osrm-backend/src/extractor/edge_based_graph_factory.cpp

1202 lines
59 KiB
C++
Raw Normal View History

#include "extractor/edge_based_graph_factory.hpp"
#include "extractor/conditional_turn_penalty.hpp"
#include "extractor/edge_based_edge.hpp"
2017-04-01 21:25:55 -04:00
#include "extractor/files.hpp"
#include "extractor/intersection/intersection_analysis.hpp"
#include "extractor/scripting_environment.hpp"
#include "extractor/serialization.hpp"
#include "extractor/suffix_table.hpp"
2017-03-04 05:52:40 -05:00
#include "storage/io.hpp"
2017-05-16 10:32:50 -04:00
#include "util/assert.hpp"
#include "util/bearing.hpp"
#include "util/connectivity_checksum.hpp"
2016-01-29 06:42:08 -05:00
#include "util/coordinate.hpp"
2016-01-02 11:13:44 -05:00
#include "util/coordinate_calculation.hpp"
#include "util/exception.hpp"
2016-01-02 11:13:44 -05:00
#include "util/integer_range.hpp"
#include "util/log.hpp"
#include "util/percent.hpp"
2016-01-02 11:13:44 -05:00
#include "util/timing_util.hpp"
#include <boost/assert.hpp>
#include <boost/crc.hpp>
#include <boost/functional/hash.hpp>
#include <boost/numeric/conversion/cast.hpp>
2016-01-29 06:42:08 -05:00
#include <algorithm>
#include <cmath>
#include <iomanip>
2014-05-09 08:21:33 -04:00
#include <limits>
2016-01-29 06:42:08 -05:00
#include <sstream>
#include <string>
2018-02-09 13:32:09 -05:00
#include <tuple>
#include <unordered_map>
2013-11-29 12:49:02 -05:00
#include <tbb/blocked_range.h>
#include <tbb/parallel_for.h>
#include <tbb/pipeline.h>
#include <tbb/task_scheduler_init.h>
namespace std
{
template <> struct hash<std::pair<NodeID, NodeID>>
{
std::size_t operator()(const std::pair<NodeID, NodeID> &mk) const noexcept
{
std::size_t seed = 0;
boost::hash_combine(seed, mk.first);
boost::hash_combine(seed, mk.second);
return seed;
}
};
}
// Buffer size of turn_indexes_write_buffer to reduce number of write(v) syscals
const constexpr int TURN_INDEX_WRITE_BUFFER_SIZE = 1000;
2016-01-05 10:51:13 -05:00
namespace osrm
{
namespace extractor
{
2016-01-29 06:42:08 -05:00
// Configuration to find representative candidate for turn angle calculations
EdgeBasedGraphFactory::EdgeBasedGraphFactory(
const util::NodeBasedDynamicGraph &node_based_graph,
EdgeBasedNodeDataContainer &node_data_container,
const CompressedEdgeContainer &compressed_edge_container,
const std::unordered_set<NodeID> &barrier_nodes,
const std::unordered_set<NodeID> &traffic_lights,
const std::vector<util::Coordinate> &coordinates,
2018-03-21 07:10:02 -04:00
const NameTable &name_table,
const std::unordered_set<EdgeID> &segregated_edges,
const extractor::LaneDescriptionMap &lane_description_map)
: m_edge_based_node_container(node_data_container), m_connectivity_checksum(0),
m_number_of_edge_based_nodes(0), m_coordinates(coordinates),
m_node_based_graph(std::move(node_based_graph)), m_barrier_nodes(barrier_nodes),
m_traffic_lights(traffic_lights), m_compressed_edge_container(compressed_edge_container),
