid(const util::Coordinate new_input_coordinates,
const datafacade::BaseDataFacade &facade) const;
std::string ToBase64() const;
static Hint FromBase64(const std::string &base64Hint);
};
static_assert(sizeof(SegmentHint) == 80 + 4, "Hint is bigger than expected");
constexpr std::size_t ENCODED_SEGMENT_HINT_SIZE = 112;
static_assert(ENCODED_SEGMENT_HINT_SIZE / 4 * 3 >= sizeof(SegmentHint),
"ENCODED_SEGMENT_HINT_SIZE does not match size of SegmentHint");
} // namespace engine
} // namespace osrm

View File

@ -50,7 +50,7 @@ struct PathData
struct InternalRouteResult
{
std::vector<std::vector<PathData>> unpacked_path_segments;
std::vector<PhantomNodes> segment_end_coordinates;
std::vector<PhantomEndpoints> leg_endpoints;
std::vector<bool> source_traversed_in_reverse;
std::vector<bool> target_traversed_in_reverse;
EdgeWeight shortest_path_weight = INVALID_EDGE_WEIGHT;
@ -96,7 +96,7 @@ inline InternalRouteResult CollapseInternalRouteResult(const InternalRouteResult
if (leggy_result.unpacked_path_segments.size() == 1)
return leggy_result;
BOOST_ASSERT(leggy_result.segment_end_coordinates.size() > 1);
BOOST_ASSERT(leggy_result.leg_endpoints.size() > 1);
InternalRouteResult collapsed;
collapsed.shortest_path_weight = leggy_result.shortest_path_weight;
@ -107,7 +107,7 @@ inline InternalRouteResult CollapseInternalRouteResult(const InternalRouteResult
// start another leg vector
collapsed.unpacked_path_segments.push_back(leggy_result.unpacked_path_segments[i]);
// save new phantom node pair
collapsed.segment_end_coordinates.push_back(leggy_result.segment_end_coordinates[i]);
collapsed.leg_endpoints.push_back(leggy_result.leg_endpoints[i]);
// save data about phantom nodes
collapsed.source_traversed_in_reverse.push_back(
leggy_result.source_traversed_in_reverse[i]);
@ -119,9 +119,9 @@ inline InternalRouteResult CollapseInternalRouteResult(const InternalRouteResult
{
BOOST_ASSERT(!collapsed.unpacked_path_segments.empty());
auto &last_segment = collapsed.unpacked_path_segments.back();
BOOST_ASSERT(!collapsed.segment_end_coordinates.empty());
collapsed.segment_end_coordinates.back().target_phantom =
leggy_result.segment_end_coordinates[i].target_phantom;
BOOST_ASSERT(!collapsed.leg_endpoints.empty());
collapsed.leg_endpoints.back().target_phantom =
leggy_result.leg_endpoints[i].target_phantom;
collapsed.target_traversed_in_reverse.back() =
leggy_result.target_traversed_in_reverse[i];
// copy path segments into current leg
@ -138,19 +138,18 @@ inline InternalRouteResult CollapseInternalRouteResult(const InternalRouteResult
last_segment[old_size].weight_until_turn +=
leggy_result.source_traversed_in_reverse[i]
? leggy_result.segment_end_coordinates[i].source_phantom.reverse_weight
: leggy_result.segment_end_coordinates[i].source_phantom.forward_weight;
? leggy_result.leg_endpoints[i].source_phantom.reverse_weight
: leggy_result.leg_endpoints[i].source_phantom.forward_weight;
last_segment[old_size].duration_until_turn +=
leggy_result.source_traversed_in_reverse[i]
? leggy_result.segment_end_coordinates[i].source_phantom.reverse_duration
: leggy_result.segment_end_coordinates[i].source_phantom.forward_duration;
? leggy_result.leg_endpoints[i].source_phantom.reverse_duration
: leggy_result.leg_endpoints[i].source_phantom.forward_duration;
}
}
}
BOOST_ASSERT(collapsed.segment_end_coordinates.size() ==
collapsed.unpacked_path_segments.size());
BOOST_ASSERT(collapsed.leg_endpoints.size() == collapsed.unpacked_path_segments.size());
return collapsed;
}
} // namespace engine

View File

@ -28,6 +28,8 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef OSRM_ENGINE_PHANTOM_NODES_H
#define OSRM_ENGINE_PHANTOM_NODES_H
#include <vector>
#include "extractor/travel_mode.hpp"
#include "util/bearing.hpp"
@ -223,7 +225,8 @@ struct PhantomNode
static_assert(sizeof(PhantomNode) == 80, "PhantomNode has more padding then expected");
using PhantomNodePair = std::pair<PhantomNode, PhantomNode>;
using PhantomNodeCandidates = std::vector<PhantomNode>;
using PhantomCandidateAlternatives = std::pair<PhantomNodeCandidates, PhantomNodeCandidates>;
struct PhantomNodeWithDistance
{
@ -231,11 +234,44 @@ struct PhantomNodeWithDistance
double distance;
};
struct PhantomNodes
struct PhantomEndpointCandidates
{
const PhantomNodeCandidates &source_phantoms;
const PhantomNodeCandidates &target_phantoms;
};
struct PhantomCandidatesToTarget
{
const PhantomNodeCandidates &source_phantoms;
const PhantomNode &target_phantom;
};
inline util::Coordinate candidatesSnappedLocation(const PhantomNodeCandidates &candidates)
{
BOOST_ASSERT(!candidates.empty());
return candidates.front().location;
}
inline util::Coordinate candidatesInputLocation(const PhantomNodeCandidates &candidates)
{
BOOST_ASSERT(!candidates.empty());
return candidates.front().input_location;
}
inline bool candidatesHaveComponent(const PhantomNodeCandidates &candidates, uint32_t component_id)
{
return std::any_of(
candidates.begin(), candidates.end(), [component_id](const PhantomNode &node) {
return node.component.id == component_id;
});
}
struct PhantomEndpoints
{
PhantomNode source_phantom;
PhantomNode target_phantom;
};
} // namespace engine
} // namespace osrm

View File

@ -99,64 +99,67 @@ class BasePlugin
return Status::Error;
}
// Decides whether to use the phantom node from a big or small component if both are found.
// Returns true if all phantom nodes are in the same component after snapping.
std::vector<PhantomNode>
SnapPhantomNodes(const std::vector<PhantomNodePair> &phantom_node_pair_list) const
// Decides whether to use the phantom candidates from big or small components if both are found.
std::vector<PhantomNodeCandidates>
SnapPhantomNodes(std::vector<PhantomCandidateAlternatives> alternatives_list) const
{
const auto check_component_id_is_tiny =
[](const std::pair<PhantomNode, PhantomNode> &phantom_pair) {
return phantom_pair.first.component.is_tiny;
};
// are all phantoms from a tiny cc?
const auto check_all_in_same_component =
[](const std::vector<std::pair<PhantomNode, PhantomNode>> &nodes) {
const auto component_id = nodes.front().first.component.id;
return std::all_of(std::begin(nodes),
std::end(nodes),
[component_id](const PhantomNodePair &phantom_pair) {
return component_id == phantom_pair.first.component.id;
const auto all_in_same_tiny_component =
[](const std::vector<PhantomCandidateAlternatives> &alts_list) {
return std::any_of(
alts_list.front().first.begin(),
alts_list.front().first.end(),
// For each of the first possible phantoms, check if all other
// positions in the list have a phantom from the same small component.
[&](const PhantomNode &phantom) {
if (!phantom.component.is_tiny)
{
return false;
}
const auto component_id = phantom.component.id;
return std::all_of(
std::next(alts_list.begin()),
std::end(alts_list),
[component_id](const PhantomCandidateAlternatives &alternatives) {
return candidatesHaveComponent(alternatives.first, component_id);
});
});
};
const auto fallback_to_big_component =
[](const std::pair<PhantomNode, PhantomNode> &phantom_pair) {
if (phantom_pair.first.component.is_tiny && phantom_pair.second.IsValid() &&
!phantom_pair.second.component.is_tiny)
{
return phantom_pair.second;
}
return phantom_pair.first;
// Move the alternative into the final list
const auto fallback_to_big_component = [](PhantomCandidateAlternatives &alternatives) {
auto no_big_alternative = alternatives.second.empty();
return no_big_alternative ? std::move(alternatives.first)
: std::move(alternatives.second);
};
const auto use_closed_phantom =
[](const std::pair<PhantomNode, PhantomNode> &phantom_pair) {
return phantom_pair.first;
// Move the alternative into the final list
const auto use_closed_phantom = [](PhantomCandidateAlternatives &alternatives) {
return std::move(alternatives.first);
};
const bool every_phantom_is_in_tiny_cc = std::all_of(std::begin(phantom_node_pair_list),
std::end(phantom_node_pair_list),
check_component_id_is_tiny);
auto all_in_same_component = check_all_in_same_component(phantom_node_pair_list);
std::vector<PhantomNode> snapped_phantoms;
snapped_phantoms.reserve(phantom_node_pair_list.size());
const auto no_alternatives =
std::all_of(alternatives_list.begin(),
alternatives_list.end(),
[](const PhantomCandidateAlternatives &alternatives) {
return alternatives.second.empty();
});
std::vector<PhantomNodeCandidates> snapped_phantoms;
snapped_phantoms.reserve(alternatives_list.size());
// The only case we don't snap to the big component if all phantoms are in the same small
// component
if (every_phantom_is_in_tiny_cc && all_in_same_component)
if (no_alternatives || all_in_same_tiny_component(alternatives_list))
{
std::transform(phantom_node_pair_list.begin(),
phantom_node_pair_list.end(),
std::transform(alternatives_list.begin(),
alternatives_list.end(),
std::back_inserter(snapped_phantoms),
use_closed_phantom);
}
else
{
std::transform(phantom_node_pair_list.begin(),
phantom_node_pair_list.end(),
std::transform(alternatives_list.begin(),
alternatives_list.end(),
std::back_inserter(snapped_phantoms),
fallback_to_big_component);
}
@ -181,35 +184,26 @@ class BasePlugin
for (const auto i : util::irange<std::size_t>(0UL, parameters.coordinates.size()))
{
Approach approach = engine::Approach::UNRESTRICTED;
if (use_approaches && parameters.approaches[i])
approach = parameters.approaches[i].get();
if (use_hints && parameters.hints[i] &&
if (use_hints && parameters.hints[i] && !parameters.hints[i]->segment_hints.empty() &&
parameters.hints[i]->IsValid(parameters.coordinates[i], facade))
{
for (const auto &seg_hint : parameters.hints[i]->segment_hints)
{
phantom_nodes[i].push_back(PhantomNodeWithDistance{
parameters.hints[i]->phantom,
seg_hint.phantom,
util::coordinate_calculation::greatCircleDistance(
parameters.coordinates[i], parameters.hints[i]->phantom.location),
});
parameters.coordinates[i], seg_hint.phantom.location)});
}
continue;
}
if (use_bearings && parameters.bearings[i])
{
phantom_nodes[i] =
facade.NearestPhantomNodesInRange(parameters.coordinates[i],
radiuses[i],
parameters.bearings[i]->bearing,
parameters.bearings[i]->range,
approach,
use_all_edges);
}
else
{
phantom_nodes[i] = facade.NearestPhantomNodesInRange(
parameters.coordinates[i], radiuses[i], approach, use_all_edges);
}
parameters.coordinates[i],
radiuses[i],
use_bearings ? parameters.bearings[i] : boost::none,
use_approaches && parameters.approaches[i] ? parameters.approaches[i].get()
: engine::Approach::UNRESTRICTED,
use_all_edges);
}
return phantom_nodes;
@ -218,7 +212,7 @@ class BasePlugin
std::vector<std::vector<PhantomNodeWithDistance>>
GetPhantomNodes(const datafacade::BaseDataFacade &facade,
const api::BaseParameters &parameters,
unsigned number_of_results) const
size_t number_of_results) const
{
std::vector<std::vector<PhantomNodeWithDistance>> phantom_nodes(
parameters.coordinates.size());
@ -231,56 +225,26 @@ class BasePlugin
BOOST_ASSERT(parameters.IsValid());
for (const auto i : util::irange<std::size_t>(0UL, parameters.coordinates.size()))
{
Approach approach = engine::Approach::UNRESTRICTED;
if (use_approaches && parameters.approaches[i])
approach = parameters.approaches[i].get();
if (use_hints && parameters.hints[i] &&
if (use_hints && parameters.hints[i] && !parameters.hints[i]->segment_hints.empty() &&
parameters.hints[i]->IsValid(parameters.coordinates[i], facade))
{
for (const auto &seg_hint : parameters.hints[i]->segment_hints)
{
phantom_nodes[i].push_back(PhantomNodeWithDistance{
parameters.hints[i]->phantom,
seg_hint.phantom,
util::coordinate_calculation::greatCircleDistance(
parameters.coordinates[i], parameters.hints[i]->phantom.location),
});
parameters.coordinates[i], seg_hint.phantom.location)});
}
continue;
}
if (use_bearings && parameters.bearings[i])
{
if (use_radiuses && parameters.radiuses[i])
{
phantom_nodes[i] = facade.NearestPhantomNodes(parameters.coordinates[i],
number_of_results,
*parameters.radiuses[i],
parameters.bearings[i]->bearing,
parameters.bearings[i]->range,
approach);
}
else
{
phantom_nodes[i] = facade.NearestPhantomNodes(parameters.coordinates[i],
number_of_results,
parameters.bearings[i]->bearing,
parameters.bearings[i]->range,
approach);
}
}
else
{
if (use_radiuses && parameters.radiuses[i])
{
phantom_nodes[i] = facade.NearestPhantomNodes(parameters.coordinates[i],
number_of_results,
*parameters.radiuses[i],
approach);
}
else
{
phantom_nodes[i] = facade.NearestPhantomNodes(
parameters.coordinates[i], number_of_results, approach);
}
}
parameters.coordinates[i],
number_of_results,
use_radiuses ? parameters.radiuses[i] : boost::none,
use_bearings ? parameters.bearings[i] : boost::none,
use_approaches && parameters.approaches[i] ? parameters.approaches[i].get()
: engine::Approach::UNRESTRICTED);
// we didn't find a fitting node, return error
if (phantom_nodes[i].empty())
@ -291,10 +255,11 @@ class BasePlugin
return phantom_nodes;
}
std::vector<PhantomNodePair> GetPhantomNodes(const datafacade::BaseDataFacade &facade,
std::vector<PhantomCandidateAlternatives>
GetPhantomNodes(const datafacade::BaseDataFacade &facade,
const api::BaseParameters &parameters) const
{
std::vector<PhantomNodePair> phantom_node_pairs(parameters.coordinates.size());
std::vector<PhantomCandidateAlternatives> alternatives(parameters.coordinates.size());
const bool use_hints = !parameters.hints.empty();
const bool use_bearings = !parameters.bearings.empty();
@ -305,87 +270,57 @@ class BasePlugin
BOOST_ASSERT(parameters.IsValid());
for (const auto i : util::irange<std::size_t>(0UL, parameters.coordinates.size()))
{
Approach approach = engine::Approach::UNRESTRICTED;
if (use_approaches && parameters.approaches[i])
approach = parameters.approaches[i].get();
if (use_hints && parameters.hints[i] &&
if (use_hints && parameters.hints[i] && !parameters.hints[i]->segment_hints.empty() &&
parameters.hints[i]->IsValid(parameters.coordinates[i], facade))
{
phantom_node_pairs[i].first = parameters.hints[i]->phantom;
std::transform(parameters.hints[i]->segment_hints.begin(),
parameters.hints[i]->segment_hints.end(),
std::back_inserter(alternatives[i].first),
[](const auto &seg_hint) { return seg_hint.phantom; });
// we don't set the second one - it will be marked as invalid
continue;
}
if (use_bearings && parameters.bearings[i])
{
if (use_radiuses && parameters.radiuses[i])
{
phantom_node_pairs[i] =
facade.NearestPhantomNodeWithAlternativeFromBigComponent(
alternatives[i] = facade.NearestCandidatesWithAlternativeFromBigComponent(
parameters.coordinates[i],
*parameters.radiuses[i],
parameters.bearings[i]->bearing,
parameters.bearings[i]->range,
approach,
use_radiuses ? parameters.radiuses[i] : boost::none,
use_bearings ? parameters.bearings[i] : boost::none,
use_approaches && parameters.approaches[i] ? parameters.approaches[i].get()
: engine::Approach::UNRESTRICTED,
use_all_edges);
}
else
{
phantom_node_pairs[i] =
facade.NearestPhantomNodeWithAlternativeFromBigComponent(
parameters.coordinates[i],
parameters.bearings[i]->bearing,
parameters.bearings[i]->range,
approach,
use_all_edges);
}
}
else
{
if (use_radiuses && parameters.radiuses[i])
{
phantom_node_pairs[i] =
facade.NearestPhantomNodeWithAlternativeFromBigComponent(
parameters.coordinates[i],
*parameters.radiuses[i],
approach,
use_all_edges);
}
else
{
phantom_node_pairs[i] =
facade.NearestPhantomNodeWithAlternativeFromBigComponent(
parameters.coordinates[i], approach, use_all_edges);
}
}
// we didn't find a fitting node, return error
if (!phantom_node_pairs[i].first.IsValid())
if (alternatives[i].first.empty())
{
// This ensures the list of phantom nodes only consists of valid nodes.
// We can use this on the call-site to detect an error.
phantom_node_pairs.pop_back();
alternatives.pop_back();
break;
}
BOOST_ASSERT(phantom_node_pairs[i].first.IsValid());
BOOST_ASSERT(phantom_node_pairs[i].second.IsValid());
BOOST_ASSERT(!alternatives[i].first.empty());
}
return phantom_node_pairs;
return alternatives;
}
std::string MissingPhantomErrorMessage(const std::vector<PhantomNodePair> &phantom_nodes,
std::string
MissingPhantomErrorMessage(const std::vector<PhantomCandidateAlternatives> &alternatives,
const std::vector<util::Coordinate> &coordinates) const
{
BOOST_ASSERT(phantom_nodes.size() < coordinates.size());
auto mismatch = std::mismatch(phantom_nodes.begin(),
phantom_nodes.end(),
BOOST_ASSERT(alternatives.size() < coordinates.size());
auto mismatch =
std::mismatch(alternatives.begin(),
alternatives.end(),
coordinates.begin(),
coordinates.end(),
[](const auto &phantom_node, const auto &coordinate) {
return phantom_node.first.input_location == coordinate;
[](const auto &candidates_pair, const auto &coordinate) {
return std::any_of(candidates_pair.first.begin(),
candidates_pair.first.end(),
[&](const auto &phantom) {
return phantom.input_location == coordinate;
});
std::size_t missing_index = std::distance(phantom_nodes.begin(), mismatch.first);
});
std::size_t missing_index = std::distance(alternatives.begin(), mismatch.first);
return std::string("Could not find a matching segment for coordinate ") +
std::to_string(missing_index);
}

View File

@ -31,7 +31,7 @@ class TripPlugin final : public BasePlugin
const int max_locations_trip;
InternalRouteResult ComputeRoute(const RoutingAlgorithmsInterface &algorithms,
const std::vector<PhantomNode> &phantom_node_list,
const std::vector<PhantomNodeCandidates> &candidates_list,
const std::vector<NodeID> &trip,
const bool roundtrip) const;

