osrm-backend/include/engine/routing_algorithms/routing_base.hpp

422 lines
17 KiB
C++
Raw Normal View History

#ifndef OSRM_ENGINE_ROUTING_BASE_HPP
#define OSRM_ENGINE_ROUTING_BASE_HPP
#include "guidance/turn_bearing.hpp"
#include "guidance/turn_instruction.hpp"
#include "engine/algorithm.hpp"
#include "engine/datafacade.hpp"
2016-01-02 11:13:44 -05:00
#include "engine/internal_route_result.hpp"
2017-04-06 08:28:43 -04:00
#include "engine/phantom_node.hpp"
2016-01-02 11:13:44 -05:00
#include "engine/search_engine_data.hpp"
#include "util/coordinate_calculation.hpp"
#include "util/typedefs.hpp"
2013-09-20 05:35:59 -04:00
#include <boost/assert.hpp>
#include <cstddef>
#include <cstdint>
#include <algorithm>
#include <functional>
#include <iterator>
#include <memory>
#include <numeric>
#include <stack>
#include <utility>
#include <vector>
namespace osrm::engine::routing_algorithms
2016-01-05 10:51:13 -05:00
{
2017-04-06 08:28:43 -04:00
namespace details
{
template <typename Heap>
void insertSourceInForwardHeap(Heap &forward_heap, const PhantomNode &source)
2018-04-27 01:36:52 -04:00
{
if (source.IsValidForwardSource())
2017-05-05 18:02:53 -04:00
{
forward_heap.Insert(source.forward_segment_id.id,
EdgeWeight{0} - source.GetForwardWeightPlusOffset(),
source.forward_segment_id.id);
2017-05-05 18:02:53 -04:00
}
if (source.IsValidReverseSource())
2017-05-05 18:02:53 -04:00
{
forward_heap.Insert(source.reverse_segment_id.id,
EdgeWeight{0} - source.GetReverseWeightPlusOffset(),
source.reverse_segment_id.id);
2017-05-05 18:02:53 -04:00
}
}
2017-05-05 18:02:53 -04:00
template <typename Heap>
void insertTargetInReverseHeap(Heap &reverse_heap, const PhantomNode &target)
{
if (target.IsValidForwardTarget())
2017-05-05 18:02:53 -04:00
{
reverse_heap.Insert(target.forward_segment_id.id,
target.GetForwardWeightPlusOffset(),
target.forward_segment_id.id);
2017-05-05 18:02:53 -04:00
}
if (target.IsValidReverseTarget())
2017-05-05 18:02:53 -04:00
{
reverse_heap.Insert(target.reverse_segment_id.id,
target.GetReverseWeightPlusOffset(),
target.reverse_segment_id.id);
2017-05-05 18:02:53 -04:00
}
}
} // namespace details
static constexpr bool FORWARD_DIRECTION = true;
static constexpr bool REVERSE_DIRECTION = false;
// Identify nodes in the forward(reverse) search direction that will require loop forcing
// e.g. if source and destination nodes are on the same segment.
std::vector<NodeID> getForwardLoopNodes(const PhantomEndpointCandidates &candidates);
std::vector<NodeID> getForwardLoopNodes(const PhantomCandidatesToTarget &candidates);
std::vector<NodeID> getBackwardLoopNodes(const PhantomEndpointCandidates &candidates);
std::vector<NodeID> getBackwardLoopNodes(const PhantomCandidatesToTarget &candidates);
// Find the specific phantom node endpoints for a given path from a list of candidates.