name_table(name_table), segregated_edges(segregated_edges),
lane_description_map(lane_description_map)
2013-11-29 13:00:00 -05:00
{
2014-01-04 06:10:22 -05:00
}
2016-01-07 19:31:57 -05:00
void EdgeBasedGraphFactory::GetEdgeBasedEdges(
util::DeallocatingVector<EdgeBasedEdge> &output_edge_list)
2014-05-08 17:07:16 -04:00
{
BOOST_ASSERT_MSG(0 == output_edge_list.size(), "Vector is not empty");
using std::swap; // Koenig swap
swap(m_edge_based_edge_list, output_edge_list);
}
void EdgeBasedGraphFactory::GetEdgeBasedNodeSegments(std::vector<EdgeBasedNodeSegment> &nodes)
2014-05-08 17:07:16 -04:00
{
using std::swap; // Koenig swap
swap(nodes, m_edge_based_node_segments);
}
void EdgeBasedGraphFactory::GetEdgeBasedNodeWeights(std::vector<EdgeWeight> &output_node_weights)
{
using std::swap; // Koenig swap
swap(m_edge_based_node_weights, output_node_weights);
}
2018-04-22 14:05:11 -04:00
void EdgeBasedGraphFactory::GetEdgeBasedNodeDurations(
std::vector<EdgeWeight> &output_node_durations)
{
using std::swap; // Koenig swap
swap(m_edge_based_node_durations, output_node_durations);
}
void EdgeBasedGraphFactory::GetEdgeBasedNodeDistances(
std::vector<EdgeDistance> &output_node_distances)
{
using std::swap; // Koenig swap
swap(m_edge_based_node_distances, output_node_distances);
}
std::uint32_t EdgeBasedGraphFactory::GetConnectivityChecksum() const
{
return m_connectivity_checksum;
}
std::uint64_t EdgeBasedGraphFactory::GetNumberOfEdgeBasedNodes() const
{
return m_number_of_edge_based_nodes;
}
2015-07-01 11:55:54 -04:00
NBGToEBG EdgeBasedGraphFactory::InsertEdgeBasedNode(const NodeID node_u, const NodeID node_v)
2014-05-08 17:07:16 -04:00
{
2014-02-11 05:42:24 -05:00
// merge edges together into one EdgeBasedNode
BOOST_ASSERT(node_u != SPECIAL_NODEID);
BOOST_ASSERT(node_v != SPECIAL_NODEID);
2014-02-11 05:42:24 -05:00
// find forward edge id and
const EdgeID edge_id_1 = m_node_based_graph.FindEdge(node_u, node_v);
BOOST_ASSERT(edge_id_1 != SPECIAL_EDGEID);
const EdgeData &forward_data = m_node_based_graph.GetEdgeData(edge_id_1);
2014-02-11 05:42:24 -05:00
// find reverse edge id and
const EdgeID edge_id_2 = m_node_based_graph.FindEdge(node_v, node_u);
BOOST_ASSERT(edge_id_2 != SPECIAL_EDGEID);
const EdgeData &reverse_data = m_node_based_graph.GetEdgeData(edge_id_2);
2014-05-08 17:07:16 -04:00
BOOST_ASSERT(nbe_to_ebn_mapping[edge_id_1] != SPECIAL_NODEID ||
nbe_to_ebn_mapping[edge_id_2] != SPECIAL_NODEID);
2014-02-27 13:49:53 -05:00
2018-04-27 12:43:13 -04:00
// ⚠ Use the sign bit of node weights to distinguish oneway streets:
// * MSB is set - a node corresponds to a one-way street
// * MSB is clear - a node corresponds to a bidirectional street
// Before using node weights data values must be adjusted:
// * in contraction if MSB is set the node weight is INVALID_EDGE_WEIGHT.
// This adjustment is needed to enforce loop creation for oneways.