View File

@ -20,18 +20,18 @@ class RoutingAlgorithmsInterface
{
public:
virtual InternalManyRoutesResult
AlternativePathSearch(const PhantomNodes &phantom_node_pair,
AlternativePathSearch(const PhantomEndpointCandidates &endpoint_candidates,
unsigned number_of_alternatives) const = 0;
virtual InternalRouteResult
ShortestPathSearch(const std::vector<PhantomNodes> &phantom_node_pair,
ShortestPathSearch(const std::vector<PhantomNodeCandidates> &waypoint_candidates,
const boost::optional<bool> continue_straight_at_waypoint) const = 0;
virtual InternalRouteResult
DirectShortestPathSearch(const PhantomNodes &phantom_node_pair) const = 0;
DirectShortestPathSearch(const PhantomEndpointCandidates &endpoint_candidates) const = 0;
virtual std::pair<std::vector<EdgeDuration>, std::vector<EdgeDistance>>
ManyToManySearch(const std::vector<PhantomNode> &phantom_nodes,
ManyToManySearch(const std::vector<PhantomNodeCandidates> &candidates_list,
const std::vector<std::size_t> &source_indices,
const std::vector<std::size_t> &target_indices,
const bool calculate_distance) const = 0;
@ -73,18 +73,18 @@ template <typename Algorithm> class RoutingAlgorithms final : public RoutingAlgo
virtual ~RoutingAlgorithms() = default;
InternalManyRoutesResult
AlternativePathSearch(const PhantomNodes &phantom_node_pair,
AlternativePathSearch(const PhantomEndpointCandidates &endpoint_candidates,
unsigned number_of_alternatives) const final override;
InternalRouteResult ShortestPathSearch(
const std::vector<PhantomNodes> &phantom_node_pair,
const std::vector<PhantomNodeCandidates> &waypoint_candidates,
const boost::optional<bool> continue_straight_at_waypoint) const final override;
InternalRouteResult
DirectShortestPathSearch(const PhantomNodes &phantom_nodes) const final override;
InternalRouteResult DirectShortestPathSearch(
const PhantomEndpointCandidates &endpoint_candidates) const final override;
virtual std::pair<std::vector<EdgeDuration>, std::vector<EdgeDistance>>
ManyToManySearch(const std::vector<PhantomNode> &phantom_nodes,
std::pair<std::vector<EdgeDuration>, std::vector<EdgeDistance>>
ManyToManySearch(const std::vector<PhantomNodeCandidates> &candidates_list,
const std::vector<std::size_t> &source_indices,
const std::vector<std::size_t> &target_indices,
const bool calculate_distance) const final override;
@ -150,28 +150,27 @@ template <typename Algorithm> class RoutingAlgorithms final : public RoutingAlgo
};
template <typename Algorithm>
InternalManyRoutesResult
RoutingAlgorithms<Algorithm>::AlternativePathSearch(const PhantomNodes &phantom_node_pair,
unsigned number_of_alternatives) const
InternalManyRoutesResult RoutingAlgorithms<Algorithm>::AlternativePathSearch(
const PhantomEndpointCandidates &endpoint_candidates, unsigned number_of_alternatives) const
{
return routing_algorithms::alternativePathSearch(
heaps, *facade, phantom_node_pair, number_of_alternatives);
heaps, *facade, endpoint_candidates, number_of_alternatives);
}
template <typename Algorithm>
InternalRouteResult RoutingAlgorithms<Algorithm>::ShortestPathSearch(
const std::vector<PhantomNodes> &phantom_node_pair,
const std::vector<PhantomNodeCandidates> &waypoint_candidates,
const boost::optional<bool> continue_straight_at_waypoint) const
{
return routing_algorithms::shortestPathSearch(
heaps, *facade, phantom_node_pair, continue_straight_at_waypoint);
heaps, *facade, waypoint_candidates, continue_straight_at_waypoint);
}
template <typename Algorithm>
InternalRouteResult
RoutingAlgorithms<Algorithm>::DirectShortestPathSearch(const PhantomNodes &phantom_nodes) const
InternalRouteResult RoutingAlgorithms<Algorithm>::DirectShortestPathSearch(
const PhantomEndpointCandidates &endpoint_candidates) const
{
return routing_algorithms::directShortestPathSearch(heaps, *facade, phantom_nodes);
return routing_algorithms::directShortestPathSearch(heaps, *facade, endpoint_candidates);
}
template <typename Algorithm>
@ -193,30 +192,31 @@ inline routing_algorithms::SubMatchingList RoutingAlgorithms<Algorithm>::MapMatc
template <typename Algorithm>
std::pair<std::vector<EdgeDuration>, std::vector<EdgeDistance>>
RoutingAlgorithms<Algorithm>::ManyToManySearch(const std::vector<PhantomNode> &phantom_nodes,
RoutingAlgorithms<Algorithm>::ManyToManySearch(
const std::vector<PhantomNodeCandidates> &candidates_list,
const std::vector<std::size_t> &_source_indices,
const std::vector<std::size_t> &_target_indices,
const bool calculate_distance) const
{
BOOST_ASSERT(!phantom_nodes.empty());
BOOST_ASSERT(!candidates_list.empty());
auto source_indices = _source_indices;
auto target_indices = _target_indices;
if (source_indices.empty())
{
source_indices.resize(phantom_nodes.size());
source_indices.resize(candidates_list.size());
std::iota(source_indices.begin(), source_indices.end(), 0);
}
if (target_indices.empty())
{
target_indices.resize(phantom_nodes.size());
target_indices.resize(candidates_list.size());
std::iota(target_indices.begin(), target_indices.end(), 0);
}
return routing_algorithms::manyToManySearch(heaps,
*facade,
phantom_nodes,
candidates_list,
std::move(source_indices),
std::move(target_indices),
calculate_distance);

View File

@ -18,12 +18,12 @@ namespace routing_algorithms
InternalManyRoutesResult alternativePathSearch(SearchEngineData<ch::Algorithm> &search_engine_data,
const DataFacade<ch::Algorithm> &facade,
const PhantomNodes &phantom_node_pair,
const PhantomEndpointCandidates &endpoint_candidates,
unsigned number_of_alternatives);
InternalManyRoutesResult alternativePathSearch(SearchEngineData<mld::Algorithm> &search_engine_data,
const DataFacade<mld::Algorithm> &facade,
const PhantomNodes &phantom_node_pair,
const PhantomEndpointCandidates &endpoint_candidates,
unsigned number_of_alternatives);
} // namespace routing_algorithms

View File

@ -24,7 +24,7 @@ namespace routing_algorithms
template <typename Algorithm>
InternalRouteResult directShortestPathSearch(SearchEngineData<Algorithm> &engine_working_data,
const DataFacade<Algorithm> &facade,
const PhantomNodes &phantom_nodes);
const PhantomEndpointCandidates &endpoint_candidates);
} // namespace routing_algorithms
} // namespace engine

View File

@ -94,7 +94,7 @@ template <typename Algorithm>
std::pair<std::vector<EdgeDuration>, std::vector<EdgeDistance>>
manyToManySearch(SearchEngineData<Algorithm> &engine_working_data,
const DataFacade<Algorithm> &facade,
const std::vector<PhantomNode> &phantom_nodes,
const std::vector<PhantomNodeCandidates> &candidates_list,
const std::vector<std::size_t> &source_indices,
const std::vector<std::size_t> &target_indices,
const bool calculate_distance);

View File

@ -34,20 +34,12 @@ namespace engine
namespace routing_algorithms
{
static constexpr bool FORWARD_DIRECTION = true;
static constexpr bool REVERSE_DIRECTION = false;
static constexpr bool DO_NOT_FORCE_LOOPS = false;
bool needsLoopForward(const PhantomNode &source_phantom, const PhantomNode &target_phantom);
bool needsLoopBackwards(const PhantomNode &source_phantom, const PhantomNode &target_phantom);
bool needsLoopForward(const PhantomNodes &phantoms);
bool needsLoopBackwards(const PhantomNodes &phantoms);
template <typename Heap>
void insertNodesInHeaps(Heap &forward_heap, Heap &reverse_heap, const PhantomNodes &nodes)
namespace details
{
template <typename Heap>
void insertSourceInForwardHeap(Heap &forward_heap, const PhantomNode &source)
{
const auto &source = nodes.source_phantom;
if (source.IsValidForwardSource())
{
forward_heap.Insert(source.forward_segment_id.id,
@ -61,8 +53,11 @@ void insertNodesInHeaps(Heap &forward_heap, Heap &reverse_heap, const PhantomNod
-source.GetReverseWeightPlusOffset(),
source.reverse_segment_id.id);
}
}
const auto &target = nodes.target_phantom;
template <typename Heap>
void insertTargetInReverseHeap(Heap &reverse_heap, const PhantomNode &target)
{
if (target.IsValidForwardTarget())
{
reverse_heap.Insert(target.forward_segment_id.id,
@ -77,9 +72,57 @@ void insertNodesInHeaps(Heap &forward_heap, Heap &reverse_heap, const PhantomNod
target.reverse_segment_id.id);
}
}
} // namespace details
static constexpr bool FORWARD_DIRECTION = true;
static constexpr bool REVERSE_DIRECTION = false;
// Identify nodes in the forward(reverse) search direction that will require loop forcing
// e.g. if source and destination nodes are on the same segment.
std::vector<NodeID> getForwardLoopNodes(const PhantomEndpointCandidates &candidates);
std::vector<NodeID> getForwardLoopNodes(const PhantomCandidatesToTarget &candidates);
std::vector<NodeID> getBackwardLoopNodes(const PhantomEndpointCandidates &candidates);
std::vector<NodeID> getBackwardLoopNodes(const PhantomCandidatesToTarget &candidates);
// Find the specific phantom node endpoints for a given path from a list of candidates.
PhantomEndpoints endpointsFromCandidates(const PhantomEndpointCandidates &candidates,
const std::vector<NodeID> &path);
template <typename HeapNodeT>
inline bool force_loop(const std::vector<NodeID> &force_nodes, const HeapNodeT &heap_node)
{
// if loops are forced, they are so at the source
return !force_nodes.empty() &&
std::find(force_nodes.begin(), force_nodes.end(), heap_node.node) != force_nodes.end() &&
heap_node.data.parent == heap_node.node;
}
template <typename Heap>
void insertNodesInHeaps(Heap &forward_heap, Heap &reverse_heap, const PhantomEndpoints &endpoints)
{
details::insertSourceInForwardHeap(forward_heap, endpoints.source_phantom);
details::insertTargetInReverseHeap(reverse_heap, endpoints.target_phantom);
}
template <typename Heap>
void insertNodesInHeaps(Heap &forward_heap,
Heap &reverse_heap,
const PhantomEndpointCandidates &endpoint_candidates)
{
for (const auto &source : endpoint_candidates.source_phantoms)
{
details::insertSourceInForwardHeap(forward_heap, source);
}
for (const auto &target : endpoint_candidates.target_phantoms)
{
details::insertTargetInReverseHeap(reverse_heap, target);
}
}
template <typename ManyToManyQueryHeap>
void insertSourceInHeap(ManyToManyQueryHeap &heap, const PhantomNode &phantom_node)
void insertSourceInHeap(ManyToManyQueryHeap &heap, const PhantomNodeCandidates &source_candidates)
{
for (const auto &phantom_node : source_candidates)
{
if (phantom_node.IsValidForwardSource())
{
@ -98,9 +141,12 @@ void insertSourceInHeap(ManyToManyQueryHeap &heap, const PhantomNode &phantom_no
-phantom_node.GetReverseDistance()});
}
}
}
template <typename ManyToManyQueryHeap>
void insertTargetInHeap(ManyToManyQueryHeap &heap, const PhantomNode &phantom_node)
void insertTargetInHeap(ManyToManyQueryHeap &heap, const PhantomNodeCandidates &target_candidates)
{
for (const auto &phantom_node : target_candidates)
{
if (phantom_node.IsValidForwardTarget())
{
@ -119,10 +165,11 @@ void insertTargetInHeap(ManyToManyQueryHeap &heap, const PhantomNode &phantom_no
phantom_node.GetReverseDistance()});
}
}
}
template <typename FacadeT>
void annotatePath(const FacadeT &facade,
const PhantomNodes &phantom_node_pair,
const PhantomEndpoints &endpoints,
const std::vector<NodeID> &unpacked_nodes,
const std::vector<EdgeID> &unpacked_edges,
std::vector<PathData> &unpacked_path)
@ -133,14 +180,14 @@ void annotatePath(const FacadeT &facade,
const auto source_node_id = unpacked_nodes.front();
const auto target_node_id = unpacked_nodes.back();
const bool start_traversed_in_reverse =
phantom_node_pair.source_phantom.forward_segment_id.id != source_node_id;
endpoints.source_phantom.forward_segment_id.id != source_node_id;
const bool target_traversed_in_reverse =
phantom_node_pair.target_phantom.forward_segment_id.id != target_node_id;
endpoints.target_phantom.forward_segment_id.id != target_node_id;
BOOST_ASSERT(phantom_node_pair.source_phantom.forward_segment_id.id == source_node_id ||
phantom_node_pair.source_phantom.reverse_segment_id.id == source_node_id);
BOOST_ASSERT(phantom_node_pair.target_phantom.forward_segment_id.id == target_node_id ||
phantom_node_pair.target_phantom.reverse_segment_id.id == target_node_id);
BOOST_ASSERT(endpoints.source_phantom.forward_segment_id.id == source_node_id ||
endpoints.source_phantom.reverse_segment_id.id == source_node_id);
BOOST_ASSERT(endpoints.target_phantom.forward_segment_id.id == target_node_id ||
endpoints.target_phantom.reverse_segment_id.id == target_node_id);
// datastructures to hold extracted data from geometry
std::vector<NodeID> id_vector;
@ -180,8 +227,8 @@ void annotatePath(const FacadeT &facade,
const auto geometry_index = facade.GetGeometryIndex(node_id);
get_segment_geometry(geometry_index);
BOOST_ASSERT(id_vector.size() > 0);
BOOST_ASSERT(datasource_vector.size() > 0);
BOOST_ASSERT(!id_vector.empty());
BOOST_ASSERT(!datasource_vector.empty());
BOOST_ASSERT(weight_vector.size() + 1 == id_vector.size());
BOOST_ASSERT(duration_vector.size() + 1 == id_vector.size());
@ -190,11 +237,11 @@ void annotatePath(const FacadeT &facade,
std::size_t start_index = 0;
if (is_first_segment)
{
unsigned short segment_position = phantom_node_pair.source_phantom.fwd_segment_position;
unsigned short segment_position = endpoints.source_phantom.fwd_segment_position;
if (start_traversed_in_reverse)
{
segment_position = weight_vector.size() -
phantom_node_pair.source_phantom.fwd_segment_position - 1;
segment_position =
weight_vector.size() - endpoints.source_phantom.fwd_segment_position - 1;
}
BOOST_ASSERT(segment_position >= 0);
start_index = static_cast<std::size_t>(segment_position);
@ -214,7 +261,7 @@ void annotatePath(const FacadeT &facade,
datasource_vector[segment_idx],
boost::none});
}
BOOST_ASSERT(unpacked_path.size() > 0);
BOOST_ASSERT(!unpacked_path.empty());
const auto turn_duration = facade.GetDurationPenaltyForEdgeID(turn_id);
const auto turn_weight = facade.GetWeightPenaltyForEdgeID(turn_id);
@ -237,19 +284,17 @@ void annotatePath(const FacadeT &facade,
{
if (is_local_path)
{
start_index =
weight_vector.size() - phantom_node_pair.source_phantom.fwd_segment_position - 1;
start_index = weight_vector.size() - endpoints.source_phantom.fwd_segment_position - 1;
}
end_index =
weight_vector.size() - phantom_node_pair.target_phantom.fwd_segment_position - 1;
end_index = weight_vector.size() - endpoints.target_phantom.fwd_segment_position - 1;
}
else
{
if (is_local_path)
{
start_index = phantom_node_pair.source_phantom.fwd_segment_position;
start_index = endpoints.source_phantom.fwd_segment_position;
}
end_index = phantom_node_pair.target_phantom.fwd_segment_position;
end_index = endpoints.target_phantom.fwd_segment_position;
}
// Given the following compressed geometry:
@ -277,11 +322,11 @@ void annotatePath(const FacadeT &facade,
if (!unpacked_path.empty())
{
const auto source_weight = start_traversed_in_reverse
? phantom_node_pair.source_phantom.reverse_weight
: phantom_node_pair.source_phantom.forward_weight;
? endpoints.source_phantom.reverse_weight
: endpoints.source_phantom.forward_weight;
const auto source_duration = start_traversed_in_reverse
? phantom_node_pair.source_phantom.reverse_duration
: phantom_node_pair.source_phantom.forward_duration;
? endpoints.source_phantom.reverse_duration
: endpoints.source_phantom.forward_duration;
// The above code will create segments for (v, w), (w,x), (x, y) and (y, Z).
// However the first segment duration needs to be adjusted to the fact that the source
// phantom is in the middle of the segment. We do this by subtracting v--s from the
@ -358,12 +403,11 @@ double getPathDistance(const DataFacade<Algorithm> &facade,
template <typename AlgorithmT>
InternalRouteResult extractRoute(const DataFacade<AlgorithmT> &facade,
const EdgeWeight weight,
const PhantomNodes &phantom_nodes,
const PhantomEndpointCandidates &endpoint_candidates,
const std::vector<NodeID> &unpacked_nodes,
const std::vector<EdgeID> &unpacked_edges)
{
InternalRouteResult raw_route_data;
raw_route_data.segment_end_coordinates = {phantom_nodes};
// No path found for both target nodes?
if (INVALID_EDGE_WEIGHT == weight)
@ -371,15 +415,18 @@ InternalRouteResult extractRoute(const DataFacade<AlgorithmT> &facade,
return raw_route_data;
}
auto phantom_endpoints = endpointsFromCandidates(endpoint_candidates, unpacked_nodes);
raw_route_data.leg_endpoints = {phantom_endpoints};
raw_route_data.shortest_path_weight = weight;
raw_route_data.unpacked_path_segments.resize(1);
raw_route_data.source_traversed_in_reverse.push_back(
(unpacked_nodes.front() != phantom_nodes.source_phantom.forward_segment_id.id));
(unpacked_nodes.front() != phantom_endpoints.source_phantom.forward_segment_id.id));
raw_route_data.target_traversed_in_reverse.push_back(
(unpacked_nodes.back() != phantom_nodes.target_phantom.forward_segment_id.id));
(unpacked_nodes.back() != phantom_endpoints.target_phantom.forward_segment_id.id));
annotatePath(facade,
phantom_nodes,
phantom_endpoints,
unpacked_nodes,
unpacked_edges,
raw_route_data.unpacked_path_segments.front());

