osrm-backend/include/engine/internal_route_result.hpp
Michael Bell d96960f9cc Support snapping to multiple ways at an input location
This PR improves routing results by adding support for snapping to
multiple ways at input locations.

This means all edges at the snapped location can act as source/target
candidates for routing search, ensuring we always find the best route,
and not the one dependent on the edge selected.
2022-08-27 11:28:25 +01:00

159 lines
5.9 KiB
C++

#ifndef RAW_ROUTE_DATA_H
#define RAW_ROUTE_DATA_H
#include "extractor/class_data.hpp"
#include "extractor/travel_mode.hpp"
#include "guidance/turn_bearing.hpp"
#include "guidance/turn_instruction.hpp"
#include "engine/phantom_node.hpp"
#include "util/coordinate.hpp"
#include "util/guidance/entry_class.hpp"
#include "util/guidance/turn_lanes.hpp"
#include "util/integer_range.hpp"
#include "util/typedefs.hpp"
#include <boost/optional.hpp>
#include <vector>
namespace osrm
{
namespace engine
{
struct PathData
{
// from edge-based-node id
NodeID from_edge_based_node;
// the internal OSRM id of the OSM node id that is the via node of the turn
NodeID turn_via_node;
// weight that is traveled on the segment until the turn is reached
// including the turn weight, if one exists
EdgeWeight weight_until_turn;
// If this segment immediately precedes a turn, then duration_of_turn
// will contain the weight of the turn. Otherwise it will be 0.
EdgeWeight weight_of_turn;
// duration that is traveled on the segment until the turn is reached,
// including a turn if the segment precedes one.
EdgeWeight duration_until_turn;
// If this segment immediately precedes a turn, then duration_of_turn
// will contain the duration of the turn. Otherwise it will be 0.
EdgeWeight duration_of_turn;
// Source of the speed value on this road segment
DatasourceID datasource_id;
// If segment precedes a turn, ID of the turn itself
boost::optional<EdgeID> turn_edge;
};
struct InternalRouteResult
{
std::vector<std::vector<PathData>> unpacked_path_segments;
std::vector<PhantomEndpoints> leg_endpoints;
std::vector<bool> source_traversed_in_reverse;
std::vector<bool> target_traversed_in_reverse;
EdgeWeight shortest_path_weight = INVALID_EDGE_WEIGHT;
bool is_valid() const { return INVALID_EDGE_WEIGHT != shortest_path_weight; }
bool is_via_leg(const std::size_t leg) const
{
return (leg != unpacked_path_segments.size() - 1);
}
// Note: includes duration for turns, except for at start and end node.
EdgeWeight duration() const
{
EdgeWeight ret{0};
for (const auto &leg : unpacked_path_segments)
for (const auto &segment : leg)
ret += segment.duration_until_turn;
return ret;
}
};
struct InternalManyRoutesResult
{
InternalManyRoutesResult() = default;
InternalManyRoutesResult(InternalRouteResult route) : routes{std::move(route)} {}
InternalManyRoutesResult(std::vector<InternalRouteResult> routes_) : routes{std::move(routes_)}
{
}
std::vector<InternalRouteResult> routes;
};
inline InternalRouteResult CollapseInternalRouteResult(const InternalRouteResult &leggy_result,
const std::vector<bool> &is_waypoint)
{
BOOST_ASSERT(leggy_result.is_valid());
BOOST_ASSERT(is_waypoint[0]); // first and last coords
BOOST_ASSERT(is_waypoint.back()); // should always be waypoints
// Nothing to collapse! return result as is
if (leggy_result.unpacked_path_segments.size() == 1)
return leggy_result;
BOOST_ASSERT(leggy_result.leg_endpoints.size() > 1);
InternalRouteResult collapsed;
collapsed.shortest_path_weight = leggy_result.shortest_path_weight;
for (auto i : util::irange<std::size_t>(0, leggy_result.unpacked_path_segments.size()))
{
if (is_waypoint[i])
{
// start another leg vector
collapsed.unpacked_path_segments.push_back(leggy_result.unpacked_path_segments[i]);
// save new phantom node pair
collapsed.leg_endpoints.push_back(leggy_result.leg_endpoints[i]);
// save data about phantom nodes
collapsed.source_traversed_in_reverse.push_back(
leggy_result.source_traversed_in_reverse[i]);
collapsed.target_traversed_in_reverse.push_back(
leggy_result.target_traversed_in_reverse[i]);
}
else
// no new leg, collapse the next segment into the last leg
{
BOOST_ASSERT(!collapsed.unpacked_path_segments.empty());
auto &last_segment = collapsed.unpacked_path_segments.back();
BOOST_ASSERT(!collapsed.leg_endpoints.empty());
collapsed.leg_endpoints.back().target_phantom =
leggy_result.leg_endpoints[i].target_phantom;
collapsed.target_traversed_in_reverse.back() =
leggy_result.target_traversed_in_reverse[i];
// copy path segments into current leg
if (!leggy_result.unpacked_path_segments[i].empty())
{
auto old_size = last_segment.size();
last_segment.insert(last_segment.end(),
leggy_result.unpacked_path_segments[i].begin(),
leggy_result.unpacked_path_segments[i].end());
// The first segment of the unpacked path is missing the weight of the
// source phantom. We need to add those values back so that the total
// edge weight is correct
last_segment[old_size].weight_until_turn +=
leggy_result.source_traversed_in_reverse[i]
? leggy_result.leg_endpoints[i].source_phantom.reverse_weight
: leggy_result.leg_endpoints[i].source_phantom.forward_weight;
last_segment[old_size].duration_until_turn +=
leggy_result.source_traversed_in_reverse[i]
? leggy_result.leg_endpoints[i].source_phantom.reverse_duration
: leggy_result.leg_endpoints[i].source_phantom.forward_duration;
}
}
}
BOOST_ASSERT(collapsed.leg_endpoints.size() == collapsed.unpacked_path_segments.size());
return collapsed;
}
} // namespace engine
} // namespace osrm
#endif // RAW_ROUTE_DATA_H