// * in other cases node weights must be masked with 0x7fffffff to clear MSB
if (nbe_to_ebn_mapping[edge_id_1] != SPECIAL_NODEID &&
nbe_to_ebn_mapping[edge_id_2] == SPECIAL_NODEID)
m_edge_based_node_weights[nbe_to_ebn_mapping[edge_id_1]] |= 0x80000000;
BOOST_ASSERT(m_compressed_edge_container.HasEntryForID(edge_id_1) ==
m_compressed_edge_container.HasEntryForID(edge_id_2));
BOOST_ASSERT(m_compressed_edge_container.HasEntryForID(edge_id_1));
BOOST_ASSERT(m_compressed_edge_container.HasEntryForID(edge_id_2));
const auto &forward_geometry = m_compressed_edge_container.GetBucketReference(edge_id_1);
2016-03-04 10:13:30 -05:00
BOOST_ASSERT(forward_geometry.size() ==
m_compressed_edge_container.GetBucketReference(edge_id_2).size());
const auto segment_count = forward_geometry.size();
2016-03-03 22:27:36 -05:00
// There should always be some geometry
BOOST_ASSERT(0 != segment_count);
// const unsigned packed_geometry_id = m_compressed_edge_container.ZipEdges(edge_id_1,
// edge_id_2);
2016-03-03 22:27:36 -05:00
2016-03-04 10:37:25 -05:00
NodeID current_edge_source_coordinate_id = node_u;
2014-05-08 17:07:16 -04:00
2016-05-27 15:05:04 -04:00
const auto edge_id_to_segment_id = [](const NodeID edge_based_node_id) {
if (edge_based_node_id == SPECIAL_NODEID)
{
return SegmentID{SPECIAL_SEGMENTID, false};
}
return SegmentID{edge_based_node_id, true};
};
// Add edge-based node data for forward and reverse nodes indexed by edge_id
BOOST_ASSERT(nbe_to_ebn_mapping[edge_id_1] != SPECIAL_EDGEID);
m_edge_based_node_container.nodes[nbe_to_ebn_mapping[edge_id_1]].geometry_id =
forward_data.geometry_id;
m_edge_based_node_container.nodes[nbe_to_ebn_mapping[edge_id_1]].annotation_id =
forward_data.annotation_data;
m_edge_based_node_container.nodes[nbe_to_ebn_mapping[edge_id_1]].segregated =
segregated_edges.count(edge_id_1) > 0;
if (nbe_to_ebn_mapping[edge_id_2] != SPECIAL_EDGEID)
{
m_edge_based_node_container.nodes[nbe_to_ebn_mapping[edge_id_2]].geometry_id =
reverse_data.geometry_id;
m_edge_based_node_container.nodes[nbe_to_ebn_mapping[edge_id_2]].annotation_id =
reverse_data.annotation_data;
m_edge_based_node_container.nodes[nbe_to_ebn_mapping[edge_id_2]].segregated =
segregated_edges.count(edge_id_2) > 0;
}
// Add segments of edge-based nodes
for (const auto i : util::irange(std::size_t{0}, segment_count))
2016-03-04 10:37:25 -05:00
{
BOOST_ASSERT(
current_edge_source_coordinate_id ==
m_compressed_edge_container.GetBucketReference(edge_id_2)[segment_count - 1 - i]
.node_id);
2016-03-04 10:37:25 -05:00
const NodeID current_edge_target_coordinate_id = forward_geometry[i].node_id;
// don't add node-segments for penalties
if (current_edge_target_coordinate_id == current_edge_source_coordinate_id)
continue;
2016-03-04 10:37:25 -05:00
BOOST_ASSERT(current_edge_target_coordinate_id != current_edge_source_coordinate_id);
// build edges
m_edge_based_node_segments.emplace_back(
edge_id_to_segment_id(nbe_to_ebn_mapping[edge_id_1]),
edge_id_to_segment_id(nbe_to_ebn_mapping[edge_id_2]),
current_edge_source_coordinate_id,
current_edge_target_coordinate_id,
i,
forward_data.flags.startpoint || reverse_data.flags.startpoint);
2016-03-04 10:37:25 -05:00
current_edge_source_coordinate_id = current_edge_target_coordinate_id;
}
2016-03-04 10:37:25 -05:00
BOOST_ASSERT(current_edge_source_coordinate_id == node_v);
return NBGToEBG{node_u, node_v, nbe_to_ebn_mapping[edge_id_1], nbe_to_ebn_mapping[edge_id_2]};
}
2018-02-09 13:32:09 -05:00
void EdgeBasedGraphFactory::Run(
ScriptingEnvironment &scripting_environment,
const std::string &turn_weight_penalties_filename,
const std::string &turn_duration_penalties_filename,
const std::string &turn_penalties_index_filename,
const std::string &cnbg_ebg_mapping_path,