View File

@ -120,8 +120,8 @@ void routingStep(const DataFacade<Algorithm> &facade,
NodeID &middle_node_id,
EdgeWeight &upper_bound,
EdgeWeight min_edge_offset,
const bool force_loop_forward,
const bool force_loop_reverse)
const std::vector<NodeID> &force_loop_forward_nodes,
const std::vector<NodeID> &force_loop_reverse_nodes)
{
auto heapNode = forward_heap.DeleteMinGetHeapNode();
const auto reverseHeapNode = reverse_heap.GetHeapNodeIfWasInserted(heapNode.node);
@ -131,9 +131,8 @@ void routingStep(const DataFacade<Algorithm> &facade,
const EdgeWeight new_weight = reverseHeapNode->weight + heapNode.weight;
if (new_weight < upper_bound)
{
// if loops are forced, they are so at the source
if ((force_loop_forward && heapNode.data.parent == heapNode.node) ||
(force_loop_reverse && reverseHeapNode->data.parent == heapNode.node) ||
if (force_loop(force_loop_forward_nodes, heapNode) ||
force_loop(force_loop_reverse_nodes, heapNode) ||
// in this case we are looking at a bi-directional way where the source
// and target phantom are on the same edge based node
new_weight < 0)
@ -398,7 +397,7 @@ template <typename RandomIter, typename FacadeT>
void unpackPath(const FacadeT &facade,
RandomIter packed_path_begin,
RandomIter packed_path_end,
const PhantomNodes &phantom_nodes,
const PhantomEndpoints &route_endpoints,
std::vector<PathData> &unpacked_path)
{
const auto nodes_number = std::distance(packed_path_begin, packed_path_end);
@ -422,7 +421,7 @@ void unpackPath(const FacadeT &facade,
});
}
annotatePath(facade, phantom_nodes, unpacked_nodes, unpacked_edges, unpacked_path);
annotatePath(facade, route_endpoints, unpacked_nodes, unpacked_edges, unpacked_path);
}
/**
@ -467,12 +466,35 @@ void search(SearchEngineData<Algorithm> &engine_working_data,
const DataFacade<Algorithm> &facade,
SearchEngineData<Algorithm>::QueryHeap &forward_heap,
SearchEngineData<Algorithm>::QueryHeap &reverse_heap,
std::int32_t &weight,
EdgeWeight &weight,
std::vector<NodeID> &packed_leg,
const bool force_loop_forward,
const bool force_loop_reverse,
const PhantomNodes &phantom_nodes,
const int duration_upper_bound = INVALID_EDGE_WEIGHT);
const std::vector<NodeID> &force_loop_forward_node,
const std::vector<NodeID> &force_loop_reverse_node,
const EdgeWeight duration_upper_bound = INVALID_EDGE_WEIGHT);
template <typename PhantomEndpointT>
void search(SearchEngineData<Algorithm> &engine_working_data,
const DataFacade<Algorithm> &facade,
SearchEngineData<Algorithm>::QueryHeap &forward_heap,
SearchEngineData<Algorithm>::QueryHeap &reverse_heap,
EdgeWeight &weight,
std::vector<NodeID> &packed_leg,
const std::vector<NodeID> &force_loop_forward_node,
const std::vector<NodeID> &force_loop_reverse_node,
const PhantomEndpointT & /*endpoints*/,
const EdgeWeight duration_upper_bound = INVALID_EDGE_WEIGHT)
{
// Avoid templating the CH search implementations.
return search(engine_working_data,
facade,
forward_heap,
reverse_heap,
weight,
packed_leg,
force_loop_forward_node,
force_loop_reverse_node,
duration_upper_bound);
}
// Requires the heaps for be empty
// If heaps should be adjusted to be initialized outside of this function,

View File

@ -33,24 +33,75 @@ namespace
template <typename MultiLevelPartition>
inline LevelID getNodeQueryLevel(const MultiLevelPartition &partition,
NodeID node,
const PhantomNodes &phantom_nodes)
const PhantomNode &source,
const PhantomNode &target)
{
auto level = [&partition, node](const SegmentID &source, const SegmentID &target) {
if (source.enabled && target.enabled)
return partition.GetQueryLevel(source.id, target.id, node);
return INVALID_LEVEL_ID;
};
return std::min(std::min(level(phantom_nodes.source_phantom.forward_segment_id,
phantom_nodes.target_phantom.forward_segment_id),
level(phantom_nodes.source_phantom.forward_segment_id,
phantom_nodes.target_phantom.reverse_segment_id)),
std::min(level(phantom_nodes.source_phantom.reverse_segment_id,
phantom_nodes.target_phantom.forward_segment_id),
level(phantom_nodes.source_phantom.reverse_segment_id,
phantom_nodes.target_phantom.reverse_segment_id)));
return std::min(std::min(level(source.forward_segment_id, target.forward_segment_id),
level(source.forward_segment_id, target.reverse_segment_id)),
std::min(level(source.reverse_segment_id, target.forward_segment_id),
level(source.reverse_segment_id, target.reverse_segment_id)));
}
inline bool checkParentCellRestriction(CellID, const PhantomNodes &) { return true; }
template <typename MultiLevelPartition>
inline LevelID getNodeQueryLevel(const MultiLevelPartition &partition,
NodeID node,
const PhantomEndpoints &endpoints)
{
return getNodeQueryLevel(partition, node, endpoints.source_phantom, endpoints.target_phantom);
}
template <typename MultiLevelPartition>
inline LevelID getNodeQueryLevel(const MultiLevelPartition &partition,
NodeID node,
const PhantomCandidatesToTarget &endpoint_candidates)
{
auto min_level = std::accumulate(
endpoint_candidates.source_phantoms.begin(),
endpoint_candidates.source_phantoms.end(),
INVALID_LEVEL_ID,
[&](LevelID current_level, const PhantomNode &source) {
return std::min(
current_level,
getNodeQueryLevel(partition, node, source, endpoint_candidates.target_phantom));
});
return min_level;
}
template <typename MultiLevelPartition>
inline LevelID getNodeQueryLevel(const MultiLevelPartition &partition,
NodeID node,
const PhantomEndpointCandidates &endpoint_candidates)
{
auto min_level = std::accumulate(
endpoint_candidates.source_phantoms.begin(),
endpoint_candidates.source_phantoms.end(),
INVALID_LEVEL_ID,
[&](LevelID level_1, const PhantomNode &source) {
return std::min(
level_1,
std::accumulate(endpoint_candidates.target_phantoms.begin(),
endpoint_candidates.target_phantoms.end(),
level_1,
[&](LevelID level_2, const PhantomNode &target) {
return std::min(
level_2,
getNodeQueryLevel(partition, node, source, target));
}));
});
return min_level;
}
template <typename PhantomCandidateT>
inline bool checkParentCellRestriction(CellID, const PhantomCandidateT &)
{
return true;
}
// Restricted search (Args is LevelID, CellID):
// * use the fixed level for queries
@ -72,17 +123,23 @@ inline bool checkParentCellRestriction(CellID cell, LevelID, CellID parent)
template <typename MultiLevelPartition>
inline LevelID getNodeQueryLevel(const MultiLevelPartition &partition,
const NodeID node,
const PhantomNode &phantom_node)
const PhantomNodeCandidates &candidates)
{
auto highest_diffrent_level = [&partition, node](const SegmentID &phantom_node) {
if (phantom_node.enabled)
return partition.GetHighestDifferentLevel(phantom_node.id, node);
return INVALID_LEVEL_ID;
auto highest_different_level = [&partition, node](const SegmentID &segment) {
return segment.enabled ? partition.GetHighestDifferentLevel(segment.id, node)
: INVALID_LEVEL_ID;
};
const auto node_level = std::min(highest_diffrent_level(phantom_node.forward_segment_id),
highest_diffrent_level(phantom_node.reverse_segment_id));
auto node_level =
std::accumulate(candidates.begin(),
candidates.end(),
INVALID_LEVEL_ID,
[&](LevelID current_level, const PhantomNode &phantom_node) {
auto highest_level =
std::min(highest_different_level(phantom_node.forward_segment_id),
highest_different_level(phantom_node.reverse_segment_id));
return std::min(current_level, highest_level);
});
return node_level;
}
@ -92,31 +149,17 @@ inline LevelID getNodeQueryLevel(const MultiLevelPartition &partition,
template <typename MultiLevelPartition>
inline LevelID getNodeQueryLevel(const MultiLevelPartition &partition,
NodeID node,
const std::vector<PhantomNode> &phantom_nodes,
const std::vector<PhantomNodeCandidates> &candidates_list,
const std::size_t phantom_index,
const std::vector<std::size_t> &phantom_indices)
{
auto min_level = [&partition, node](const PhantomNode &phantom_node) {
const auto &forward_segment = phantom_node.forward_segment_id;
const auto forward_level =
forward_segment.enabled ? partition.GetHighestDifferentLevel(node, forward_segment.id)
: INVALID_LEVEL_ID;
const auto &reverse_segment = phantom_node.reverse_segment_id;
const auto reverse_level =
reverse_segment.enabled ? partition.GetHighestDifferentLevel(node, reverse_segment.id)
: INVALID_LEVEL_ID;
return std::min(forward_level, reverse_level);
};
// Get minimum level over all phantoms of the highest different level with respect to node
// This is equivalent to min_{∀ source, target} partition.GetQueryLevel(source, node, target)
auto result = min_level(phantom_nodes[phantom_index]);
for (const auto &index : phantom_indices)
{
result = std::min(result, min_level(phantom_nodes[index]));
}
auto init = getNodeQueryLevel(partition, node, candidates_list[phantom_index]);
auto result = std::accumulate(
phantom_indices.begin(), phantom_indices.end(), init, [&](LevelID level, size_t index) {
return std::min(level, getNodeQueryLevel(partition, node, candidates_list[index]));
});
return result;
}
} // namespace
@ -229,7 +272,7 @@ template <bool DIRECTION, typename Algorithm, typename... Args>
void relaxOutgoingEdges(const DataFacade<Algorithm> &facade,
typename SearchEngineData<Algorithm>::QueryHeap &forward_heap,
const typename SearchEngineData<Algorithm>::QueryHeap::HeapNode &heapNode,
Args... args)
const Args &... args)
{
const auto &partition = facade.GetMultiLevelPartition();
const auto &cells = facade.GetCellStorage();
@ -344,9 +387,9 @@ void routingStep(const DataFacade<Algorithm> &facade,
typename SearchEngineData<Algorithm>::QueryHeap &reverse_heap,
NodeID &middle_node,
EdgeWeight &path_upper_bound,
const bool force_loop_forward,
const bool force_loop_reverse,
Args... args)
const std::vector<NodeID> &force_loop_forward_nodes,
const std::vector<NodeID> &force_loop_reverse_nodes,
const Args &... args)
{
const auto heapNode = forward_heap.DeleteMinGetHeapNode();
const auto weight = heapNode.weight;
@ -366,9 +409,9 @@ void routingStep(const DataFacade<Algorithm> &facade,
// MLD uses loops forcing only to prune single node paths in forward and/or
// backward direction (there is no need to force loops in MLD but in CH)
if (!(force_loop_forward && heapNode.data.parent == heapNode.node) &&
!(force_loop_reverse && reverseHeapNode->data.parent == heapNode.node) &&
(path_weight >= 0) && (path_weight < path_upper_bound))
if (!force_loop(force_loop_forward_nodes, heapNode) &&
!force_loop(force_loop_reverse_nodes, heapNode) && (path_weight >= 0) &&
(path_weight < path_upper_bound))
{
middle_node = heapNode.node;
path_upper_bound = path_weight;
@ -393,10 +436,10 @@ UnpackedPath search(SearchEngineData<Algorithm> &engine_working_data,
const DataFacade<Algorithm> &facade,
typename SearchEngineData<Algorithm>::QueryHeap &forward_heap,
typename SearchEngineData<Algorithm>::QueryHeap &reverse_heap,
const bool force_loop_forward,
const bool force_loop_reverse,
const std::vector<NodeID> &force_loop_forward_nodes,
const std::vector<NodeID> &force_loop_reverse_nodes,
EdgeWeight weight_upper_bound,
Args... args)
const Args &... args)
{
if (forward_heap.Empty() || reverse_heap.Empty())
{
@ -423,8 +466,8 @@ UnpackedPath search(SearchEngineData<Algorithm> &engine_working_data,
reverse_heap,
middle,
weight,
force_loop_forward,
force_loop_reverse,
force_loop_forward_nodes,
force_loop_reverse_nodes,
args...);
if (!forward_heap.Empty())
forward_heap_min = forward_heap.MinKey();
@ -436,8 +479,8 @@ UnpackedPath search(SearchEngineData<Algorithm> &engine_working_data,
forward_heap,
middle,
weight,
force_loop_reverse,
force_loop_forward,
force_loop_reverse_nodes,
force_loop_forward_nodes,
args...);
if (!reverse_heap.Empty())
reverse_heap_min = reverse_heap.MinKey();
@ -494,12 +537,13 @@ UnpackedPath search(SearchEngineData<Algorithm> &engine_working_data,
EdgeWeight subpath_weight;
std::vector<NodeID> subpath_nodes;
std::vector<EdgeID> subpath_edges;
std::tie(subpath_weight, subpath_nodes, subpath_edges) = search(engine_working_data,
std::tie(subpath_weight, subpath_nodes, subpath_edges) =
search(engine_working_data,
facade,
forward_heap,
reverse_heap,
force_loop_forward,
force_loop_reverse,
force_loop_forward_nodes,
force_loop_reverse_nodes,
INVALID_EDGE_WEIGHT,
sublevel,
parent_cell_id);
@ -517,16 +561,16 @@ UnpackedPath search(SearchEngineData<Algorithm> &engine_working_data,
}
// Alias to be compatible with the CH-based search
template <typename Algorithm>
template <typename Algorithm, typename PhantomEndpointT>
inline void search(SearchEngineData<Algorithm> &engine_working_data,
const DataFacade<Algorithm> &facade,
typename SearchEngineData<Algorithm>::QueryHeap &forward_heap,
typename SearchEngineData<Algorithm>::QueryHeap &reverse_heap,
EdgeWeight &weight,
std::vector<NodeID> &unpacked_nodes,
const bool force_loop_forward,
const bool force_loop_reverse,
const PhantomNodes &phantom_nodes,
const std::vector<NodeID> &force_loop_forward_node,
const std::vector<NodeID> &force_loop_reverse_node,
const PhantomEndpointT &endpoints,
const EdgeWeight weight_upper_bound = INVALID_EDGE_WEIGHT)
{
// TODO: change search calling interface to use unpacked_edges result
@ -534,10 +578,10 @@ inline void search(SearchEngineData<Algorithm> &engine_working_data,
facade,
forward_heap,
reverse_heap,
force_loop_forward,
force_loop_reverse,
force_loop_forward_node,
force_loop_reverse_node,
weight_upper_bound,
phantom_nodes);
endpoints);
}
// TODO: refactor CH-related stub to use unpacked_edges
@ -545,7 +589,7 @@ template <typename RandomIter, typename FacadeT>
void unpackPath(const FacadeT &facade,
RandomIter packed_path_begin,
RandomIter packed_path_end,
const PhantomNodes &phantom_nodes,
const PhantomEndpoints &route_endpoints,
std::vector<PathData> &unpacked_path)
{
const auto nodes_number = std::distance(packed_path_begin, packed_path_end);
@ -568,7 +612,7 @@ void unpackPath(const FacadeT &facade,
});
}
annotatePath(facade, phantom_nodes, unpacked_nodes, unpacked_edges, unpacked_path);
annotatePath(facade, route_endpoints, unpacked_nodes, unpacked_edges, unpacked_path);
}
template <typename Algorithm>
@ -583,8 +627,8 @@ double getNetworkDistance(SearchEngineData<Algorithm> &engine_working_data,
forward_heap.Clear();
reverse_heap.Clear();
const PhantomNodes phantom_nodes{source_phantom, target_phantom};
insertNodesInHeaps(forward_heap, reverse_heap, phantom_nodes);
const PhantomEndpoints endpoints{source_phantom, target_phantom};
insertNodesInHeaps(forward_heap, reverse_heap, endpoints);
EdgeWeight weight = INVALID_EDGE_WEIGHT;
std::vector<NodeID> unpacked_nodes;
@ -593,10 +637,10 @@ double getNetworkDistance(SearchEngineData<Algorithm> &engine_working_data,
facade,
forward_heap,
reverse_heap,
DO_NOT_FORCE_LOOPS,
DO_NOT_FORCE_LOOPS,
{},
{},
weight_upper_bound,
phantom_nodes);
endpoints);
if (weight == INVALID_EDGE_WEIGHT)
{
@ -605,7 +649,7 @@ double getNetworkDistance(SearchEngineData<Algorithm> &engine_working_data,
std::vector<PathData> unpacked_path;
annotatePath(facade, phantom_nodes, unpacked_nodes, unpacked_edges, unpacked_path);
annotatePath(facade, endpoints, unpacked_nodes, unpacked_edges, unpacked_path);
return getPathDistance(facade, unpacked_path, source_phantom, target_phantom);
}

View File

@ -14,9 +14,10 @@ namespace routing_algorithms
{
template <typename Algorithm>
InternalRouteResult shortestPathSearch(SearchEngineData<Algorithm> &engine_working_data,
InternalRouteResult
shortestPathSearch(SearchEngineData<Algorithm> &engine_working_data,
const DataFacade<Algorithm> &facade,
const std::vector<PhantomNodes> &phantom_nodes_vector,
const std::vector<PhantomNodeCandidates> &waypoint_candidates,
const boost::optional<bool> continue_straight_at_waypoint);
} // namespace routing_algorithms

File diff suppressed because it is too large Load Diff

View File

@ -78,10 +78,17 @@ struct BaseParametersGrammar : boost::spirit::qi::grammar<Iterator, Signature>
: BaseParametersGrammar::base_type(root_rule)
{
const auto add_hint = [](engine::api::BaseParameters &base_parameters,
const boost::optional<std::string> &hint_string) {
if (hint_string)
const std::vector<std::string> &hint_strings) {
if (!hint_strings.empty())
{
base_parameters.hints.emplace_back(engine::Hint::FromBase64(hint_string.get()));
std::vector<engine::SegmentHint> location_hints(hint_strings.size());
std::transform(hint_strings.begin(),
hint_strings.end(),
location_hints.begin(),
[](const auto &hint_string) {
return engine::SegmentHint::FromBase64(hint_string);
});
base_parameters.hints.push_back(engine::Hint{std::move(location_hints)});
}
else
{
@ -145,8 +152,9 @@ struct BaseParametersGrammar : boost::spirit::qi::grammar<Iterator, Signature>
(-(qi::double_ | unlimited_rule) %
';')[ph::bind(&engine::api::BaseParameters::radiuses, qi::_r1) = qi::_1];
hints_rule = qi::lit("hints=") >
(-qi::as_string[qi::repeat(engine::ENCODED_HINT_SIZE)[base64_char]])[ph::bind(
hints_rule =
qi::lit("hints=") >
(*qi::as_string[qi::repeat(engine::ENCODED_SEGMENT_HINT_SIZE)[base64_char]])[ph::bind(
add_hint, qi::_r1, qi::_1)] %
';';