PhantomEndpoints endpointsFromCandidates(const PhantomEndpointCandidates &candidates,
const std::vector<NodeID> &path);
template <typename HeapNodeT>
inline bool force_loop(const std::vector<NodeID> &force_nodes, const HeapNodeT &heap_node)
{
// if loops are forced, they are so at the source
return !force_nodes.empty() &&
std::find(force_nodes.begin(), force_nodes.end(), heap_node.node) != force_nodes.end() &&
heap_node.data.parent == heap_node.node;
}
template <typename Heap>
void insertNodesInHeaps(Heap &forward_heap, Heap &reverse_heap, const PhantomEndpoints &endpoints)
2017-06-27 18:48:18 -04:00
{
details::insertSourceInForwardHeap(forward_heap, endpoints.source_phantom);
details::insertTargetInReverseHeap(reverse_heap, endpoints.target_phantom);
}
template <typename Heap>
void insertNodesInHeaps(Heap &forward_heap,
Heap &reverse_heap,
const PhantomEndpointCandidates &endpoint_candidates)
{
for (const auto &source : endpoint_candidates.source_phantoms)
2017-06-27 18:48:18 -04:00
{
details::insertSourceInForwardHeap(forward_heap, source);
2017-06-27 18:48:18 -04:00
}
for (const auto &target : endpoint_candidates.target_phantoms)
2017-06-27 18:48:18 -04:00
{
details::insertTargetInReverseHeap(reverse_heap, target);
2017-06-27 18:48:18 -04:00
}
}
template <typename ManyToManyQueryHeap>
void insertSourceInHeap(ManyToManyQueryHeap &heap, const PhantomNodeCandidates &source_candidates)
2017-06-27 18:48:18 -04:00
{
for (const auto &phantom_node : source_candidates)
2017-06-27 18:48:18 -04:00
{
if (phantom_node.IsValidForwardSource())
{
heap.Insert(phantom_node.forward_segment_id.id,
EdgeWeight{0} - phantom_node.GetForwardWeightPlusOffset(),
{phantom_node.forward_segment_id.id,
EdgeDuration{0} - phantom_node.GetForwardDuration(),
EdgeDistance{0} - phantom_node.GetForwardDistance()});
}
if (phantom_node.IsValidReverseSource())
{
heap.Insert(phantom_node.reverse_segment_id.id,
EdgeWeight{0} - phantom_node.GetReverseWeightPlusOffset(),
{phantom_node.reverse_segment_id.id,
EdgeDuration{0} - phantom_node.GetReverseDuration(),
EdgeDistance{0} - phantom_node.GetReverseDistance()});
}
2017-06-27 18:48:18 -04:00
}
}
template <typename ManyToManyQueryHeap>
void insertTargetInHeap(ManyToManyQueryHeap &heap, const PhantomNodeCandidates &target_candidates)
{
for (const auto &phantom_node : target_candidates)
2017-06-27 18:48:18 -04:00
{
if (phantom_node.IsValidForwardTarget())
{
heap.Insert(phantom_node.forward_segment_id.id,
phantom_node.GetForwardWeightPlusOffset(),
{phantom_node.forward_segment_id.id,
phantom_node.GetForwardDuration(),
phantom_node.GetForwardDistance()});
}
if (phantom_node.IsValidReverseTarget())
{
heap.Insert(phantom_node.reverse_segment_id.id,
phantom_node.GetReverseWeightPlusOffset(),
{phantom_node.reverse_segment_id.id,
phantom_node.GetReverseDuration(),
phantom_node.GetReverseDistance()});
}
2017-06-27 18:48:18 -04:00
}
}
template <typename FacadeT>
void annotatePath(const FacadeT &facade,
const PhantomEndpoints &endpoints,
const std::vector<NodeID> &unpacked_nodes,
const std::vector<EdgeID> &unpacked_edges,
std::vector<PathData> &unpacked_path)
{
BOOST_ASSERT(!unpacked_nodes.empty());
BOOST_ASSERT(unpacked_nodes.size() == unpacked_edges.size() + 1);
2017-05-11 03:13:59 -04:00
const auto source_node_id = unpacked_nodes.front();
const auto target_node_id = unpacked_nodes.back();
const bool start_traversed_in_reverse =
endpoints.source_phantom.forward_segment_id.id != source_node_id;
const bool target_traversed_in_reverse =
endpoints.target_phantom.forward_segment_id.id != target_node_id;
BOOST_ASSERT(endpoints.source_phantom.forward_segment_id.id == source_node_id ||
endpoints.source_phantom.reverse_segment_id.id == source_node_id);
BOOST_ASSERT(endpoints.target_phantom.forward_segment_id.id == target_node_id ||
endpoints.target_phantom.reverse_segment_id.id == target_node_id);
2017-07-24 06:47:23 -04:00
// datastructures to hold extracted data from geometry
2018-04-06 09:09:52 -04:00
std::vector<NodeID> id_vector;
std::vector<SegmentWeight> weight_vector;
std::vector<SegmentDuration> duration_vector;
std::vector<DatasourceID> datasource_vector;
2017-07-24 06:47:23 -04:00
const auto get_segment_geometry = [&](const auto geometry_index) {
2018-04-06 09:09:52 -04:00
const auto copy = [](auto &vector, const auto range) {
vector.resize(range.size());
std::copy(range.begin(), range.end(), vector.begin());
};
if (geometry_index.forward)
{
2018-04-06 09:09:52 -04:00
copy(id_vector, facade.GetUncompressedForwardGeometry(geometry_index.id));
copy(weight_vector, facade.GetUncompressedForwardWeights(geometry_index.id));
copy(duration_vector, facade.GetUncompressedForwardDurations(geometry_index.id));
copy(datasource_vector, facade.GetUncompressedForwardDatasources(geometry_index.id));
2016-04-01 05:39:47 -04:00
}
else
{
2018-04-06 09:09:52 -04:00
copy(id_vector, facade.GetUncompressedReverseGeometry(geometry_index.id));
copy(weight_vector, facade.GetUncompressedReverseWeights(geometry_index.id));