const std::string &conditional_penalties_filename,
const std::string &maneuver_overrides_filename,
const RestrictionMap &node_restriction_map,
const ConditionalRestrictionMap &conditional_node_restriction_map,
const WayRestrictionMap &way_restriction_map,
const std::vector<UnresolvedManeuverOverride> &unresolved_maneuver_overrides)
2014-05-08 17:07:16 -04:00
{
2014-05-08 17:51:28 -04:00
TIMER_START(renumber);
m_number_of_edge_based_nodes =
LabelEdgeBasedNodes() + way_restriction_map.NumberOfDuplicatedNodes();
2014-05-08 17:51:28 -04:00
TIMER_STOP(renumber);
// Allocate memory for edge-based nodes
// In addition to the normal edges, allocate enough space for copied edges from
// via-way-restrictions, see calculation above
m_edge_based_node_container.nodes.resize(m_number_of_edge_based_nodes);
2014-05-08 17:51:28 -04:00
TIMER_START(generate_nodes);
{
auto mapping = GenerateEdgeExpandedNodes(way_restriction_map);
files::writeNBGMapping(cnbg_ebg_mapping_path, mapping);
}
2014-05-08 17:51:28 -04:00
TIMER_STOP(generate_nodes);
2014-05-08 17:51:28 -04:00
TIMER_START(generate_edges);
GenerateEdgeExpandedEdges(scripting_environment,
turn_weight_penalties_filename,
turn_duration_penalties_filename,
turn_penalties_index_filename,
conditional_penalties_filename,
2018-02-09 13:32:09 -05:00
maneuver_overrides_filename,
2017-07-27 05:42:13 -04:00
node_restriction_map,
conditional_node_restriction_map,
2018-02-09 13:32:09 -05:00
way_restriction_map,
unresolved_maneuver_overrides);
2014-05-08 17:51:28 -04:00
TIMER_STOP(generate_edges);
util::Log() << "Timing statistics for edge-expanded graph:";
util::Log() << "Renumbering edges: " << TIMER_SEC(renumber) << "s";
util::Log() << "Generating nodes: " << TIMER_SEC(generate_nodes) << "s";
util::Log() << "Generating edges: " << TIMER_SEC(generate_edges) << "s";
}
/// Renumbers all _forward_ edges and sets the edge_id.
/// A specific numbering is not important. Any unique ID will do.
2017-07-27 05:42:13 -04:00
/// Returns the number of edge-based nodes.
unsigned EdgeBasedGraphFactory::LabelEdgeBasedNodes()
{
// heuristic: node-based graph node is a simple intersection with four edges
// (edge-based nodes)
constexpr std::size_t ESTIMATED_EDGE_COUNT = 4;
m_edge_based_node_weights.reserve(ESTIMATED_EDGE_COUNT * m_node_based_graph.GetNumberOfNodes());
m_edge_based_node_durations.reserve(ESTIMATED_EDGE_COUNT *
m_node_based_graph.GetNumberOfNodes());
m_edge_based_node_distances.reserve(ESTIMATED_EDGE_COUNT *
m_node_based_graph.GetNumberOfNodes());
nbe_to_ebn_mapping.resize(m_node_based_graph.GetEdgeCapacity(), SPECIAL_NODEID);
// renumber edge based node of outgoing edges
2014-02-11 05:42:24 -05:00
unsigned numbered_edges_count = 0;
for (const auto current_node : util::irange(0u, m_node_based_graph.GetNumberOfNodes()))
2014-05-08 17:07:16 -04:00
{
for (const auto current_edge : m_node_based_graph.GetAdjacentEdgeRange(current_node))
2014-05-08 17:07:16 -04:00
{
const EdgeData &edge_data = m_node_based_graph.GetEdgeData(current_edge);
// only number incoming edges
if (edge_data.reversed)
2014-05-08 17:07:16 -04:00
{
2014-01-04 06:10:22 -05:00
continue;
}
m_edge_based_node_weights.push_back(edge_data.weight);
2018-04-22 14:05:11 -04:00
m_edge_based_node_durations.push_back(edge_data.duration);
m_edge_based_node_distances.push_back(edge_data.distance);
BOOST_ASSERT(numbered_edges_count < m_node_based_graph.GetNumberOfEdges());
nbe_to_ebn_mapping[current_edge] = numbered_edges_count;
2014-02-11 05:42:24 -05:00
++numbered_edges_count;
2014-01-04 06:10:22 -05:00
}
}
2015-07-01 11:55:54 -04:00
return numbered_edges_count;
}
2012-04-20 12:34:49 -04:00
// Creates the nodes in the edge expanded graph from edges in the node-based graph.