View File

@ -68,7 +68,7 @@ write(storage::tar::FileWriter &writer,
/***
* Static RTree for serving nearest neighbour queries
* // All coordinates are pojected first to Web Mercator before the bounding boxes
* // All coordinates are projected first to Web Mercator before the bounding boxes
* // are computed, this means the internal distance metric doesn not represent meters!
*/
@ -556,7 +556,7 @@ class StaticRTree
}
// Override filter and terminator for the desired behaviour.
std::vector<EdgeDataT> Nearest(const Coordinate input_coordinate,
std::vector<CandidateSegment> Nearest(const Coordinate input_coordinate,
const std::size_t max_results) const
{
return Nearest(
@ -567,13 +567,13 @@ class StaticRTree
});
}
// Override filter and terminator for the desired behaviour.
// Return edges in distance order with the coordinate of the closest point on the edge.
template <typename FilterT, typename TerminationT>
std::vector<EdgeDataT> Nearest(const Coordinate input_coordinate,
std::vector<CandidateSegment> Nearest(const Coordinate input_coordinate,
const FilterT filter,
const TerminationT terminate) const
{
std::vector<EdgeDataT> results;
std::vector<CandidateSegment> results;
auto projected_coordinate = web_mercator::fromWGS84(input_coordinate);
Coordinate fixed_projected_coordinate{projected_coordinate};
// initialize queue with root element
@ -603,10 +603,10 @@ class StaticRTree
}
else
{ // current candidate is an actual road segment
// We deliberatly make a copy here, we mutate the value below
auto edge_data = m_objects[current_query_node.segment_index];
const auto &current_candidate =
CandidateSegment{current_query_node.fixed_projected_coordinate, edge_data};
const auto &edge_data = m_objects[current_query_node.segment_index];
// We deliberately make an edge data copy here, we mutate the value below
CandidateSegment current_candidate{current_query_node.fixed_projected_coordinate,
edge_data};
// to allow returns of no-results if too restrictive filtering, this needs to be
// done here even though performance would indicate that we want to stop after
@ -621,11 +621,11 @@ class StaticRTree
{
continue;
}
edge_data.forward_segment_id.enabled &= use_segment.first;
edge_data.reverse_segment_id.enabled &= use_segment.second;
current_candidate.data.forward_segment_id.enabled &= use_segment.first;
current_candidate.data.reverse_segment_id.enabled &= use_segment.second;
// store phantom node in result vector
results.push_back(std::move(edge_data));
results.push_back(std::move(current_candidate));
}
}
@ -676,7 +676,7 @@ class StaticRTree
* Iterates over all the children of a TreeNode and inserts them into the search
* priority queue using their distance from the search coordinate as the
* priority metric.
* The closests distance to a box from our point is also the closest distance
* The closest distance to a box from our point is also the closest distance
* to the closest line in that box (assuming the boxes hug their contents).
*/
template <class QueueT>

View File

@ -239,10 +239,10 @@ makeWaypoint(const util::Coordinate &location, const double &distance, std::stri
util::json::Object makeWaypoint(const util::Coordinate &location,
const double &distance,
std::string name,
const Hint &hint)
const Hint &location_hints)
{
auto waypoint = makeWaypoint(location, distance, std::move(name));
waypoint.values["hint"] = hint.ToBase64();
waypoint.values["hint"] = location_hints.ToBase64();
return waypoint;
}

View File

@ -3,10 +3,10 @@
#include "engine/datafacade/datafacade_base.hpp"
#include <boost/assert.hpp>
#include <boost/unordered_set.hpp>
#include <algorithm>
#include <iterator>
#include <ostream>
#include <tuple>
namespace osrm
@ -14,7 +14,7 @@ namespace osrm
namespace engine
{
bool Hint::IsValid(const util::Coordinate new_input_coordinates,
bool SegmentHint::IsValid(const util::Coordinate new_input_coordinates,
const datafacade::BaseDataFacade &facade) const
{
auto is_same_input_coordinate = new_input_coordinates.lon == phantom.input_location.lon &&
@ -25,7 +25,7 @@ bool Hint::IsValid(const util::Coordinate new_input_coordinates,
return is_same_input_coordinate && phantom.IsValid() && facade.GetCheckSum() == data_checksum;
}
std::string Hint::ToBase64() const
std::string SegmentHint::ToBase64() const
{
auto base64 = encodeBase64Bytewise(*this);
@ -36,9 +36,9 @@ std::string Hint::ToBase64() const
return base64;
}
Hint Hint::FromBase64(const std::string &base64Hint)
SegmentHint SegmentHint::FromBase64(const std::string &base64Hint)
{
BOOST_ASSERT_MSG(base64Hint.size() == ENCODED_HINT_SIZE, "Hint has invalid size");
BOOST_ASSERT_MSG(base64Hint.size() == ENCODED_SEGMENT_HINT_SIZE, "Hint has invalid size");
// We need mutability but don't want to change the API
auto encoded = base64Hint;
@ -47,15 +47,82 @@ Hint Hint::FromBase64(const std::string &base64Hint)
std::replace(begin(encoded), end(encoded), '-', '+');
std::replace(begin(encoded), end(encoded), '_', '/');
return decodeBase64Bytewise<Hint>(encoded);
return decodeBase64Bytewise<SegmentHint>(encoded);
}
bool operator==(const Hint &lhs, const Hint &rhs)
bool operator==(const SegmentHint &lhs, const SegmentHint &rhs)
{
return std::tie(lhs.phantom, lhs.data_checksum) == std::tie(rhs.phantom, rhs.data_checksum);
}
std::ostream &operator<<(std::ostream &out, const Hint &hint) { return out << hint.ToBase64(); }
bool operator!=(const SegmentHint &lhs, const SegmentHint &rhs) { return !(lhs == rhs); }
std::ostream &operator<<(std::ostream &out, const SegmentHint &hint)
{
return out << hint.ToBase64();
}
std::string Hint::ToBase64() const
{
std::string res;
for (const auto &hint : segment_hints)
{
res += hint.ToBase64();
}
return res;
}
Hint Hint::FromBase64(const std::string &base64Hint)
{
BOOST_ASSERT_MSG(base64Hint.size() % ENCODED_SEGMENT_HINT_SIZE == 0,
"SegmentHint has invalid size");
auto num_hints = base64Hint.size() / ENCODED_SEGMENT_HINT_SIZE;
std::vector<SegmentHint> res(num_hints);
for (const auto i : util::irange<std::size_t>(0UL, num_hints))
{
auto start_offset = i * ENCODED_SEGMENT_HINT_SIZE;
auto end_offset = start_offset + ENCODED_SEGMENT_HINT_SIZE;
res[i] = SegmentHint::FromBase64(
std::string(base64Hint.begin() + start_offset, base64Hint.begin() + end_offset));
}
return {std::move(res)};
}
bool Hint::IsValid(const util::Coordinate new_input_coordinates,
const datafacade::BaseDataFacade &facade) const
{
const auto all_valid =
std::all_of(segment_hints.begin(), segment_hints.end(), [&](const auto &seg_hint) {
return seg_hint.IsValid(new_input_coordinates, facade);
});
if (!all_valid)
{
return false;
}
// Check hints do not contain duplicate segment pairs
// We can't allow duplicates as search heaps do not support it.
boost::unordered_set<NodeID> forward_segments;
boost::unordered_set<NodeID> reverse_segments;
for (const auto &seg_hint : segment_hints)
{
const auto forward_res = forward_segments.insert(seg_hint.phantom.forward_segment_id.id);
if (!forward_res.second)
{
return false;
}
const auto backward_res = reverse_segments.insert(seg_hint.phantom.reverse_segment_id.id);
if (!backward_res.second)
{
return false;
}
}
return true;
}
} // namespace engine
} // namespace osrm

View File

@ -4,21 +4,16 @@
#include "engine/api/match_api.hpp"
#include "engine/api/match_parameters.hpp"
#include "engine/api/match_parameters_tidy.hpp"
#include "engine/map_matching/bayes_classifier.hpp"
#include "engine/map_matching/sub_matching.hpp"
#include "util/coordinate_calculation.hpp"
#include "util/integer_range.hpp"
#include "util/json_util.hpp"
#include "util/string_util.hpp"
#include <cstdlib>
#include <algorithm>
#include <functional>
#include <iterator>
#include <memory>
#include <set>
#include <string>
#include <vector>
namespace osrm
@ -28,7 +23,7 @@ namespace engine
namespace plugins
{
// Filters PhantomNodes to obtain a set of viable candiates
// Filters PhantomNodes to obtain a set of viable candidates
void filterCandidates(const std::vector<util::Coordinate> &coordinates,
MatchPlugin::CandidateLists &candidates_lists)
{
@ -272,20 +267,26 @@ Status MatchPlugin::HandleRequest(const RoutingAlgorithmsInterface &algorithms,
// FIXME we only run this to obtain the geometry
// The clean way would be to get this directly from the map matching plugin
PhantomNodes current_phantom_node_pair;
for (unsigned i = 0; i < sub_matchings[index].nodes.size() - 1; ++i)
{
current_phantom_node_pair.source_phantom = sub_matchings[index].nodes[i];
current_phantom_node_pair.target_phantom = sub_matchings[index].nodes[i + 1];
BOOST_ASSERT(current_phantom_node_pair.source_phantom.IsValid());
BOOST_ASSERT(current_phantom_node_pair.target_phantom.IsValid());
sub_routes[index].segment_end_coordinates.emplace_back(current_phantom_node_pair);
PhantomEndpoints current_endpoints{sub_matchings[index].nodes[i],
sub_matchings[index].nodes[i + 1]};
BOOST_ASSERT(current_endpoints.source_phantom.IsValid());
BOOST_ASSERT(current_endpoints.target_phantom.IsValid());
sub_routes[index].leg_endpoints.push_back(current_endpoints);
}
std::vector<PhantomNodeCandidates> waypoint_candidates;
waypoint_candidates.reserve(sub_matchings[index].nodes.size());
std::transform(sub_matchings[index].nodes.begin(),
sub_matchings[index].nodes.end(),
std::back_inserter(waypoint_candidates),
[](const auto &phantom) { return PhantomNodeCandidates{phantom}; });
// force uturns to be on
// we split the phantom nodes anyway and only have bi-directional phantom nodes for
// possible uturns
sub_routes[index] =
algorithms.ShortestPathSearch(sub_routes[index].segment_end_coordinates, {false});
sub_routes[index] = algorithms.ShortestPathSearch(waypoint_candidates, {false});
BOOST_ASSERT(sub_routes[index].shortest_path_weight != INVALID_EDGE_WEIGHT);
if (collapse_legs)
{

View File

@ -1,10 +1,7 @@
#include "engine/plugins/nearest.hpp"
#include "engine/api/nearest_api.hpp"
#include "engine/api/nearest_parameters.hpp"
#include "engine/phantom_node.hpp"
#include "util/integer_range.hpp"
#include <cstddef>
#include <string>
#include <boost/assert.hpp>

View File

@ -2,17 +2,11 @@
#include "engine/api/table_api.hpp"
#include "engine/api/table_parameters.hpp"
#include "engine/routing_algorithms/many_to_many.hpp"
#include "engine/search_engine_data.hpp"
#include "util/coordinate_calculation.hpp"
#include "util/json_container.hpp"
#include "util/string_util.hpp"
#include <cstdlib>
#include <algorithm>
#include <memory>
#include <string>
#include <vector>
#include <boost/assert.hpp>
@ -47,7 +41,7 @@ Status TablePlugin::HandleRequest(const RoutingAlgorithmsInterface &algorithms,
return Error("InvalidOptions", "Coordinates are invalid", result);
}
if (params.bearings.size() > 0 && params.coordinates.size() != params.bearings.size())
if (!params.bearings.empty() && params.coordinates.size() != params.bearings.size())
{
return Error(
"InvalidOptions", "Number of bearings does not match number of coordinates", result);
@ -79,7 +73,7 @@ Status TablePlugin::HandleRequest(const RoutingAlgorithmsInterface &algorithms,
"NoSegment", MissingPhantomErrorMessage(phantom_nodes, params.coordinates), result);
}
auto snapped_phantoms = SnapPhantomNodes(phantom_nodes);
auto snapped_phantoms = SnapPhantomNodes(std::move(phantom_nodes));
bool request_distance = params.annotations & api::TableParameters::AnnotationsType::Distance;
bool request_duration = params.annotations & api::TableParameters::AnnotationsType::Duration;
@ -117,9 +111,11 @@ Status TablePlugin::HandleRequest(const RoutingAlgorithmsInterface &algorithms,
params.fallback_coordinate_type ==
api::TableParameters::FallbackCoordinateType::Input
? util::coordinate_calculation::greatCircleDistance(
source.input_location, destination.input_location)
candidatesInputLocation(source),
candidatesInputLocation(destination))
: util::coordinate_calculation::greatCircleDistance(
source.location, destination.location);
candidatesSnappedLocation(source),
candidatesSnappedLocation(destination));
result_tables_pair.first[table_index] =
distance_estimate / (double)params.fallback_speed;

View File

@ -20,7 +20,6 @@
#include <algorithm>
#include <numeric>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>

View File

@ -4,18 +4,12 @@
#include "engine/api/trip_parameters.hpp"
#include "engine/trip/trip_brute_force.hpp"
#include "engine/trip/trip_farthest_insertion.hpp"
#include "engine/trip/trip_nearest_neighbour.hpp"
#include "util/dist_table_wrapper.hpp" // to access the dist table more easily
#include "util/json_container.hpp"
#include <boost/assert.hpp>
#include <algorithm>
#include <cstdlib>
#include <iterator>
#include <limits>
#include <memory>
#include <string>
#include <utility>
#include <vector>
@ -41,40 +35,33 @@ bool IsSupportedParameterCombination(const bool fixed_start,
// given the node order in which to visit, compute the actual route (with geometry, travel time and
// so on) and return the result
InternalRouteResult TripPlugin::ComputeRoute(const RoutingAlgorithmsInterface &algorithms,
const std::vector<PhantomNode> &snapped_phantoms,
InternalRouteResult
TripPlugin::ComputeRoute(const RoutingAlgorithmsInterface &algorithms,
const std::vector<PhantomNodeCandidates> &waypoint_candidates,
const std::vector<NodeID> &trip,
const bool roundtrip) const
{
InternalRouteResult min_route;
// given the final trip, compute total duration and return the route and location permutation
PhantomNodes viapoint;
// computes a roundtrip from the nodes in trip
for (auto node = trip.begin(); node < trip.end() - 1; ++node)
{
const auto from_node = *node;
const auto to_node = *std::next(node);
viapoint = PhantomNodes{snapped_phantoms[from_node], snapped_phantoms[to_node]};
min_route.segment_end_coordinates.emplace_back(viapoint);
}
// TODO make a more efficient solution that doesn't require copying all the waypoints vectors.
std::vector<PhantomNodeCandidates> trip_candidates;
std::transform(trip.begin(),
trip.end(),
std::back_inserter(trip_candidates),
[&](const auto &node) { return waypoint_candidates[node]; });
// return back to the first node if it is a round trip
if (roundtrip)
{
viapoint = PhantomNodes{snapped_phantoms[trip.back()], snapped_phantoms[trip.front()]};
min_route.segment_end_coordinates.emplace_back(viapoint);
trip_candidates.push_back(waypoint_candidates[trip.front()]);
// trip comes out to be something like 0 1 4 3 2 0
BOOST_ASSERT(min_route.segment_end_coordinates.size() == trip.size());
BOOST_ASSERT(trip_candidates.size() == trip.size() + 1);
}
else
{
// trip comes out to be something like 0 1 4 3 2, so the sizes don't match
BOOST_ASSERT(min_route.segment_end_coordinates.size() == trip.size() - 1);
// trip comes out to be something like 0 1 4 3 2
BOOST_ASSERT(trip_candidates.size() == trip.size());
}
min_route = algorithms.ShortestPathSearch(min_route.segment_end_coordinates, {false});
auto min_route = algorithms.ShortestPathSearch(trip_candidates, {false});
BOOST_ASSERT_MSG(min_route.shortest_path_weight < INVALID_EDGE_WEIGHT, "unroutable route");
return min_route;
}
@ -226,7 +213,7 @@ Status TripPlugin::HandleRequest(const RoutingAlgorithmsInterface &algorithms,
return Error("InvalidValue", "Invalid source or destination value.", result);
}
auto snapped_phantoms = SnapPhantomNodes(phantom_node_pairs);
auto snapped_phantoms = SnapPhantomNodes(std::move(phantom_node_pairs));
BOOST_ASSERT(snapped_phantoms.size() == number_of_locations);

View File

@ -5,12 +5,10 @@
#include "util/for_each_pair.hpp"
#include "util/integer_range.hpp"
#include "util/json_container.hpp"
#include <cstdlib>
#include <algorithm>
#include <memory>
#include <string>
#include <vector>
@ -95,19 +93,10 @@ Status ViaRoutePlugin::HandleRequest(const RoutingAlgorithmsInterface &algorithm
}
BOOST_ASSERT(phantom_node_pairs.size() == route_parameters.coordinates.size());
auto snapped_phantoms = SnapPhantomNodes(phantom_node_pairs);
std::vector<PhantomNodes> start_end_nodes;
auto build_phantom_pairs = [&start_end_nodes](const PhantomNode &first_node,
const PhantomNode &second_node) {
start_end_nodes.push_back(PhantomNodes{first_node, second_node});
};
util::for_each_pair(snapped_phantoms, build_phantom_pairs);
auto snapped_phantoms = SnapPhantomNodes(std::move(phantom_node_pairs));
api::RouteAPI route_api{facade, route_parameters};
InternalManyRoutesResult routes;
// TODO: in v6 we should remove the boolean and only keep the number parameter.
// For now just force them to be in sync. and keep backwards compatibility.
const auto wants_alternatives =
@ -115,20 +104,23 @@ Status ViaRoutePlugin::HandleRequest(const RoutingAlgorithmsInterface &algorithm
(route_parameters.alternatives || route_parameters.number_of_alternatives > 0);
const auto number_of_alternatives = std::max(1u, route_parameters.number_of_alternatives);
InternalManyRoutesResult routes;
// Alternatives do not support vias, only direct s,t queries supported
// See the implementation notes and high-level outline.
// https://github.com/Project-OSRM/osrm-backend/issues/3905
if (1 == start_end_nodes.size() && algorithms.HasAlternativePathSearch() && wants_alternatives)
if (2 == snapped_phantoms.size() && algorithms.HasAlternativePathSearch() && wants_alternatives)
{
routes = algorithms.AlternativePathSearch(start_end_nodes.front(), number_of_alternatives);
routes = algorithms.AlternativePathSearch({snapped_phantoms[0], snapped_phantoms[1]},
number_of_alternatives);
}
else if (1 == start_end_nodes.size() && algorithms.HasDirectShortestPathSearch())
else if (2 == snapped_phantoms.size() && algorithms.HasDirectShortestPathSearch())
{
routes = algorithms.DirectShortestPathSearch(start_end_nodes.front());
routes = algorithms.DirectShortestPathSearch({snapped_phantoms[0], snapped_phantoms[1]});
}
else
{
routes = algorithms.ShortestPathSearch(start_end_nodes, route_parameters.continue_straight);
routes =
algorithms.ShortestPathSearch(snapped_phantoms, route_parameters.continue_straight);
}
// The post condition for all path searches is we have at least one route in our result.
@ -160,18 +152,29 @@ Status ViaRoutePlugin::HandleRequest(const RoutingAlgorithmsInterface &algorithm
}
}
route_api.MakeResponse(routes, start_end_nodes, result);
route_api.MakeResponse(routes, snapped_phantoms, result);
}
else
{
auto first_component_id = snapped_phantoms.front().component.id;
auto not_in_same_component = std::any_of(snapped_phantoms.begin(),
snapped_phantoms.end(),
[first_component_id](const PhantomNode &node) {
return node.component.id != first_component_id;
const auto all_in_same_component =
[](const std::vector<PhantomNodeCandidates> &waypoint_candidates) {
return std::any_of(waypoint_candidates.front().begin(),
waypoint_candidates.front().end(),
// For each of the first possible phantoms, check if all other
// positions in the list have a phantom from the same component.
[&](const PhantomNode &phantom) {
const auto component_id = phantom.component.id;
return std::all_of(
std::next(waypoint_candidates.begin()),
std::end(waypoint_candidates),
[component_id](const PhantomNodeCandidates &candidates) {
return candidatesHaveComponent(candidates,
component_id);
});
});
};
if (not_in_same_component)
if (!all_in_same_component(snapped_phantoms))
{
return Error("NoRoute", "Impossible route between points", result);
}