copy(duration_vector, facade.GetUncompressedReverseDurations(geometry_index.id));
copy(datasource_vector, facade.GetUncompressedReverseDatasources(geometry_index.id));
}
2017-07-24 06:47:23 -04:00
};
auto node_from = unpacked_nodes.begin(), node_last = std::prev(unpacked_nodes.end());
for (auto edge = unpacked_edges.begin(); node_from != node_last; ++node_from, ++edge)
{
const auto &edge_data = facade.GetEdgeData(*edge);
const auto turn_id = edge_data.turn_id; // edge-based graph edge index
const auto node_id = *node_from; // edge-based graph node index
const auto geometry_index = facade.GetGeometryIndex(node_id);
get_segment_geometry(geometry_index);
BOOST_ASSERT(!id_vector.empty());
BOOST_ASSERT(!datasource_vector.empty());
2018-04-06 09:09:52 -04:00
BOOST_ASSERT(weight_vector.size() + 1 == id_vector.size());
BOOST_ASSERT(duration_vector.size() + 1 == id_vector.size());
const bool is_first_segment = unpacked_path.empty();
std::size_t start_index = 0;
if (is_first_segment)
{
unsigned short segment_position = endpoints.source_phantom.fwd_segment_position;
if (start_traversed_in_reverse)
{
segment_position =
weight_vector.size() - endpoints.source_phantom.fwd_segment_position - 1;
}
BOOST_ASSERT(segment_position >= 0);
start_index = static_cast<std::size_t>(segment_position);
}
2018-04-06 09:09:52 -04:00
const std::size_t end_index = weight_vector.size();
BOOST_ASSERT(start_index < end_index);
for (std::size_t segment_idx = start_index; segment_idx < end_index; ++segment_idx)
{
unpacked_path.push_back(PathData{node_id,
id_vector[segment_idx + 1],
alias_cast<EdgeWeight>(weight_vector[segment_idx]),
{0},
alias_cast<EdgeDuration>(duration_vector[segment_idx]),
{0},
datasource_vector[segment_idx],
boost::none});
}
BOOST_ASSERT(!unpacked_path.empty());
const auto turn_duration = facade.GetDurationPenaltyForEdgeID(turn_id);
const auto turn_weight = facade.GetWeightPenaltyForEdgeID(turn_id);
unpacked_path.back().duration_until_turn += alias_cast<EdgeDuration>(turn_duration);
unpacked_path.back().duration_of_turn = alias_cast<EdgeDuration>(turn_duration);
unpacked_path.back().weight_until_turn += alias_cast<EdgeWeight>(turn_weight);
unpacked_path.back().weight_of_turn = alias_cast<EdgeWeight>(turn_weight);
Lazily generate optional route path data (#6045) Currently route results are annotated with additional path information, such as geometries, turn-by-turn steps and other metadata. These annotations are generated if they are not requested or returned in the response. Datasets needed to generate these annotations are loaded and available to the OSRM process even when unused. This commit is a first step towards making the loading of these datasets optional. We refactor the code so that route annotations are only generated if explicitly requested and needed in the response. Specifically, we change the following annotations to be lazily generated: - Turn-by-turn steps - Route Overview geometry - Route segment metadata For example. a /route/v1 request with steps=false&overview=false&annotations=false would no longer call the following data facade methods: - GetOSMNodeIDOfNode - GetTurnInstructionForEdgeID - GetNameIndex - GetNameForID - GetRefForID - GetTurnInstructionForEdgeID - GetClassData - IsLeftHandDriving - GetTravelMode - IsSegregated - PreTurnBearing - PostTurnBearing - HasLaneData - GetLaneData - GetEntryClass Requests that include segment metadata and/or overview geometry but not turn-by-turn instructions will also benefit from this, although there is some interdependency with the step instructions - a call to GetTurnInstructionForEdgeID is still required. Requests for OSM annotations will understandably still need to call GetOSMNodeIDOfNode. Making these changes unlocks the optional loading of data contained in the following OSRM files: - osrm.names - osrm.icd - osrm.nbg_nodes (partial) - osrm.ebg_nodes (partial) - osrm.edges
2022-08-22 07:59:20 -04:00
unpacked_path.back().turn_edge = turn_id;
}
std::size_t start_index = 0, end_index = 0;
2017-05-11 03:13:59 -04:00
const auto source_geometry_id = facade.GetGeometryIndex(source_node_id).id;
2017-07-24 06:47:23 -04:00
const auto target_geometry = facade.GetGeometryIndex(target_node_id);
const auto is_local_path = source_geometry_id == target_geometry.id && unpacked_path.empty();
get_segment_geometry(target_geometry);
if (target_traversed_in_reverse)
{
if (is_local_path)
{
start_index = weight_vector.size() - endpoints.source_phantom.fwd_segment_position - 1;
2014-02-28 11:14:38 -05:00
}
end_index = weight_vector.size() - endpoints.target_phantom.fwd_segment_position - 1;
}
else
{
if (is_local_path)
2016-03-17 15:38:57 -04:00
{
start_index = endpoints.source_phantom.fwd_segment_position;
2016-03-17 15:38:57 -04:00
}
end_index = endpoints.target_phantom.fwd_segment_position;
}
// Given the following compressed geometry:
// U---v---w---x---y---Z
// s t
// s: fwd_segment 0
// t: fwd_segment 3
// -> (U, v), (v, w), (w, x)
// note that (x, t) is _not_ included but needs to be added later.