std::vector<NBGToEBG>
EdgeBasedGraphFactory::GenerateEdgeExpandedNodes(const WayRestrictionMap &way_restriction_map)
{
std::vector<NBGToEBG> mapping;
util::Log() << "Generating edge expanded nodes ... ";
// indicating a normal node within the edge-based graph. This node represents an edge in the
// node-based graph
{
util::UnbufferedLog log;
util::Percent progress(log, m_node_based_graph.GetNumberOfNodes());
2014-02-11 05:42:24 -05:00
// m_compressed_edge_container.InitializeBothwayVector();
// loop over all edges and generate new set of nodes
for (const auto nbg_node_u : util::irange(0u, m_node_based_graph.GetNumberOfNodes()))
2014-05-08 17:07:16 -04:00
{
BOOST_ASSERT(nbg_node_u != SPECIAL_NODEID);
progress.PrintStatus(nbg_node_u);
for (EdgeID nbg_edge_id : m_node_based_graph.GetAdjacentEdgeRange(nbg_node_u))
2014-05-08 17:07:16 -04:00
{
BOOST_ASSERT(nbg_edge_id != SPECIAL_EDGEID);
const NodeID nbg_node_v = m_node_based_graph.GetTarget(nbg_edge_id);
BOOST_ASSERT(nbg_node_v != SPECIAL_NODEID);
BOOST_ASSERT(nbg_node_u != nbg_node_v);
// pick only every other edge, since we have every edge as an outgoing and incoming
// egde
if (nbg_node_u >= nbg_node_v)
{
continue;
}
2014-02-27 13:49:53 -05:00
// if we found a non-forward edge reverse and try again
if (nbe_to_ebn_mapping[nbg_edge_id] == SPECIAL_NODEID)
{
mapping.push_back(InsertEdgeBasedNode(nbg_node_v, nbg_node_u));
}
else
{
mapping.push_back(InsertEdgeBasedNode(nbg_node_u, nbg_node_v));
2017-03-06 08:06:01 -05:00
}
}
}
}
util::Log() << "Expanding via-way turn restrictions ... ";
// Add copies of the nodes
{
util::UnbufferedLog log;
const auto via_ways = way_restriction_map.DuplicatedNodeRepresentatives();
util::Percent progress(log, via_ways.size());
NodeID edge_based_node_id =
NodeID(m_number_of_edge_based_nodes - way_restriction_map.NumberOfDuplicatedNodes());
std::size_t progress_counter = 0;
// allocate enough space for the mapping
for (const auto way : via_ways)
{
const auto node_u = way.from;
const auto node_v = way.to;
// we know that the edge exists as non-reversed edge
const auto eid = m_node_based_graph.FindEdge(node_u, node_v);
BOOST_ASSERT(nbe_to_ebn_mapping[eid] != SPECIAL_NODEID);
// merge edges together into one EdgeBasedNode
BOOST_ASSERT(node_u != SPECIAL_NODEID);
BOOST_ASSERT(node_v != SPECIAL_NODEID);
// find node in the edge based graph, we only require one id:
const EdgeData &edge_data = m_node_based_graph.GetEdgeData(eid);
// BOOST_ASSERT(edge_data.edge_id < m_edge_based_node_container.Size());
m_edge_based_node_container.nodes[edge_based_node_id].geometry_id =
edge_data.geometry_id;
m_edge_based_node_container.nodes[edge_based_node_id].annotation_id =
edge_data.annotation_data;
m_edge_based_node_container.nodes[edge_based_node_id].segregated =
segregated_edges.count(eid) > 0;
const auto ebn_weight = m_edge_based_node_weights[nbe_to_ebn_mapping[eid]];
BOOST_ASSERT((ebn_weight & 0x7fffffff) == edge_data.weight);
m_edge_based_node_weights.push_back(ebn_weight);
2018-04-22 14:05:11 -04:00
m_edge_based_node_durations.push_back(
m_edge_based_node_durations[nbe_to_ebn_mapping[eid]]);
m_edge_based_node_distances.push_back(
m_edge_based_node_distances[nbe_to_ebn_mapping[eid]]);
edge_based_node_id++;
progress.PrintStatus(progress_counter++);
}
}
BOOST_ASSERT(m_number_of_edge_based_nodes == m_edge_based_node_weights.size());
2018-04-22 14:05:11 -04:00
BOOST_ASSERT(m_number_of_edge_based_nodes == m_edge_based_node_durations.size());
BOOST_ASSERT(m_number_of_edge_based_nodes == m_edge_based_node_distances.size());
2017-07-27 05:42:13 -04:00
util::Log() << "Generated " << m_number_of_edge_based_nodes << " nodes ("
<< way_restriction_map.NumberOfDuplicatedNodes()
<< " of which are duplicates) and " << m_edge_based_node_segments.size()
<< " segments in edge-expanded graph";
return mapping;
}
2017-04-01 21:00:03 -04:00
/// Actually it also generates turn data and serializes them...