View File

@ -190,8 +190,8 @@ void computeWeightAndSharingOfViaPath(SearchEngineData<Algorithm> &engine_workin
s_v_middle,
upper_bound_s_v_path_weight,
min_edge_offset,
DO_NOT_FORCE_LOOPS,
DO_NOT_FORCE_LOOPS);
{},
{});
}
// compute path <v,..,t> by reusing backward search from node t
NodeID v_t_middle = SPECIAL_NODEID;
@ -205,8 +205,8 @@ void computeWeightAndSharingOfViaPath(SearchEngineData<Algorithm> &engine_workin
v_t_middle,
upper_bound_of_v_t_path_weight,
min_edge_offset,
DO_NOT_FORCE_LOOPS,
DO_NOT_FORCE_LOOPS);
{},
{});
}
*real_weight_of_via_path = upper_bound_s_v_path_weight + upper_bound_of_v_t_path_weight;
@ -351,8 +351,8 @@ bool viaNodeCandidatePassesTTest(SearchEngineData<Algorithm> &engine_working_dat
*s_v_middle,
upper_bound_s_v_path_weight,
min_edge_offset,
DO_NOT_FORCE_LOOPS,
DO_NOT_FORCE_LOOPS);
{},
{});
}
if (INVALID_EDGE_WEIGHT == upper_bound_s_v_path_weight)
@ -372,8 +372,8 @@ bool viaNodeCandidatePassesTTest(SearchEngineData<Algorithm> &engine_working_dat
*v_t_middle,
upper_bound_of_v_t_path_weight,
min_edge_offset,
DO_NOT_FORCE_LOOPS,
DO_NOT_FORCE_LOOPS);
{},
{});
}
if (INVALID_EDGE_WEIGHT == upper_bound_of_v_t_path_weight)
@ -539,25 +539,13 @@ bool viaNodeCandidatePassesTTest(SearchEngineData<Algorithm> &engine_working_dat
{
if (!forward_heap3.Empty())
{
routingStep<FORWARD_DIRECTION>(facade,
forward_heap3,
reverse_heap3,
middle,
upper_bound,
min_edge_offset,
DO_NOT_FORCE_LOOPS,
DO_NOT_FORCE_LOOPS);
routingStep<FORWARD_DIRECTION>(
facade, forward_heap3, reverse_heap3, middle, upper_bound, min_edge_offset, {}, {});
}
if (!reverse_heap3.Empty())
{
routingStep<REVERSE_DIRECTION>(facade,
reverse_heap3,
forward_heap3,
middle,
upper_bound,
min_edge_offset,
DO_NOT_FORCE_LOOPS,
DO_NOT_FORCE_LOOPS);
routingStep<REVERSE_DIRECTION>(
facade, reverse_heap3, forward_heap3, middle, upper_bound, min_edge_offset, {}, {});
}
}
return (upper_bound <= t_test_path_weight);
@ -566,15 +554,12 @@ bool viaNodeCandidatePassesTTest(SearchEngineData<Algorithm> &engine_working_dat
InternalManyRoutesResult alternativePathSearch(SearchEngineData<Algorithm> &engine_working_data,
const DataFacade<Algorithm> &facade,
const PhantomNodes &phantom_node_pair,
const PhantomEndpointCandidates &endpoint_candidates,
unsigned /*number_of_alternatives*/)
{
InternalRouteResult primary_route;
InternalRouteResult secondary_route;
primary_route.segment_end_coordinates = {phantom_node_pair};
secondary_route.segment_end_coordinates = {phantom_node_pair};
std::vector<NodeID> alternative_path;
std::vector<NodeID> via_node_candidate_list;
std::vector<SearchSpaceEdge> forward_search_space;
@ -592,15 +577,13 @@ InternalManyRoutesResult alternativePathSearch(SearchEngineData<Algorithm> &engi
EdgeWeight upper_bound_to_shortest_path_weight = INVALID_EDGE_WEIGHT;
NodeID middle_node = SPECIAL_NODEID;
const EdgeWeight min_edge_offset =
std::min(phantom_node_pair.source_phantom.forward_segment_id.enabled
? -phantom_node_pair.source_phantom.GetForwardWeightPlusOffset()
: 0,
phantom_node_pair.source_phantom.reverse_segment_id.enabled
? -phantom_node_pair.source_phantom.GetReverseWeightPlusOffset()
: 0);
insertNodesInHeaps(forward_heap1, reverse_heap1, phantom_node_pair);
insertNodesInHeaps(forward_heap1, reverse_heap1, endpoint_candidates);
// get offset to account for offsets on phantom nodes on compressed edges
EdgeWeight min_edge_offset = forward_heap1.Empty() ? 0 : std::min(0, forward_heap1.MinKey());
BOOST_ASSERT(min_edge_offset <= 0);
// we only every insert negative offsets for nodes in the forward heap
BOOST_ASSERT(reverse_heap1.Empty() || reverse_heap1.MinKey() >= 0);
// search from s and t till new_min/(1+epsilon) > weight_of_shortest_path
while (0 < (forward_heap1.Size() + reverse_heap1.Size()))
@ -790,7 +773,7 @@ InternalManyRoutesResult alternativePathSearch(SearchEngineData<Algorithm> &engi
&v_t_middle,
min_edge_offset))
{
// select first admissable
// select first admissible
selected_via_node = candidate.node;
break;
}
@ -799,20 +782,23 @@ InternalManyRoutesResult alternativePathSearch(SearchEngineData<Algorithm> &engi
// Unpack shortest path and alternative, if they exist
if (INVALID_EDGE_WEIGHT != upper_bound_to_shortest_path_weight)
{
auto phantom_endpoints = endpointsFromCandidates(endpoint_candidates, packed_shortest_path);
primary_route.leg_endpoints = {phantom_endpoints};
BOOST_ASSERT(!packed_shortest_path.empty());
primary_route.unpacked_path_segments.resize(1);
primary_route.source_traversed_in_reverse.push_back(
(packed_shortest_path.front() !=
phantom_node_pair.source_phantom.forward_segment_id.id));
phantom_endpoints.source_phantom.forward_segment_id.id));
primary_route.target_traversed_in_reverse.push_back((
packed_shortest_path.back() != phantom_node_pair.target_phantom.forward_segment_id.id));
packed_shortest_path.back() != phantom_endpoints.target_phantom.forward_segment_id.id));
unpackPath(facade,
// -- packed input
packed_shortest_path.begin(),
packed_shortest_path.end(),
// -- start of route
phantom_node_pair,
phantom_endpoints,
// -- unpacked output
primary_route.unpacked_path_segments.front());
primary_route.shortest_path_weight = upper_bound_to_shortest_path_weight;
@ -830,19 +816,23 @@ InternalManyRoutesResult alternativePathSearch(SearchEngineData<Algorithm> &engi
v_t_middle,
packed_alternate_path);
auto phantom_endpoints =
endpointsFromCandidates(endpoint_candidates, packed_alternate_path);
secondary_route.leg_endpoints = {phantom_endpoints};
secondary_route.unpacked_path_segments.resize(1);
secondary_route.source_traversed_in_reverse.push_back(
(packed_alternate_path.front() !=
phantom_node_pair.source_phantom.forward_segment_id.id));
phantom_endpoints.source_phantom.forward_segment_id.id));
secondary_route.target_traversed_in_reverse.push_back(
(packed_alternate_path.back() !=
phantom_node_pair.target_phantom.forward_segment_id.id));
phantom_endpoints.target_phantom.forward_segment_id.id));
// unpack the alternate path
unpackPath(facade,
packed_alternate_path.begin(),
packed_alternate_path.end(),
phantom_node_pair,
phantom_endpoints,
secondary_route.unpacked_path_segments.front());
secondary_route.shortest_path_weight = weight_of_via_path;

View File

@ -133,12 +133,13 @@ double getLongerByFactorBasedOnDuration(const EdgeWeight duration)
return a + b / (duration - d) + c / std::pow(duration - d, 3);
}
Parameters parametersFromRequest(const PhantomNodes &phantom_node_pair)
Parameters parametersFromRequest(const PhantomEndpointCandidates &endpoint_candidates)
{
Parameters parameters;
const auto distance = util::coordinate_calculation::greatCircleDistance(
phantom_node_pair.source_phantom.location, phantom_node_pair.target_phantom.location);
candidatesSnappedLocation(endpoint_candidates.source_phantoms),
candidatesSnappedLocation(endpoint_candidates.target_phantoms));
// 10km
if (distance < 10000.)
@ -547,7 +548,7 @@ void unpackPackedPaths(InputIt first,
OutIt out,
SearchEngineData<Algorithm> &search_engine_data,
const Facade &facade,
const PhantomNodes &phantom_node_pair)
const PhantomEndpointCandidates &endpoint_candidates)
{
util::static_assert_iter_category<InputIt, std::input_iterator_tag>();
util::static_assert_iter_category<OutIt, std::output_iterator_tag>();
@ -600,7 +601,7 @@ void unpackPackedPaths(InputIt first,
}
else
{ // an overlay graph edge
LevelID level = getNodeQueryLevel(partition, source, phantom_node_pair); // XXX
LevelID level = getNodeQueryLevel(partition, source, endpoint_candidates); // XXX
CellID parent_cell_id = partition.GetCell(level, source);
BOOST_ASSERT(parent_cell_id == partition.GetCell(level, target));
@ -624,8 +625,8 @@ void unpackPackedPaths(InputIt first,
facade,
forward_heap,
reverse_heap,
DO_NOT_FORCE_LOOPS,
DO_NOT_FORCE_LOOPS,
{},
{},
INVALID_EDGE_WEIGHT,
sublevel,
parent_cell_id);
@ -656,13 +657,13 @@ void unpackPackedPaths(InputIt first,
inline std::vector<WeightedViaNode>
makeCandidateVias(SearchEngineData<Algorithm> &search_engine_data,
const Facade &facade,
const PhantomNodes &phantom_node_pair,
const PhantomEndpointCandidates &endpoint_candidates,
const Parameters &parameters)
{
Heap &forward_heap = *search_engine_data.forward_heap_1;
Heap &reverse_heap = *search_engine_data.reverse_heap_1;
insertNodesInHeaps(forward_heap, reverse_heap, phantom_node_pair);
insertNodesInHeaps(forward_heap, reverse_heap, endpoint_candidates);
if (forward_heap.Empty() || reverse_heap.Empty())
{
return {};
@ -712,9 +713,9 @@ makeCandidateVias(SearchEngineData<Algorithm> &search_engine_data,
reverse_heap,
overlap_via,
overlap_weight,
DO_NOT_FORCE_LOOPS,
DO_NOT_FORCE_LOOPS,
phantom_node_pair);
{},
{},
endpoint_candidates);
if (!forward_heap.Empty())
forward_heap_min = forward_heap.MinKey();
@ -738,9 +739,9 @@ makeCandidateVias(SearchEngineData<Algorithm> &search_engine_data,
forward_heap,
overlap_via,
overlap_weight,
DO_NOT_FORCE_LOOPS,
DO_NOT_FORCE_LOOPS,
phantom_node_pair);
{},
{},
endpoint_candidates);
if (!reverse_heap.Empty())
reverse_heap_min = reverse_heap.MinKey();
@ -776,10 +777,10 @@ makeCandidateVias(SearchEngineData<Algorithm> &search_engine_data,
// https://github.com/Project-OSRM/osrm-backend/issues/3905
InternalManyRoutesResult alternativePathSearch(SearchEngineData<Algorithm> &search_engine_data,
const Facade &facade,
const PhantomNodes &phantom_node_pair,
const PhantomEndpointCandidates &endpoint_candidates,
unsigned number_of_alternatives)
{
Parameters parameters = parametersFromRequest(phantom_node_pair);
Parameters parameters = parametersFromRequest(endpoint_candidates);
const auto max_number_of_alternatives = number_of_alternatives;
const auto max_number_of_alternatives_to_unpack =
@ -798,7 +799,7 @@ InternalManyRoutesResult alternativePathSearch(SearchEngineData<Algorithm> &sear
// Do forward and backward search, save search space overlap as via candidates.
auto candidate_vias =
makeCandidateVias(search_engine_data, facade, phantom_node_pair, parameters);
makeCandidateVias(search_engine_data, facade, endpoint_candidates, parameters);
const auto by_weight = [](const auto &lhs, const auto &rhs) { return lhs.weight < rhs.weight; };
auto shortest_path_via_it =
@ -813,8 +814,6 @@ InternalManyRoutesResult alternativePathSearch(SearchEngineData<Algorithm> &sear
if (!has_shortest_path)
{
InternalRouteResult invalid;
invalid.shortest_path_weight = INVALID_EDGE_WEIGHT;
invalid.segment_end_coordinates = {phantom_node_pair};
return invalid;
}
@ -900,7 +899,7 @@ InternalManyRoutesResult alternativePathSearch(SearchEngineData<Algorithm> &sear
std::back_inserter(unpacked_paths),
search_engine_data,
facade,
phantom_node_pair);
endpoint_candidates);
//
// Filter and rank a second time. This time instead of being fast and doing
@ -927,7 +926,7 @@ InternalManyRoutesResult alternativePathSearch(SearchEngineData<Algorithm> &sear
routes.reserve(number_of_unpacked_paths);
const auto unpacked_path_to_route = [&](const WeightedViaNodeUnpackedPath &path) {
return extractRoute(facade, path.via.weight, phantom_node_pair, path.nodes, path.edges);
return extractRoute(facade, path.via.weight, endpoint_candidates, path.nodes, path.edges);
};
std::transform(unpacked_paths_first,

View File

@ -19,7 +19,7 @@ namespace routing_algorithms
template <>
InternalRouteResult directShortestPathSearch(SearchEngineData<ch::Algorithm> &engine_working_data,
const DataFacade<ch::Algorithm> &facade,
const PhantomNodes &phantom_nodes)
const PhantomEndpointCandidates &endpoint_candidates)
{
engine_working_data.InitializeOrClearFirstThreadLocalStorage(facade.GetNumberOfNodes());
auto &forward_heap = *engine_working_data.forward_heap_1;
@ -29,7 +29,7 @@ InternalRouteResult directShortestPathSearch(SearchEngineData<ch::Algorithm> &en
EdgeWeight weight = INVALID_EDGE_WEIGHT;
std::vector<NodeID> packed_leg;
insertNodesInHeaps(forward_heap, reverse_heap, phantom_nodes);
insertNodesInHeaps(forward_heap, reverse_heap, endpoint_candidates);
search(engine_working_data,
facade,
@ -37,9 +37,9 @@ InternalRouteResult directShortestPathSearch(SearchEngineData<ch::Algorithm> &en
reverse_heap,
weight,
packed_leg,
DO_NOT_FORCE_LOOPS,
DO_NOT_FORCE_LOOPS,
phantom_nodes);
{},
{},
endpoint_candidates);
std::vector<NodeID> unpacked_nodes;
std::vector<EdgeID> unpacked_edges;
@ -60,19 +60,19 @@ InternalRouteResult directShortestPathSearch(SearchEngineData<ch::Algorithm> &en
});
}
return extractRoute(facade, weight, phantom_nodes, unpacked_nodes, unpacked_edges);
return extractRoute(facade, weight, endpoint_candidates, unpacked_nodes, unpacked_edges);
}
template <>
InternalRouteResult directShortestPathSearch(SearchEngineData<mld::Algorithm> &engine_working_data,
const DataFacade<mld::Algorithm> &facade,
const PhantomNodes &phantom_nodes)
const PhantomEndpointCandidates &endpoint_candidates)
{
engine_working_data.InitializeOrClearFirstThreadLocalStorage(facade.GetNumberOfNodes(),
facade.GetMaxBorderNodeID() + 1);
auto &forward_heap = *engine_working_data.forward_heap_1;
auto &reverse_heap = *engine_working_data.reverse_heap_1;
insertNodesInHeaps(forward_heap, reverse_heap, phantom_nodes);
insertNodesInHeaps(forward_heap, reverse_heap, endpoint_candidates);
// TODO: when structured bindings will be allowed change to
// auto [weight, source_node, target_node, unpacked_edges] = ...
@ -83,12 +83,12 @@ InternalRouteResult directShortestPathSearch(SearchEngineData<mld::Algorithm> &e
facade,
forward_heap,
reverse_heap,
DO_NOT_FORCE_LOOPS,
DO_NOT_FORCE_LOOPS,
{},
{},
INVALID_EDGE_WEIGHT,
phantom_nodes);
endpoint_candidates);
return extractRoute(facade, weight, phantom_nodes, unpacked_nodes, unpacked_edges);
return extractRoute(facade, weight, endpoint_candidates, unpacked_nodes, unpacked_edges);
}
} // namespace routing_algorithms