for (std::size_t segment_idx = start_index; segment_idx != end_index;
(start_index < end_index ? ++segment_idx : --segment_idx))
{
2018-04-06 09:09:52 -04:00
BOOST_ASSERT(segment_idx < static_cast<std::size_t>(id_vector.size() - 1));
2017-05-11 03:13:59 -04:00
unpacked_path.push_back(
2018-02-09 13:32:09 -05:00
PathData{target_node_id,
2018-04-06 09:09:52 -04:00
id_vector[start_index < end_index ? segment_idx + 1 : segment_idx - 1],
alias_cast<EdgeWeight>(weight_vector[segment_idx]),
{0},
alias_cast<EdgeDuration>(duration_vector[segment_idx]),
{0},
2018-04-06 09:09:52 -04:00
datasource_vector[segment_idx],
Lazily generate optional route path data (#6045) Currently route results are annotated with additional path information, such as geometries, turn-by-turn steps and other metadata. These annotations are generated if they are not requested or returned in the response. Datasets needed to generate these annotations are loaded and available to the OSRM process even when unused. This commit is a first step towards making the loading of these datasets optional. We refactor the code so that route annotations are only generated if explicitly requested and needed in the response. Specifically, we change the following annotations to be lazily generated: - Turn-by-turn steps - Route Overview geometry - Route segment metadata For example. a /route/v1 request with steps=false&overview=false&annotations=false would no longer call the following data facade methods: - GetOSMNodeIDOfNode - GetTurnInstructionForEdgeID - GetNameIndex - GetNameForID - GetRefForID - GetTurnInstructionForEdgeID - GetClassData - IsLeftHandDriving - GetTravelMode - IsSegregated - PreTurnBearing - PostTurnBearing - HasLaneData - GetLaneData - GetEntryClass Requests that include segment metadata and/or overview geometry but not turn-by-turn instructions will also benefit from this, although there is some interdependency with the step instructions - a call to GetTurnInstructionForEdgeID is still required. Requests for OSM annotations will understandably still need to call GetOSMNodeIDOfNode. Making these changes unlocks the optional loading of data contained in the following OSRM files: - osrm.names - osrm.icd - osrm.nbg_nodes (partial) - osrm.ebg_nodes (partial) - osrm.edges
2022-08-22 07:59:20 -04:00
boost::none});
}
Lazily generate optional route path data (#6045) Currently route results are annotated with additional path information, such as geometries, turn-by-turn steps and other metadata. These annotations are generated if they are not requested or returned in the response. Datasets needed to generate these annotations are loaded and available to the OSRM process even when unused. This commit is a first step towards making the loading of these datasets optional. We refactor the code so that route annotations are only generated if explicitly requested and needed in the response. Specifically, we change the following annotations to be lazily generated: - Turn-by-turn steps - Route Overview geometry - Route segment metadata For example. a /route/v1 request with steps=false&overview=false&annotations=false would no longer call the following data facade methods: - GetOSMNodeIDOfNode - GetTurnInstructionForEdgeID - GetNameIndex - GetNameForID - GetRefForID - GetTurnInstructionForEdgeID - GetClassData - IsLeftHandDriving - GetTravelMode - IsSegregated - PreTurnBearing - PostTurnBearing - HasLaneData - GetLaneData - GetEntryClass Requests that include segment metadata and/or overview geometry but not turn-by-turn instructions will also benefit from this, although there is some interdependency with the step instructions - a call to GetTurnInstructionForEdgeID is still required. Requests for OSM annotations will understandably still need to call GetOSMNodeIDOfNode. Making these changes unlocks the optional loading of data contained in the following OSRM files: - osrm.names - osrm.icd - osrm.nbg_nodes (partial) - osrm.ebg_nodes (partial) - osrm.edges
2022-08-22 07:59:20 -04:00
if (!unpacked_path.empty())
{
const auto source_weight = start_traversed_in_reverse
? endpoints.source_phantom.reverse_weight
: endpoints.source_phantom.forward_weight;
const auto source_duration = start_traversed_in_reverse
? endpoints.source_phantom.reverse_duration
: endpoints.source_phantom.forward_duration;
// The above code will create segments for (v, w), (w,x), (x, y) and (y, Z).