2015-01-22 06:19:11 -05:00
void EdgeBasedGraphFactory::GenerateEdgeExpandedEdges(
ScriptingEnvironment &scripting_environment,
const std::string &turn_weight_penalties_filename,
const std::string &turn_duration_penalties_filename,
const std::string &turn_penalties_index_filename,
const std::string &conditional_penalties_filename,
2018-02-09 13:32:09 -05:00
const std::string &maneuver_overrides_filename,
2017-07-27 05:42:13 -04:00
const RestrictionMap &node_restriction_map,
const ConditionalRestrictionMap &conditional_restriction_map,
2018-02-09 13:32:09 -05:00
const WayRestrictionMap &way_restriction_map,
const std::vector<UnresolvedManeuverOverride> &unresolved_maneuver_overrides)
{
util::Log() << "Generating edge-expanded edges ";
2013-08-16 05:08:07 -04:00
2016-01-29 06:42:08 -05:00
std::size_t node_based_edge_counter = 0;
2018-03-22 08:15:40 -04:00
storage::tar::FileWriter turn_penalties_index_file(
turn_penalties_index_filename, storage::tar::FileWriter::GenerateFingerprint);
turn_penalties_index_file.WriteFrom("/extractor/turn_index", (char *)nullptr, 0);
SuffixTable street_name_suffix_table(scripting_environment);
const auto &turn_lanes_data = transformTurnLaneMapIntoArrays(lane_description_map);
intersection::MergableRoadDetector mergable_road_detector(m_node_based_graph,
m_edge_based_node_container,
m_coordinates,
m_compressed_edge_container,
node_restriction_map,
m_barrier_nodes,
turn_lanes_data,
name_table,
street_name_suffix_table);
// FIXME these need to be tuned in pre-allocated size
std::vector<TurnPenalty> turn_weight_penalties;
std::vector<TurnPenalty> turn_duration_penalties;
2018-02-09 13:32:09 -05:00
// Now, renumber all our maneuver overrides to use edge-based-nodes
std::vector<StorageManeuverOverride> storage_maneuver_overrides;
std::vector<NodeID> maneuver_override_sequences;
const auto weight_multiplier =
scripting_environment.GetProfileProperties().GetWeightMultiplier();
// filled in during next stage, kept alive through following scope
std::vector<Conditional> conditionals;
// The following block generates the edge-based-edges using a parallel processing pipeline.
// Sets of intersection IDs are batched in groups of GRAINSIZE (100) `generator_stage`, then
// those groups are processed in parallel `processor_stage`. Finally, results are appended to
// the various buffer vectors by the `output_stage` in the same order that the `generator_stage`
// created them in (tbb::filter::serial_in_order creates this guarantee). The order needs to be
// maintained because we depend on it later in the processing pipeline.