View File

@ -49,7 +49,7 @@ void relaxOutgoingEdges(
const DataFacade<Algorithm> &facade,
const typename SearchEngineData<Algorithm>::ManyToManyQueryHeap::HeapNode &heapNode,
typename SearchEngineData<Algorithm>::ManyToManyQueryHeap &query_heap,
const PhantomNode &)
const PhantomNodeCandidates &)
{
if (stallAtNode<DIRECTION>(facade, heapNode, query_heap))
{
@ -99,7 +99,7 @@ void forwardRoutingStep(const DataFacade<Algorithm> &facade,
std::vector<EdgeDuration> &durations_table,
std::vector<EdgeDistance> &distances_table,
std::vector<NodeID> &middle_nodes_table,
const PhantomNode &phantom_node)
const PhantomNodeCandidates &candidates)
{
// Take a copy of the extracted node because otherwise could be modified later if toHeapNode is
// the same
@ -151,14 +151,14 @@ void forwardRoutingStep(const DataFacade<Algorithm> &facade,
}
}
relaxOutgoingEdges<FORWARD_DIRECTION>(facade, heapNode, query_heap, phantom_node);
relaxOutgoingEdges<FORWARD_DIRECTION>(facade, heapNode, query_heap, candidates);
}
void backwardRoutingStep(const DataFacade<Algorithm> &facade,
const unsigned column_index,
typename SearchEngineData<Algorithm>::ManyToManyQueryHeap &query_heap,
std::vector<NodeBucket> &search_space_with_buckets,
const PhantomNode &phantom_node)
const PhantomNodeCandidates &candidates)
{
// Take a copy (no ref &) of the extracted node because otherwise could be modified later if
// toHeapNode is the same
@ -172,7 +172,7 @@ void backwardRoutingStep(const DataFacade<Algorithm> &facade,
heapNode.data.duration,
heapNode.data.distance);
relaxOutgoingEdges<REVERSE_DIRECTION>(facade, heapNode, query_heap, phantom_node);
relaxOutgoingEdges<REVERSE_DIRECTION>(facade, heapNode, query_heap, candidates);
}
} // namespace ch
@ -181,7 +181,7 @@ template <>
std::pair<std::vector<EdgeDuration>, std::vector<EdgeDistance>>
manyToManySearch(SearchEngineData<ch::Algorithm> &engine_working_data,
const DataFacade<ch::Algorithm> &facade,
const std::vector<PhantomNode> &phantom_nodes,
const std::vector<PhantomNodeCandidates> &candidates_list,
const std::vector<std::size_t> &source_indices,
const std::vector<std::size_t> &target_indices,
const bool calculate_distance)
@ -202,18 +202,18 @@ manyToManySearch(SearchEngineData<ch::Algorithm> &engine_working_data,
for (std::uint32_t column_index = 0; column_index < target_indices.size(); ++column_index)
{
const auto index = target_indices[column_index];
const auto &phantom = phantom_nodes[index];
const auto &target_candidates = candidates_list[index];
engine_working_data.InitializeOrClearManyToManyThreadLocalStorage(
facade.GetNumberOfNodes());
auto &query_heap = *(engine_working_data.many_to_many_heap);
insertTargetInHeap(query_heap, phantom);
insertTargetInHeap(query_heap, target_candidates);
// Explore search space
while (!query_heap.Empty())
{
backwardRoutingStep(
facade, column_index, query_heap, search_space_with_buckets, phantom);
facade, column_index, query_heap, search_space_with_buckets, target_candidates);
}
}
@ -224,13 +224,13 @@ manyToManySearch(SearchEngineData<ch::Algorithm> &engine_working_data,
for (std::uint32_t row_index = 0; row_index < source_indices.size(); ++row_index)
{
const auto source_index = source_indices[row_index];
const auto &source_phantom = phantom_nodes[source_index];
const auto &source_candidates = candidates_list[source_index];
// Clear heap and insert source nodes
engine_working_data.InitializeOrClearManyToManyThreadLocalStorage(
facade.GetNumberOfNodes());
auto &query_heap = *(engine_working_data.many_to_many_heap);
insertSourceInHeap(query_heap, source_phantom);
insertSourceInHeap(query_heap, source_candidates);
// Explore search space
while (!query_heap.Empty())
@ -244,7 +244,7 @@ manyToManySearch(SearchEngineData<ch::Algorithm> &engine_working_data,
durations_table,
distances_table,
middle_nodes_table,
source_phantom);
source_candidates);
}
}

View File

@ -25,7 +25,7 @@ using PackedPath = std::vector<PackedEdge>;
template <typename MultiLevelPartition>
inline LevelID getNodeQueryLevel(const MultiLevelPartition &partition,
const NodeID node,
const PhantomNode &phantom_node,
const PhantomNodeCandidates &phantom_node,
const LevelID maximal_level)
{
const auto node_level = getNodeQueryLevel(partition, node, phantom_node);
@ -96,7 +96,7 @@ void relaxOutgoingEdges(
const DataFacade<mld::Algorithm> &facade,
const typename SearchEngineData<mld::Algorithm>::ManyToManyQueryHeap::HeapNode &heapNode,
typename SearchEngineData<mld::Algorithm>::ManyToManyQueryHeap &query_heap,
Args... args)
const Args &... args)
{
BOOST_ASSERT(!facade.ExcludeNode(heapNode.node));
@ -214,26 +214,27 @@ template <bool DIRECTION>
std::pair<std::vector<EdgeDuration>, std::vector<EdgeDistance>>
oneToManySearch(SearchEngineData<Algorithm> &engine_working_data,
const DataFacade<Algorithm> &facade,
const std::vector<PhantomNode> &phantom_nodes,
std::size_t phantom_index,
const std::vector<std::size_t> &phantom_indices,
const std::vector<PhantomNodeCandidates> &candidates_list,
std::size_t source_index,
const std::vector<std::size_t> &target_indices,
const bool calculate_distance)
{
std::vector<EdgeWeight> weights_table(phantom_indices.size(), INVALID_EDGE_WEIGHT);
std::vector<EdgeDuration> durations_table(phantom_indices.size(), MAXIMAL_EDGE_DURATION);
std::vector<EdgeDistance> distances_table(calculate_distance ? phantom_indices.size() : 0,
std::vector<EdgeWeight> weights_table(target_indices.size(), INVALID_EDGE_WEIGHT);
std::vector<EdgeDuration> durations_table(target_indices.size(), MAXIMAL_EDGE_DURATION);
std::vector<EdgeDistance> distances_table(calculate_distance ? target_indices.size() : 0,
MAXIMAL_EDGE_DISTANCE);
std::vector<NodeID> middle_nodes_table(phantom_indices.size(), SPECIAL_NODEID);
std::vector<NodeID> middle_nodes_table(target_indices.size(), SPECIAL_NODEID);
// Collect destination (source) nodes into a map
std::unordered_multimap<NodeID, std::tuple<std::size_t, EdgeWeight, EdgeDuration, EdgeDistance>>
target_nodes_index;
target_nodes_index.reserve(phantom_indices.size());
for (std::size_t index = 0; index < phantom_indices.size(); ++index)
target_nodes_index.reserve(target_indices.size());
for (std::size_t index = 0; index < target_indices.size(); ++index)
{
const auto &phantom_index = phantom_indices[index];
const auto &phantom_node = phantom_nodes[phantom_index];
const auto &target_candidates = candidates_list[target_indices[index]];
for (const auto &phantom_node : target_candidates)
{
if (DIRECTION == FORWARD_DIRECTION)
{
if (phantom_node.IsValidForwardTarget())
@ -243,6 +244,7 @@ oneToManySearch(SearchEngineData<Algorithm> &engine_working_data,
phantom_node.GetForwardWeightPlusOffset(),
phantom_node.GetForwardDuration(),
phantom_node.GetForwardDistance())});
if (phantom_node.IsValidReverseTarget())
target_nodes_index.insert(
{phantom_node.reverse_segment_id.id,
@ -260,6 +262,7 @@ oneToManySearch(SearchEngineData<Algorithm> &engine_working_data,
-phantom_node.GetForwardWeightPlusOffset(),
-phantom_node.GetForwardDuration(),
-phantom_node.GetForwardDistance())});
if (phantom_node.IsValidReverseSource())
target_nodes_index.insert(
{phantom_node.reverse_segment_id.id,
@ -269,6 +272,7 @@ oneToManySearch(SearchEngineData<Algorithm> &engine_working_data,
-phantom_node.GetReverseDistance())});
}
}
}
// Initialize query heap
engine_working_data.InitializeOrClearManyToManyThreadLocalStorage(
@ -337,8 +341,10 @@ oneToManySearch(SearchEngineData<Algorithm> &engine_working_data,
};
{ // Place source (destination) adjacent nodes into the heap
const auto &phantom_node = phantom_nodes[phantom_index];
const auto &source_candidates = candidates_list[source_index];
for (const auto &phantom_node : source_candidates)
{
if (DIRECTION == FORWARD_DIRECTION)
{
if (phantom_node.IsValidForwardSource())
@ -376,6 +382,7 @@ oneToManySearch(SearchEngineData<Algorithm> &engine_working_data,
}
}
}
}
while (!query_heap.Empty() && !target_nodes_index.empty())
{
@ -389,7 +396,7 @@ oneToManySearch(SearchEngineData<Algorithm> &engine_working_data,
// Relax outgoing edges
relaxOutgoingEdges<DIRECTION>(
facade, heapNode, query_heap, phantom_nodes, phantom_index, phantom_indices);
facade, heapNode, query_heap, candidates_list, source_index, target_indices);
}
return std::make_pair(std::move(durations_table), std::move(distances_table));
@ -409,7 +416,7 @@ void forwardRoutingStep(const DataFacade<Algorithm> &facade,
std::vector<EdgeDuration> &durations_table,
std::vector<EdgeDistance> &distances_table,
std::vector<NodeID> &middle_nodes_table,
const PhantomNode &phantom_node)
const PhantomNodeCandidates &candidates)
{
// Take a copy of the extracted node because otherwise could be modified later if toHeapNode is
// the same
@ -455,7 +462,7 @@ void forwardRoutingStep(const DataFacade<Algorithm> &facade,
}
}
relaxOutgoingEdges<DIRECTION>(facade, heapNode, query_heap, phantom_node);
relaxOutgoingEdges<DIRECTION>(facade, heapNode, query_heap, candidates);
}
template <bool DIRECTION>
@ -463,7 +470,7 @@ void backwardRoutingStep(const DataFacade<Algorithm> &facade,
const unsigned column_idx,
typename SearchEngineData<Algorithm>::ManyToManyQueryHeap &query_heap,
std::vector<NodeBucket> &search_space_with_buckets,
const PhantomNode &phantom_node)
const PhantomNodeCandidates &candidates)
{
// Take a copy of the extracted node because otherwise could be modified later if toHeapNode is
// the same
@ -481,7 +488,7 @@ void backwardRoutingStep(const DataFacade<Algorithm> &facade,
const auto &partition = facade.GetMultiLevelPartition();
const auto maximal_level = partition.GetNumberOfLevels() - 1;
relaxOutgoingEdges<!DIRECTION>(facade, heapNode, query_heap, phantom_node, maximal_level);
relaxOutgoingEdges<!DIRECTION>(facade, heapNode, query_heap, candidates, maximal_level);
}
template <bool DIRECTION>
@ -524,7 +531,7 @@ template <bool DIRECTION>
std::pair<std::vector<EdgeDuration>, std::vector<EdgeDistance>>
manyToManySearch(SearchEngineData<Algorithm> &engine_working_data,
const DataFacade<Algorithm> &facade,
const std::vector<PhantomNode> &phantom_nodes,
const std::vector<PhantomNodeCandidates> &candidates_list,
const std::vector<std::size_t> &source_indices,
const std::vector<std::size_t> &target_indices,
const bool calculate_distance)
@ -545,22 +552,22 @@ manyToManySearch(SearchEngineData<Algorithm> &engine_working_data,
for (std::uint32_t column_idx = 0; column_idx < target_indices.size(); ++column_idx)
{
const auto index = target_indices[column_idx];
const auto &target_phantom = phantom_nodes[index];
const auto &target_candidates = candidates_list[index];
engine_working_data.InitializeOrClearManyToManyThreadLocalStorage(
facade.GetNumberOfNodes(), facade.GetMaxBorderNodeID() + 1);
auto &query_heap = *(engine_working_data.many_to_many_heap);
if (DIRECTION == FORWARD_DIRECTION)
insertTargetInHeap(query_heap, target_phantom);
insertTargetInHeap(query_heap, target_candidates);
else
insertSourceInHeap(query_heap, target_phantom);
insertSourceInHeap(query_heap, target_candidates);
// explore search space
while (!query_heap.Empty())
{
backwardRoutingStep<DIRECTION>(
facade, column_idx, query_heap, search_space_with_buckets, target_phantom);
facade, column_idx, query_heap, search_space_with_buckets, target_candidates);
}
}
@ -571,7 +578,7 @@ manyToManySearch(SearchEngineData<Algorithm> &engine_working_data,
for (std::uint32_t row_idx = 0; row_idx < source_indices.size(); ++row_idx)
{
const auto source_index = source_indices[row_idx];
const auto &source_phantom = phantom_nodes[source_index];
const auto &source_candidates = candidates_list[source_index];
// Clear heap and insert source nodes
engine_working_data.InitializeOrClearManyToManyThreadLocalStorage(
@ -580,9 +587,9 @@ manyToManySearch(SearchEngineData<Algorithm> &engine_working_data,
auto &query_heap = *(engine_working_data.many_to_many_heap);
if (DIRECTION == FORWARD_DIRECTION)
insertSourceInHeap(query_heap, source_phantom);
insertSourceInHeap(query_heap, source_candidates);
else
insertTargetInHeap(query_heap, source_phantom);
insertTargetInHeap(query_heap, source_candidates);
// Explore search space
while (!query_heap.Empty())
@ -597,7 +604,7 @@ manyToManySearch(SearchEngineData<Algorithm> &engine_working_data,
durations_table,
distances_table,
middle_nodes_table,
source_phantom);
source_candidates);
}
}
@ -622,7 +629,7 @@ template <>
std::pair<std::vector<EdgeDuration>, std::vector<EdgeDistance>>
manyToManySearch(SearchEngineData<mld::Algorithm> &engine_working_data,
const DataFacade<mld::Algorithm> &facade,
const std::vector<PhantomNode> &phantom_nodes,
const std::vector<PhantomNodeCandidates> &candidates_list,
const std::vector<std::size_t> &source_indices,
const std::vector<std::size_t> &target_indices,
const bool calculate_distance)
@ -631,7 +638,7 @@ manyToManySearch(SearchEngineData<mld::Algorithm> &engine_working_data,
{ // TODO: check if target_indices.size() == 1 and do a bi-directional search
return mld::oneToManySearch<FORWARD_DIRECTION>(engine_working_data,
facade,
phantom_nodes,
candidates_list,
source_indices.front(),
target_indices,
calculate_distance);
@ -641,7 +648,7 @@ manyToManySearch(SearchEngineData<mld::Algorithm> &engine_working_data,
{
return mld::oneToManySearch<REVERSE_DIRECTION>(engine_working_data,
facade,
phantom_nodes,
candidates_list,
target_indices.front(),
source_indices,
calculate_distance);
@ -651,7 +658,7 @@ manyToManySearch(SearchEngineData<mld::Algorithm> &engine_working_data,
{
return mld::manyToManySearch<REVERSE_DIRECTION>(engine_working_data,
facade,
phantom_nodes,
candidates_list,
target_indices,
source_indices,
calculate_distance);
@ -659,7 +666,7 @@ manyToManySearch(SearchEngineData<mld::Algorithm> &engine_working_data,
return mld::manyToManySearch<FORWARD_DIRECTION>(engine_working_data,
facade,
phantom_nodes,
candidates_list,
source_indices,
target_indices,
calculate_distance);

View File

@ -7,30 +7,104 @@ namespace engine
namespace routing_algorithms
{
bool needsLoopForward(const PhantomNode &source_phantom, const PhantomNode &target_phantom)
bool requiresForwardLoop(const PhantomNode &source, const PhantomNode &target)
{
return source_phantom.IsValidForwardSource() && target_phantom.IsValidForwardTarget() &&
source_phantom.forward_segment_id.id == target_phantom.forward_segment_id.id &&
source_phantom.GetForwardWeightPlusOffset() >
target_phantom.GetForwardWeightPlusOffset();
return source.IsValidForwardSource() && target.IsValidForwardTarget() &&
source.forward_segment_id.id == target.forward_segment_id.id &&
source.GetForwardWeightPlusOffset() > target.GetForwardWeightPlusOffset();
}
bool needsLoopBackwards(const PhantomNode &source_phantom, const PhantomNode &target_phantom)
bool requiresBackwardLoop(const PhantomNode &source, const PhantomNode &target)
{
return source_phantom.IsValidReverseSource() && target_phantom.IsValidReverseTarget() &&
source_phantom.reverse_segment_id.id == target_phantom.reverse_segment_id.id &&
source_phantom.GetReverseWeightPlusOffset() >
target_phantom.GetReverseWeightPlusOffset();
return source.IsValidReverseSource() && target.IsValidReverseTarget() &&
source.reverse_segment_id.id == target.reverse_segment_id.id &&
source.GetReverseWeightPlusOffset() > target.GetReverseWeightPlusOffset();
}
bool needsLoopForward(const PhantomNodes &phantoms)
std::vector<NodeID> getForwardLoopNodes(const PhantomEndpointCandidates &endpoint_candidates)
{
return needsLoopForward(phantoms.source_phantom, phantoms.target_phantom);
std::vector<NodeID> res;
for (const auto &source_phantom : endpoint_candidates.source_phantoms)
{
auto requires_loop =
std::any_of(endpoint_candidates.target_phantoms.begin(),
endpoint_candidates.target_phantoms.end(),
[&](const auto &target_phantom) {
return requiresForwardLoop(source_phantom, target_phantom);
});
if (requires_loop)
{
res.push_back(source_phantom.forward_segment_id.id);
}
}
return res;
}
bool needsLoopBackwards(const PhantomNodes &phantoms)
std::vector<NodeID> getForwardLoopNodes(const PhantomCandidatesToTarget &endpoint_candidates)
{
return needsLoopBackwards(phantoms.source_phantom, phantoms.target_phantom);
std::vector<NodeID> res;
for (const auto &source_phantom : endpoint_candidates.source_phantoms)
{
if (requiresForwardLoop(source_phantom, endpoint_candidates.target_phantom))
{
res.push_back(source_phantom.forward_segment_id.id);
}
}
return res;
}
std::vector<NodeID> getBackwardLoopNodes(const PhantomEndpointCandidates &endpoint_candidates)
{
std::vector<NodeID> res;
for (const auto &source_phantom : endpoint_candidates.source_phantoms)
{
auto requires_loop =
std::any_of(endpoint_candidates.target_phantoms.begin(),
endpoint_candidates.target_phantoms.end(),
[&](const auto &target_phantom) {
return requiresBackwardLoop(source_phantom, target_phantom);
});
if (requires_loop)
{
res.push_back(source_phantom.reverse_segment_id.id);
}
}
return res;
}
std::vector<NodeID> getBackwardLoopNodes(const PhantomCandidatesToTarget &endpoint_candidates)
{
std::vector<NodeID> res;
for (const auto &source_phantom : endpoint_candidates.source_phantoms)
{
if (requiresBackwardLoop(source_phantom, endpoint_candidates.target_phantom))
{
res.push_back(source_phantom.reverse_segment_id.id);
}
}
return res;
}
PhantomEndpoints endpointsFromCandidates(const PhantomEndpointCandidates &candidates,
const std::vector<NodeID> &path)
{
auto source_it = std::find_if(candidates.source_phantoms.begin(),
candidates.source_phantoms.end(),
[&path](const auto &source_phantom) {
return path.front() == source_phantom.forward_segment_id.id ||
path.front() == source_phantom.reverse_segment_id.id;
});
BOOST_ASSERT(source_it != candidates.source_phantoms.end());
auto target_it = std::find_if(candidates.target_phantoms.begin(),
candidates.target_phantoms.end(),
[&path](const auto &target_phantom) {
return path.back() == target_phantom.forward_segment_id.id ||
path.back() == target_phantom.reverse_segment_id.id;
});
BOOST_ASSERT(target_it != candidates.target_phantoms.end());
return PhantomEndpoints{*source_it, *target_it};
}
} // namespace routing_algorithms