// However the first segment duration needs to be adjusted to the fact that the source
// phantom is in the middle of the segment. We do this by subtracting v--s from the
// duration.
// Since it's possible duration_until_turn can be less than source_weight here if
// a negative enough turn penalty is used to modify this edge weight during
// osrm-contract, we clamp to 0 here so as not to return a negative duration
// for this segment.
// TODO this creates a scenario where it's possible the duration from a phantom
// node to the first turn would be the same as from end to end of a segment,
// which is obviously incorrect and not ideal...
unpacked_path.front().weight_until_turn =
std::max(unpacked_path.front().weight_until_turn - source_weight, {0});
unpacked_path.front().duration_until_turn =
std::max(unpacked_path.front().duration_until_turn - source_duration, {0});
}
}
template <typename Algorithm>
double getPathDistance(const DataFacade<Algorithm> &facade,
const std::vector<PathData> &unpacked_path,
const PhantomNode &source_phantom,
const PhantomNode &target_phantom)
{
double distance = 0.0;
auto prev_coordinate = source_phantom.location;
for (const auto &p : unpacked_path)
{
const auto current_coordinate = facade.GetCoordinateOfNode(p.turn_via_node);
distance +=
util::coordinate_calculation::greatCircleDistance(prev_coordinate, current_coordinate);
prev_coordinate = current_coordinate;
}
distance +=
util::coordinate_calculation::greatCircleDistance(prev_coordinate, target_phantom.location);
return distance;
}
2017-04-06 08:28:43 -04:00
template <typename AlgorithmT>
InternalRouteResult extractRoute(const DataFacade<AlgorithmT> &facade,
const EdgeWeight weight,
const PhantomEndpointCandidates &endpoint_candidates,
const std::vector<NodeID> &unpacked_nodes,
const std::vector<EdgeID> &unpacked_edges)
2017-04-06 08:28:43 -04:00
{
InternalRouteResult raw_route_data;
// No path found for both target nodes?
if (INVALID_EDGE_WEIGHT == weight)
{
return raw_route_data;
}
auto phantom_endpoints = endpointsFromCandidates(endpoint_candidates, unpacked_nodes);
raw_route_data.leg_endpoints = {phantom_endpoints};
2017-04-06 08:28:43 -04:00
raw_route_data.shortest_path_weight = weight;
raw_route_data.unpacked_path_segments.resize(1);
raw_route_data.source_traversed_in_reverse.push_back(
(unpacked_nodes.front() != phantom_endpoints.source_phantom.forward_segment_id.id));
2017-04-06 08:28:43 -04:00
raw_route_data.target_traversed_in_reverse.push_back(
(unpacked_nodes.back() != phantom_endpoints.target_phantom.forward_segment_id.id));
2017-04-06 08:28:43 -04:00
annotatePath(facade,
phantom_endpoints,
2017-04-06 08:28:43 -04:00
unpacked_nodes,
unpacked_edges,
raw_route_data.unpacked_path_segments.front());
return raw_route_data;
}
template <typename FacadeT> EdgeDistance computeEdgeDistance(const FacadeT &facade, NodeID node_id)
{
const auto geometry_index = facade.GetGeometryIndex(node_id);
EdgeDistance total_distance = {0};
auto geometry_range = facade.GetUncompressedForwardGeometry(geometry_index.id);
for (auto current = geometry_range.begin(); current < geometry_range.end() - 1; ++current)
{
total_distance += util::coordinate_calculation::greatCircleDistance(
facade.GetCoordinateOfNode(*current), facade.GetCoordinateOfNode(*std::next(current)));
}
return total_distance;
}
2022-12-20 12:00:11 -05:00
} // namespace osrm::engine::routing_algorithms
2016-01-05 10:51:13 -05:00
#endif // OSRM_ENGINE_ROUTING_BASE_HPP