View File

@ -95,9 +95,8 @@ void search(SearchEngineData<Algorithm> & /*engine_working_data*/,
SearchEngineData<Algorithm>::QueryHeap &reverse_heap,
EdgeWeight &weight,
std::vector<NodeID> &packed_leg,
const bool force_loop_forward,
const bool force_loop_reverse,
const PhantomNodes & /*phantom_nodes*/,
const std::vector<NodeID> &force_loop_forward_nodes,
const std::vector<NodeID> &force_loop_reverse_nodes,
const EdgeWeight weight_upper_bound)
{
if (forward_heap.Empty() || reverse_heap.Empty())
@ -126,8 +125,8 @@ void search(SearchEngineData<Algorithm> & /*engine_working_data*/,
middle,
weight,
min_edge_offset,
force_loop_forward,
force_loop_reverse);
force_loop_forward_nodes,
force_loop_reverse_nodes);
}
if (!reverse_heap.Empty())
{
@ -137,8 +136,8 @@ void search(SearchEngineData<Algorithm> & /*engine_working_data*/,
middle,
weight,
min_edge_offset,
force_loop_reverse,
force_loop_forward);
force_loop_reverse_nodes,
force_loop_forward_nodes);
}
}
@ -179,7 +178,8 @@ double getNetworkDistance(SearchEngineData<Algorithm> &engine_working_data,
forward_heap.Clear();
reverse_heap.Clear();
insertNodesInHeaps(forward_heap, reverse_heap, {source_phantom, target_phantom});
PhantomEndpoints endpoints{source_phantom, target_phantom};
insertNodesInHeaps(forward_heap, reverse_heap, endpoints);
EdgeWeight weight = INVALID_EDGE_WEIGHT;
std::vector<NodeID> packed_path;
@ -189,9 +189,9 @@ double getNetworkDistance(SearchEngineData<Algorithm> &engine_working_data,
reverse_heap,
weight,
packed_path,
DO_NOT_FORCE_LOOPS,
DO_NOT_FORCE_LOOPS,
{source_phantom, target_phantom},
{},
{},
endpoints,
weight_upper_bound);
if (weight == INVALID_EDGE_WEIGHT)

View File

@ -12,13 +12,13 @@ namespace routing_algorithms
template InternalRouteResult
shortestPathSearch(SearchEngineData<ch::Algorithm> &engine_working_data,
const DataFacade<ch::Algorithm> &facade,
const std::vector<PhantomNodes> &phantom_nodes_vector,
const std::vector<PhantomNodeCandidates> &waypoint_candidates,
const boost::optional<bool> continue_straight_at_waypoint);
template InternalRouteResult
shortestPathSearch(SearchEngineData<mld::Algorithm> &engine_working_data,
const DataFacade<mld::Algorithm> &facade,
const std::vector<PhantomNodes> &phantom_nodes_vector,
const std::vector<PhantomNodeCandidates> &waypoint_candidates,
const boost::optional<bool> continue_straight_at_waypoint);
} // namespace routing_algorithms

View File

@ -44,16 +44,16 @@ BOOST_AUTO_TEST_CASE(hint_encoding_decoding_roundtrip)
const PhantomNode phantom;
const osrm::test::MockDataFacade<osrm::engine::routing_algorithms::ch::Algorithm> facade{};
const Hint hint{phantom, facade.GetCheckSum()};
const SegmentHint seg_hint{phantom, facade.GetCheckSum()};
const auto base64 = hint.ToBase64();
const auto base64 = seg_hint.ToBase64();
BOOST_CHECK(0 == std::count(begin(base64), end(base64), '+'));
BOOST_CHECK(0 == std::count(begin(base64), end(base64), '/'));
const auto decoded = Hint::FromBase64(base64);
const auto decoded = SegmentHint::FromBase64(base64);
BOOST_CHECK_EQUAL(hint, decoded);
BOOST_CHECK_EQUAL(seg_hint, decoded);
}
BOOST_AUTO_TEST_CASE(hint_encoding_decoding_roundtrip_bytewise)
@ -65,12 +65,12 @@ BOOST_AUTO_TEST_CASE(hint_encoding_decoding_roundtrip_bytewise)
const PhantomNode phantom;
const osrm::test::MockDataFacade<osrm::engine::routing_algorithms::ch::Algorithm> facade{};
const Hint hint{phantom, facade.GetCheckSum()};
const SegmentHint seg_hint{phantom, facade.GetCheckSum()};
const auto decoded = Hint::FromBase64(hint.ToBase64());
const auto decoded = SegmentHint::FromBase64(seg_hint.ToBase64());
BOOST_CHECK(std::equal(reinterpret_cast<const unsigned char *>(&hint),
reinterpret_cast<const unsigned char *>(&hint) + sizeof(Hint),
BOOST_CHECK(std::equal(reinterpret_cast<const unsigned char *>(&seg_hint),
reinterpret_cast<const unsigned char *>(&seg_hint) + sizeof(Hint),
reinterpret_cast<const unsigned char *>(&decoded)));
}

View File

@ -23,7 +23,7 @@ BOOST_AUTO_TEST_CASE(unchanged_collapse_route_result)
PathData kathy{0, 1, 1, 2, 3, 4, 1, boost::none};
InternalRouteResult one_leg_result;
one_leg_result.unpacked_path_segments = {{pathy, kathy}};
one_leg_result.segment_end_coordinates = {PhantomNodes{source, target}};
one_leg_result.leg_endpoints = {PhantomEndpoints{source, target}};
one_leg_result.source_traversed_in_reverse = {true};
one_leg_result.target_traversed_in_reverse = {true};
one_leg_result.shortest_path_weight = 50;
@ -50,18 +50,17 @@ BOOST_AUTO_TEST_CASE(two_legs_to_one_leg)
node_3.forward_segment_id = {12, true};
InternalRouteResult two_leg_result;
two_leg_result.unpacked_path_segments = {{pathy, kathy}, {kathy, cathy}};
two_leg_result.segment_end_coordinates = {PhantomNodes{node_1, node_2},
PhantomNodes{node_2, node_3}};
two_leg_result.leg_endpoints = {PhantomEndpoints{node_1, node_2},
PhantomEndpoints{node_2, node_3}};
two_leg_result.source_traversed_in_reverse = {true, false};
two_leg_result.target_traversed_in_reverse = {true, false};
two_leg_result.shortest_path_weight = 80;
auto collapsed = CollapseInternalRouteResult(two_leg_result, {true, false, true, true});
BOOST_CHECK_EQUAL(collapsed.unpacked_path_segments.size(), 1);
BOOST_CHECK_EQUAL(collapsed.segment_end_coordinates.size(), 1);
BOOST_CHECK_EQUAL(collapsed.segment_end_coordinates[0].target_phantom.forward_segment_id.id,
12);
BOOST_CHECK_EQUAL(collapsed.segment_end_coordinates[0].source_phantom.forward_segment_id.id, 1);
BOOST_CHECK_EQUAL(collapsed.leg_endpoints.size(), 1);
BOOST_CHECK_EQUAL(collapsed.leg_endpoints[0].target_phantom.forward_segment_id.id, 12);
BOOST_CHECK_EQUAL(collapsed.leg_endpoints[0].source_phantom.forward_segment_id.id, 1);
BOOST_CHECK_EQUAL(collapsed.unpacked_path_segments[0].size(), 4);
BOOST_CHECK_EQUAL(collapsed.unpacked_path_segments[0][0].turn_via_node, 2);
BOOST_CHECK_EQUAL(collapsed.unpacked_path_segments[0][1].turn_via_node, 1);
@ -88,20 +87,20 @@ BOOST_AUTO_TEST_CASE(three_legs_to_two_legs)
three_leg_result.unpacked_path_segments = {std::vector<PathData>{pathy, kathy},
std::vector<PathData>{kathy, qathy, cathy},
std::vector<PathData>{cathy, mathy}};
three_leg_result.segment_end_coordinates = {
PhantomNodes{node_1, node_2}, PhantomNodes{node_2, node_3}, PhantomNodes{node_3, node_4}};
three_leg_result.leg_endpoints = {PhantomEndpoints{node_1, node_2},
PhantomEndpoints{node_2, node_3},
PhantomEndpoints{node_3, node_4}};
three_leg_result.source_traversed_in_reverse = {true, false, true},
three_leg_result.target_traversed_in_reverse = {true, false, true},
three_leg_result.shortest_path_weight = 140;
auto collapsed = CollapseInternalRouteResult(three_leg_result, {true, true, false, true});
BOOST_CHECK_EQUAL(collapsed.unpacked_path_segments.size(), 2);
BOOST_CHECK_EQUAL(collapsed.segment_end_coordinates.size(), 2);
BOOST_CHECK_EQUAL(collapsed.segment_end_coordinates[0].source_phantom.forward_segment_id.id, 1);
BOOST_CHECK_EQUAL(collapsed.segment_end_coordinates[0].target_phantom.forward_segment_id.id, 6);
BOOST_CHECK_EQUAL(collapsed.segment_end_coordinates[1].source_phantom.forward_segment_id.id, 6);
BOOST_CHECK_EQUAL(collapsed.segment_end_coordinates[1].target_phantom.forward_segment_id.id,
18);
BOOST_CHECK_EQUAL(collapsed.leg_endpoints.size(), 2);
BOOST_CHECK_EQUAL(collapsed.leg_endpoints[0].source_phantom.forward_segment_id.id, 1);
BOOST_CHECK_EQUAL(collapsed.leg_endpoints[0].target_phantom.forward_segment_id.id, 6);
BOOST_CHECK_EQUAL(collapsed.leg_endpoints[1].source_phantom.forward_segment_id.id, 6);
BOOST_CHECK_EQUAL(collapsed.leg_endpoints[1].target_phantom.forward_segment_id.id, 18);
BOOST_CHECK_EQUAL(collapsed.unpacked_path_segments[0].size(), 2);
BOOST_CHECK_EQUAL(collapsed.unpacked_path_segments[1].size(), 5);
BOOST_CHECK_EQUAL(collapsed.unpacked_path_segments[0][0].turn_via_node, 2);
@ -126,20 +125,19 @@ BOOST_AUTO_TEST_CASE(two_legs_to_two_legs)
node_3.forward_segment_id = {12, true};
InternalRouteResult two_leg_result;
two_leg_result.unpacked_path_segments = {{pathy, kathy}, {kathy, cathy}};
two_leg_result.segment_end_coordinates = {PhantomNodes{node_1, node_2},
PhantomNodes{node_2, node_3}};
two_leg_result.leg_endpoints = {PhantomEndpoints{node_1, node_2},
PhantomEndpoints{node_2, node_3}};
two_leg_result.source_traversed_in_reverse = {true, false};
two_leg_result.target_traversed_in_reverse = {true, false};
two_leg_result.shortest_path_weight = 80;
auto collapsed = CollapseInternalRouteResult(two_leg_result, {true, true, true});
BOOST_CHECK_EQUAL(collapsed.unpacked_path_segments.size(), 2);
BOOST_CHECK_EQUAL(collapsed.segment_end_coordinates.size(), 2);
BOOST_CHECK_EQUAL(collapsed.segment_end_coordinates[0].source_phantom.forward_segment_id.id, 1);
BOOST_CHECK_EQUAL(collapsed.segment_end_coordinates[0].target_phantom.forward_segment_id.id, 6);
BOOST_CHECK_EQUAL(collapsed.segment_end_coordinates[1].source_phantom.forward_segment_id.id, 6);
BOOST_CHECK_EQUAL(collapsed.segment_end_coordinates[1].target_phantom.forward_segment_id.id,
12);
BOOST_CHECK_EQUAL(collapsed.leg_endpoints.size(), 2);
BOOST_CHECK_EQUAL(collapsed.leg_endpoints[0].source_phantom.forward_segment_id.id, 1);
BOOST_CHECK_EQUAL(collapsed.leg_endpoints[0].target_phantom.forward_segment_id.id, 6);
BOOST_CHECK_EQUAL(collapsed.leg_endpoints[1].source_phantom.forward_segment_id.id, 6);
BOOST_CHECK_EQUAL(collapsed.leg_endpoints[1].target_phantom.forward_segment_id.id, 12);
BOOST_CHECK_EQUAL(collapsed.unpacked_path_segments[0].size(), 2);
BOOST_CHECK_EQUAL(collapsed.unpacked_path_segments[1].size(), 2);
BOOST_CHECK_EQUAL(collapsed.unpacked_path_segments[0][0].turn_via_node, 2);

View File

@ -224,101 +224,35 @@ class ContiguousInternalMemoryDataFacade<routing_algorithms::offline::Algorithm>
return {};
}
std::vector<PhantomNodeWithDistance>
std::vector<engine::PhantomNodeWithDistance>
NearestPhantomNodesInRange(const util::Coordinate /*input_coordinate*/,
const float /*max_distance*/,
const int /*bearing*/,
const int /*bearing_range*/,
const Approach /*approach*/,
const bool /*use_all_edges*/) const override
{
return {};
}
std::vector<PhantomNodeWithDistance>
NearestPhantomNodesInRange(const util::Coordinate /*input_coordinate*/,
const float /*max_distance*/,
const Approach /*approach*/,
const bool /*use_all_edges*/) const override
{
return {};
}
std::vector<PhantomNodeWithDistance>
NearestPhantomNodes(const util::Coordinate /*input_coordinate*/,
const unsigned /*max_results*/,
const double /*max_distance*/,
const int /*bearing*/,
const int /*bearing_range*/,
const Approach /*approach*/) const override
const boost::optional<engine::Bearing> /*bearing*/,
const engine::Approach /*approach*/,
const bool /*use_all_edges*/) const override
{
return {};
}
};
std::vector<PhantomNodeWithDistance>
std::vector<engine::PhantomNodeWithDistance>
NearestPhantomNodes(const util::Coordinate /*input_coordinate*/,
const unsigned /*max_results*/,
const int /*bearing*/,
const int /*bearing_range*/,
const Approach /*approach*/) const override
const size_t /*max_results*/,
const boost::optional<double> /*max_distance*/,
const boost::optional<engine::Bearing> /*bearing*/,
const engine::Approach /*approach*/) const override
{
return {};
}
};
std::vector<PhantomNodeWithDistance>
NearestPhantomNodes(const util::Coordinate /*input_coordinate*/,
const unsigned /*max_results*/,
const Approach /*approach*/) const override
{
return {};
}
std::vector<PhantomNodeWithDistance>
NearestPhantomNodes(const util::Coordinate /*input_coordinate*/,
const unsigned /*max_results*/,
const double /*max_distance*/,
const Approach /*approach*/) const override
{
return {};
}
std::pair<PhantomNode, PhantomNode>
NearestPhantomNodeWithAlternativeFromBigComponent(const util::Coordinate /*input_coordinate*/,
const Approach /*approach*/,
engine::PhantomCandidateAlternatives NearestCandidatesWithAlternativeFromBigComponent(
const util::Coordinate /*input_coordinate*/,
const boost::optional<double> /*max_distance*/,
const boost::optional<engine::Bearing> /*bearing*/,
const engine::Approach /*approach*/,
const bool /*use_all_edges*/) const override
{
return {};
}
std::pair<PhantomNode, PhantomNode>
NearestPhantomNodeWithAlternativeFromBigComponent(const util::Coordinate /*input_coordinate*/,
const double /*max_distance*/,
const Approach /*approach*/,
const bool /* use_all_edges */) const override
{
return {};
}
std::pair<PhantomNode, PhantomNode>
NearestPhantomNodeWithAlternativeFromBigComponent(const util::Coordinate /*input_coordinate*/,
const double /*max_distance*/,
const int /*bearing*/,
const int /*bearing_range*/,
const Approach /*approach*/,
const bool /* use_all_edges */) const override
{
return {};
}
std::pair<PhantomNode, PhantomNode>
NearestPhantomNodeWithAlternativeFromBigComponent(const util::Coordinate /*input_coordinate*/,
const int /*bearing*/,
const int /*bearing_range*/,
const Approach /*approach*/,
const bool /* use_all_edges */) const override
{
return {};
}
};
util::guidance::LaneTupleIdPair GetLaneData(const EdgeID /*id*/) const override
{
@ -394,15 +328,16 @@ namespace routing_algorithms
namespace offline
{
template <typename PhantomT>
inline void search(SearchEngineData<Algorithm> &engine_working_data,
const datafacade::ContiguousInternalMemoryDataFacade<Algorithm> &facade,
typename SearchEngineData<Algorithm>::QueryHeap &forward_heap,
typename SearchEngineData<Algorithm>::QueryHeap &reverse_heap,
EdgeWeight &weight,
std::vector<NodeID> &packed_leg,
const bool force_loop_forward,
const bool force_loop_reverse,
const PhantomNodes &phantom_nodes,
const std::vector<NodeID> &forward_loop_nodes,
const std::vector<NodeID> &reverse_loop_nodes,
const PhantomT &endpoints,
const EdgeWeight weight_upper_bound = INVALID_EDGE_WEIGHT)
{
mld::search(engine_working_data,
@ -411,9 +346,9 @@ inline void search(SearchEngineData<Algorithm> &engine_working_data,
reverse_heap,
weight,
packed_leg,
force_loop_forward,
force_loop_reverse,
phantom_nodes,
forward_loop_nodes,
reverse_loop_nodes,
endpoints,
weight_upper_bound);
}
@ -421,10 +356,10 @@ template <typename RandomIter, typename FacadeT>
void unpackPath(const FacadeT &facade,
RandomIter packed_path_begin,
RandomIter packed_path_end,
const PhantomNodes &phantom_nodes,
const PhantomEndpoints &endpoints,
std::vector<PathData> &unpacked_path)
{
mld::unpackPath(facade, packed_path_begin, packed_path_end, phantom_nodes, unpacked_path);
mld::unpackPath(facade, packed_path_begin, packed_path_end, endpoints, unpacked_path);
}
} // namespace offline
@ -442,11 +377,12 @@ BOOST_AUTO_TEST_CASE(shortest_path)
osrm::engine::SearchEngineData<Algorithm> heaps;
osrm::engine::datafacade::ContiguousInternalMemoryDataFacade<Algorithm> facade;
std::vector<osrm::engine::PhantomNodes> phantom_nodes;
phantom_nodes.push_back({osrm::engine::PhantomNode{}, osrm::engine::PhantomNode{}});
std::vector<osrm::engine::PhantomNodeCandidates> waypoints;
waypoints.push_back({osrm::engine::PhantomNode{}});
waypoints.push_back({osrm::engine::PhantomNode{}});
auto route =
osrm::engine::routing_algorithms::shortestPathSearch(heaps, facade, phantom_nodes, false);
osrm::engine::routing_algorithms::shortestPathSearch(heaps, facade, waypoints, false);
BOOST_CHECK_EQUAL(route.shortest_path_weight, INVALID_EDGE_WEIGHT);
}

View File

@ -110,99 +110,33 @@ class MockBaseDataFacade : public engine::datafacade::BaseDataFacade
std::vector<engine::PhantomNodeWithDistance>
NearestPhantomNodesInRange(const util::Coordinate /*input_coordinate*/,
const float /*max_distance*/,
const int /*bearing*/,
const int /*bearing_range*/,
const double /*max_distance*/,
const boost::optional<engine::Bearing> /*bearing*/,
const engine::Approach /*approach*/,
const bool /*use_all_edges*/) const override
{
return {};
}
std::vector<engine::PhantomNodeWithDistance>
NearestPhantomNodesInRange(const util::Coordinate /*input_coordinate*/,
const float /*max_distance*/,
const engine::Approach /*approach*/,
const bool /*use_all_edges*/) const override
{
return {};
}
};
std::vector<engine::PhantomNodeWithDistance>
NearestPhantomNodes(const util::Coordinate /*input_coordinate*/,
const unsigned /*max_results*/,
const double /*max_distance*/,
const int /*bearing*/,
const int /*bearing_range*/,
const size_t /*max_results*/,
const boost::optional<double> /*max_distance*/,
const boost::optional<engine::Bearing> /*bearing*/,
const engine::Approach /*approach*/) const override
{
return {};
}
};
std::vector<engine::PhantomNodeWithDistance>
NearestPhantomNodes(const util::Coordinate /*input_coordinate*/,
const unsigned /*max_results*/,
const int /*bearing*/,
const int /*bearing_range*/,
const engine::Approach /*approach*/) const override
{
return {};
}
std::vector<engine::PhantomNodeWithDistance>
NearestPhantomNodes(const util::Coordinate /*input_coordinate*/,
const unsigned /*max_results*/,
const engine::Approach /*approach*/) const override
{
return {};
}
std::vector<engine::PhantomNodeWithDistance>
NearestPhantomNodes(const util::Coordinate /*input_coordinate*/,
const unsigned /*max_results*/,
const double /*max_distance*/,
const engine::Approach /*approach*/) const override
{
return {};
}
std::pair<engine::PhantomNode, engine::PhantomNode>
NearestPhantomNodeWithAlternativeFromBigComponent(const util::Coordinate /*input_coordinate*/,
engine::PhantomCandidateAlternatives NearestCandidatesWithAlternativeFromBigComponent(
const util::Coordinate /*input_coordinate*/,
const boost::optional<double> /*max_distance*/,
const boost::optional<engine::Bearing> /*bearing*/,
const engine::Approach /*approach*/,
const bool /*use_all_edges*/) const override
{
return {};
}
std::pair<engine::PhantomNode, engine::PhantomNode>
NearestPhantomNodeWithAlternativeFromBigComponent(const util::Coordinate /*input_coordinate*/,
const double /*max_distance*/,
const engine::Approach /*approach*/,
const bool /* use_all_edges */) const override
{
return {};
}
std::pair<engine::PhantomNode, engine::PhantomNode>
NearestPhantomNodeWithAlternativeFromBigComponent(const util::Coordinate /*input_coordinate*/,
const double /*max_distance*/,
const int /*bearing*/,
const int /*bearing_range*/,
const engine::Approach /*approach*/,
const bool /* use_all_edges */) const override
{
return {};
}
std::pair<engine::PhantomNode, engine::PhantomNode>
NearestPhantomNodeWithAlternativeFromBigComponent(const util::Coordinate /*input_coordinate*/,
const int /*bearing*/,
const int /*bearing_range*/,
const engine::Approach /*approach*/,
const bool /* use_all_edges */) const override
{
return {};
}
};
std::uint32_t GetCheckSum() const override { return 0; }

View File

@ -19,6 +19,20 @@
#define CHECK_EQUAL_RANGE(R1, R2) \
BOOST_CHECK_EQUAL_COLLECTIONS((R1).begin(), (R1).end(), (R2).begin(), (R2).end());
#define CHECK_EQUAL_RANGE_OF_HINTS(R1, R2) \
BOOST_REQUIRE_EQUAL((R1).size(), (R2).size()); \
for (const auto i : util::irange<std::size_t>(0UL, (R1).size())) \
{ \
BOOST_REQUIRE(((R1)[i] && (R2)[i]) || !((R1)[i] || (R2)[i])); \
if ((R1)[i]) \
{ \
BOOST_CHECK_EQUAL_COLLECTIONS((R1)[i]->segment_hints.begin(), \
(R1)[i]->segment_hints.end(), \
(R2)[i]->segment_hints.begin(), \
(R2)[i]->segment_hints.end()); \
} \
}
BOOST_AUTO_TEST_SUITE(api_parameters_parser)
using namespace osrm;
@ -117,15 +131,16 @@ BOOST_AUTO_TEST_CASE(invalid_table_urls)
// BOOST_CHECK_EQUAL(testInvalidOptions<TableParameters>("1,2;3,4?destinations=2"), 7UL);
}
BOOST_AUTO_TEST_CASE(valid_route_hint)
BOOST_AUTO_TEST_CASE(valid_route_segment_hint)
{
engine::PhantomNode reference_node;
reference_node.input_location =
util::Coordinate(util::FloatLongitude{7.432251}, util::FloatLatitude{43.745995});
engine::Hint reference_hint{reference_node, 0x1337};
auto encoded_hint = reference_hint.ToBase64();
auto hint = engine::Hint::FromBase64(encoded_hint);
BOOST_CHECK_EQUAL(hint.phantom.input_location, reference_hint.phantom.input_location);
engine::SegmentHint reference_segment_hint{reference_node, 0x1337};
auto encoded_hint = reference_segment_hint.ToBase64();
auto seg_hint = engine::SegmentHint::FromBase64(encoded_hint);
BOOST_CHECK_EQUAL(seg_hint.phantom.input_location,
reference_segment_hint.phantom.input_location);
}
BOOST_AUTO_TEST_CASE(valid_route_urls)
@ -147,7 +162,7 @@ BOOST_AUTO_TEST_CASE(valid_route_urls)
CHECK_EQUAL_RANGE(reference_1.radiuses, result_1->radiuses);
CHECK_EQUAL_RANGE(reference_1.approaches, result_1->approaches);
CHECK_EQUAL_RANGE(reference_1.coordinates, result_1->coordinates);
CHECK_EQUAL_RANGE(reference_1.hints, result_1->hints);
CHECK_EQUAL_RANGE_OF_HINTS(reference_1.hints, result_1->hints);
RouteParameters reference_2{};
reference_2.alternatives = true;
@ -170,7 +185,7 @@ BOOST_AUTO_TEST_CASE(valid_route_urls)
CHECK_EQUAL_RANGE(reference_2.radiuses, result_2->radiuses);
CHECK_EQUAL_RANGE(reference_2.approaches, result_2->approaches);
CHECK_EQUAL_RANGE(reference_2.coordinates, result_2->coordinates);
CHECK_EQUAL_RANGE(reference_2.hints, result_2->hints);
CHECK_EQUAL_RANGE_OF_HINTS(reference_2.hints, result_2->hints);
BOOST_CHECK_EQUAL(result_2->annotations_type == RouteParameters::AnnotationsType::All, true);
RouteParameters reference_3{false,
@ -195,14 +210,15 @@ BOOST_AUTO_TEST_CASE(valid_route_urls)
CHECK_EQUAL_RANGE(reference_3.radiuses, result_3->radiuses);
CHECK_EQUAL_RANGE(reference_3.approaches, result_3->approaches);
CHECK_EQUAL_RANGE(reference_3.coordinates, result_3->coordinates);
CHECK_EQUAL_RANGE(reference_3.hints, result_3->hints);
CHECK_EQUAL_RANGE_OF_HINTS(reference_3.hints, result_3->hints);
engine::PhantomNode phantom_1;
phantom_1.input_location = coords_1[0];
engine::PhantomNode phantom_2;
phantom_2.input_location = coords_1[1];
std::vector<boost::optional<engine::Hint>> hints_4 = {engine::Hint{phantom_1, 0x1337},
engine::Hint{phantom_2, 0x1337}};
std::vector<boost::optional<engine::Hint>> hints_4 = {
engine::Hint{{engine::SegmentHint{phantom_1, 0x1337}}},
engine::Hint{{engine::SegmentHint{phantom_2, 0x1337}}}};
RouteParameters reference_4{false,
false,
false,
@ -226,7 +242,7 @@ BOOST_AUTO_TEST_CASE(valid_route_urls)
CHECK_EQUAL_RANGE(reference_4.radiuses, result_4->radiuses);
CHECK_EQUAL_RANGE(reference_4.approaches, result_4->approaches);
CHECK_EQUAL_RANGE(reference_4.coordinates, result_4->coordinates);
CHECK_EQUAL_RANGE(reference_4.hints, result_4->hints);
CHECK_EQUAL_RANGE_OF_HINTS(reference_4.hints, result_4->hints);
std::vector<boost::optional<engine::Bearing>> bearings_4 = {
boost::none,
@ -255,7 +271,7 @@ BOOST_AUTO_TEST_CASE(valid_route_urls)
CHECK_EQUAL_RANGE(reference_5.radiuses, result_5->radiuses);
CHECK_EQUAL_RANGE(reference_5.approaches, result_5->approaches);
CHECK_EQUAL_RANGE(reference_5.coordinates, result_5->coordinates);
CHECK_EQUAL_RANGE(reference_5.hints, result_5->hints);
CHECK_EQUAL_RANGE_OF_HINTS(reference_5.hints, result_5->hints);
std::vector<util::Coordinate> coords_2 = {{util::FloatLongitude{0}, util::FloatLatitude{1}},
{util::FloatLongitude{2}, util::FloatLatitude{3}},
@ -275,7 +291,7 @@ BOOST_AUTO_TEST_CASE(valid_route_urls)
CHECK_EQUAL_RANGE(reference_6.radiuses, result_6->radiuses);
CHECK_EQUAL_RANGE(reference_6.approaches, result_6->approaches);
CHECK_EQUAL_RANGE(reference_6.coordinates, result_6->coordinates);
CHECK_EQUAL_RANGE(reference_6.hints, result_6->hints);
CHECK_EQUAL_RANGE_OF_HINTS(reference_6.hints, result_6->hints);
auto result_7 = parseParameters<RouteParameters>("1,2;3,4?radiuses=;unlimited");
RouteParameters reference_7{};
@ -293,7 +309,7 @@ BOOST_AUTO_TEST_CASE(valid_route_urls)
CHECK_EQUAL_RANGE(reference_7.radiuses, result_7->radiuses);
CHECK_EQUAL_RANGE(reference_7.approaches, result_7->approaches);
CHECK_EQUAL_RANGE(reference_7.coordinates, result_7->coordinates);
CHECK_EQUAL_RANGE(reference_7.hints, result_7->hints);
CHECK_EQUAL_RANGE_OF_HINTS(reference_7.hints, result_7->hints);
auto result_8 = parseParameters<RouteParameters>("1,2;3,4?radiuses=;");
RouteParameters reference_8{};
@ -320,7 +336,10 @@ BOOST_AUTO_TEST_CASE(valid_route_urls)
engine::PhantomNode phantom_4;
phantom_4.input_location = coords_3[2];
std::vector<boost::optional<engine::Hint>> hints_10 = {
engine::Hint{phantom_3, 0x1337}, boost::none, engine::Hint{phantom_4, 0x1337}, boost::none};
engine::Hint{{engine::SegmentHint{phantom_3, 0x1337}}},
{},
engine::Hint{{engine::SegmentHint{phantom_4, 0x1337}}},
{}};
RouteParameters reference_10{false,
false,
@ -346,7 +365,7 @@ BOOST_AUTO_TEST_CASE(valid_route_urls)
CHECK_EQUAL_RANGE(reference_10.radiuses, result_10->radiuses);
CHECK_EQUAL_RANGE(reference_10.approaches, result_10->approaches);
CHECK_EQUAL_RANGE(reference_10.coordinates, result_10->coordinates);
CHECK_EQUAL_RANGE(reference_10.hints, result_10->hints);
CHECK_EQUAL_RANGE_OF_HINTS(reference_10.hints, result_10->hints);
// Do not generate Hints when they are explicitly disabled
auto result_11 = parseParameters<RouteParameters>("1,2;3,4?generate_hints=false");
@ -459,7 +478,7 @@ BOOST_AUTO_TEST_CASE(valid_route_urls)
CHECK_EQUAL_RANGE(reference_18.radiuses, result_18->radiuses);
CHECK_EQUAL_RANGE(reference_18.approaches, result_18->approaches);
CHECK_EQUAL_RANGE(reference_18.coordinates, result_18->coordinates);
CHECK_EQUAL_RANGE(reference_18.hints, result_18->hints);
CHECK_EQUAL_RANGE_OF_HINTS(reference_18.hints, result_18->hints);
RouteParameters reference_19{};
reference_19.alternatives = true;
@ -478,7 +497,7 @@ BOOST_AUTO_TEST_CASE(valid_route_urls)
CHECK_EQUAL_RANGE(reference_19.radiuses, result_19->radiuses);
CHECK_EQUAL_RANGE(reference_19.approaches, result_19->approaches);
CHECK_EQUAL_RANGE(reference_19.coordinates, result_19->coordinates);
CHECK_EQUAL_RANGE(reference_19.hints, result_19->hints);
CHECK_EQUAL_RANGE_OF_HINTS(reference_19.hints, result_19->hints);
RouteParameters reference_20{};
reference_20.alternatives = false;
@ -497,7 +516,7 @@ BOOST_AUTO_TEST_CASE(valid_route_urls)
CHECK_EQUAL_RANGE(reference_20.radiuses, result_20->radiuses);
CHECK_EQUAL_RANGE(reference_20.approaches, result_20->approaches);
CHECK_EQUAL_RANGE(reference_20.coordinates, result_20->coordinates);
CHECK_EQUAL_RANGE(reference_20.hints, result_20->hints);
CHECK_EQUAL_RANGE_OF_HINTS(reference_20.hints, result_20->hints);
// exclude flags
RouteParameters reference_21{};
@ -516,7 +535,7 @@ BOOST_AUTO_TEST_CASE(valid_route_urls)
CHECK_EQUAL_RANGE(reference_21.radiuses, result_21->radiuses);
CHECK_EQUAL_RANGE(reference_21.approaches, result_21->approaches);
CHECK_EQUAL_RANGE(reference_21.coordinates, result_21->coordinates);
CHECK_EQUAL_RANGE(reference_21.hints, result_21->hints);
CHECK_EQUAL_RANGE_OF_HINTS(reference_21.hints, result_21->hints);
CHECK_EQUAL_RANGE(reference_21.exclude, result_21->exclude);
}

View File

@ -200,8 +200,8 @@ void simple_verify_rtree(RTreeT &rtree,
auto result_u = rtree.Nearest(pu, 1);
auto result_v = rtree.Nearest(pv, 1);
BOOST_CHECK(result_u.size() == 1 && result_v.size() == 1);
BOOST_CHECK(result_u.front().u == e.u || result_u.front().v == e.u);
BOOST_CHECK(result_v.front().u == e.v || result_v.front().v == e.v);
BOOST_CHECK(result_u.front().data.u == e.u || result_u.front().data.v == e.u);
BOOST_CHECK(result_v.front().data.u == e.v || result_v.front().data.v == e.v);
}
}
@ -226,8 +226,8 @@ void sampling_verify_rtree(RTreeT &rtree,
auto result_lsnn = lsnn.Nearest(q, 1);
BOOST_CHECK(result_rtree.size() == 1);
BOOST_CHECK(result_lsnn.size() == 1);
auto rtree_u = result_rtree.back().u;
auto rtree_v = result_rtree.back().v;
auto rtree_u = result_rtree.back().data.u;
auto rtree_v = result_rtree.back().data.v;
auto lsnn_u = result_lsnn.back().u;
auto lsnn_v = result_lsnn.back().v;
@ -322,8 +322,8 @@ BOOST_AUTO_TEST_CASE(regression_test)
BOOST_CHECK(result_rtree.size() == 1);
BOOST_CHECK(result_ls.size() == 1);
BOOST_CHECK_EQUAL(result_ls.front().u, result_rtree.front().u);
BOOST_CHECK_EQUAL(result_ls.front().v, result_rtree.front().v);
BOOST_CHECK_EQUAL(result_ls.front().u, result_rtree.front().data.u);
BOOST_CHECK_EQUAL(result_ls.front().v, result_rtree.front().data.v);
}
// Bug: If you querry a point with a narrow radius, no result should be returned
@ -347,8 +347,8 @@ BOOST_AUTO_TEST_CASE(radius_regression_test)
Coordinate input(FloatLongitude{5.2}, FloatLatitude{5.0});
{
auto results = query.NearestPhantomNodesInRange(
input, 0.01, osrm::engine::Approach::UNRESTRICTED, true);
auto results = query.NearestPhantomNodes(
input, osrm::engine::Approach::UNRESTRICTED, boost::none, 0.01, boost::none, true);
BOOST_CHECK_EQUAL(results.size(), 0);
}
}
@ -373,14 +373,14 @@ BOOST_AUTO_TEST_CASE(permissive_edge_snapping)
Coordinate input(FloatLongitude{0.0005}, FloatLatitude{0.0005});
{
auto results = query.NearestPhantomNodesInRange(
input, 1000, osrm::engine::Approach::UNRESTRICTED, false);
auto results = query.NearestPhantomNodes(
input, osrm::engine::Approach::UNRESTRICTED, boost::none, 1000, boost::none, false);
BOOST_CHECK_EQUAL(results.size(), 1);
}
{
auto results = query.NearestPhantomNodesInRange(
input, 1000, osrm::engine::Approach::UNRESTRICTED, true);
auto results = query.NearestPhantomNodes(
input, osrm::engine::Approach::UNRESTRICTED, boost::none, 1000, boost::none, true);
BOOST_CHECK_EQUAL(results.size(), 2);
}
}
@ -405,21 +405,30 @@ BOOST_AUTO_TEST_CASE(bearing_tests)
Coordinate input(FloatLongitude{5.1}, FloatLatitude{5.0});
{
auto results = query.NearestPhantomNodes(input, 5, osrm::engine::Approach::UNRESTRICTED);
auto results = query.NearestPhantomNodes(
input, osrm::engine::Approach::UNRESTRICTED, 5, boost::none, boost::none, false);
BOOST_CHECK_EQUAL(results.size(), 2);
BOOST_CHECK_EQUAL(results.back().phantom_node.forward_segment_id.id, 0);
BOOST_CHECK_EQUAL(results.back().phantom_node.reverse_segment_id.id, 1);
}
{
auto results =
query.NearestPhantomNodes(input, 5, 270, 10, osrm::engine::Approach::UNRESTRICTED);
auto results = query.NearestPhantomNodes(input,
osrm::engine::Approach::UNRESTRICTED,
5,
boost::none,
engine::Bearing{270, 10},
false);
BOOST_CHECK_EQUAL(results.size(), 0);
}
{
auto results =
query.NearestPhantomNodes(input, 5, 45, 10, osrm::engine::Approach::UNRESTRICTED);
auto results = query.NearestPhantomNodes(input,
osrm::engine::Approach::UNRESTRICTED,
5,
boost::none,
engine::Bearing{45, 10},
false);
BOOST_CHECK_EQUAL(results.size(), 2);
BOOST_CHECK(results[0].phantom_node.forward_segment_id.enabled);
@ -432,20 +441,28 @@ BOOST_AUTO_TEST_CASE(bearing_tests)
}
{
auto results = query.NearestPhantomNodesInRange(
input, 11000, osrm::engine::Approach::UNRESTRICTED, true);
auto results = query.NearestPhantomNodes(
input, osrm::engine::Approach::UNRESTRICTED, boost::none, 11000, boost::none, true);
BOOST_CHECK_EQUAL(results.size(), 2);
}
{
auto results = query.NearestPhantomNodesInRange(
input, 11000, 270, 10, osrm::engine::Approach::UNRESTRICTED, true);
auto results = query.NearestPhantomNodes(input,
osrm::engine::Approach::UNRESTRICTED,
boost::none,
11000,
engine::Bearing{270, 10},
true);
BOOST_CHECK_EQUAL(results.size(), 0);
}
{
auto results = query.NearestPhantomNodesInRange(
input, 11000, 45, 10, osrm::engine::Approach::UNRESTRICTED, true);
auto results = query.NearestPhantomNodes(input,
osrm::engine::Approach::UNRESTRICTED,
boost::none,
11000,
engine::Bearing{45, 10},
true);
BOOST_CHECK_EQUAL(results.size(), 2);
BOOST_CHECK(results[0].phantom_node.forward_segment_id.enabled);