2014-04-28 13:37:42 -04:00
{
const NodeID node_count = m_node_based_graph.GetNumberOfNodes();
// Because we write TurnIndexBlock data as we go, we'll
// buffer them into groups of 1000 to reduce the syscall
// count by 1000x. This doesn't need much memory, but
// greatly reduces the syscall overhead of writing lots
// of small objects
std::vector<lookup::TurnIndexBlock> turn_indexes_write_buffer;
turn_indexes_write_buffer.reserve(TURN_INDEX_WRITE_BUFFER_SIZE);
// This struct is the buffered output of the `processor_stage`. This data is
// appended to the various output arrays/files by the `output_stage`.
2017-12-01 18:37:09 -05:00
// same as IntersectionData, but grouped with edge to allow sorting after creating.
struct EdgeWithData
{
EdgeBasedEdge edge;
lookup::TurnIndexBlock turn_index;
TurnPenalty turn_weight_penalty;
TurnPenalty turn_duration_penalty;
};
auto const transfer_data = [&](const EdgeWithData &edge_with_data) {
m_edge_based_edge_list.push_back(edge_with_data.edge);
turn_weight_penalties.push_back(edge_with_data.turn_weight_penalty);
turn_duration_penalties.push_back(edge_with_data.turn_duration_penalty);
turn_indexes_write_buffer.push_back(edge_with_data.turn_index);
};
struct EdgesPipelineBuffer
{
std::size_t nodes_processed = 0;
2017-11-09 11:40:06 -05:00
std::vector<EdgeWithData> continuous_data; // may need this
std::vector<EdgeWithData> delayed_data; // may need this
std::vector<Conditional> conditionals;
2018-02-09 13:32:09 -05:00
std::unordered_map<NodeBasedTurn, std::pair<NodeID, NodeID>> turn_to_ebn_map;
util::ConnectivityChecksum checksum;
};
using EdgesPipelineBufferPtr = std::shared_ptr<EdgesPipelineBuffer>;
m_connectivity_checksum = 0;
2018-02-09 13:32:09 -05:00
std::unordered_map<NodeBasedTurn, std::pair<NodeID, NodeID>> global_turn_to_ebn_map;
// going over all nodes (which form the center of an intersection), we compute all possible
// turns along these intersections.
NodeID current_node = 0;
// Handle intersections in sets of 100. The pipeline below has a serial bottleneck during
// the writing phase, so we want to make the parallel workers do more work to give the
// serial final stage time to complete its tasks.
const constexpr unsigned GRAINSIZE = 100;
// First part of the pipeline generates iterator ranges of IDs in sets of GRAINSIZE
tbb::filter_t<void, tbb::blocked_range<NodeID>> generator_stage(
tbb::filter::serial_in_order, [&](tbb::flow_control &fc) {
if (current_node < node_count)
{
auto next_node = std::min(current_node + GRAINSIZE, node_count);
auto result = tbb::blocked_range<NodeID>(current_node, next_node);
current_node = next_node;
return result;
}
else
{
fc.stop();
return tbb::blocked_range<NodeID>(node_count, node_count);
}
});
// Generate edges for either artificial nodes or the main graph
const auto generate_edge = [this,
&scripting_environment,
weight_multiplier,
&conditional_restriction_map](
2018-03-22 14:26:40 -04:00
// what nodes will be used? In most cases this will be the id
// stored in the edge_data. In case of duplicated nodes (e.g.
// due to via-way restrictions), one/both of these might
// refer to a newly added edge based node
const auto edge_based_node_from,
const auto edge_based_node_to,
// the situation of the turn
const auto node_along_road_entering,
const auto node_based_edge_from,
const auto intersection_node,
const auto node_based_edge_to,
const auto &turn_angle,
const auto &road_legs_on_the_right,
const auto &road_legs_on_the_left,
const auto &edge_geometries) {
const auto node_restricted =
isRestricted(node_along_road_entering,
intersection_node,
m_node_based_graph.GetTarget(node_based_edge_to),
conditional_restriction_map);
boost::optional<Conditional> conditional = boost::none;
if (node_restricted.first)
{
auto const &conditions = node_restricted.second->condition;
// get conditions of the restriction limiting the node
conditional = {{edge_based_node_from,
edge_based_node_to,
{static_cast<std::uint64_t>(-1),
2017-12-05 08:54:20 -05:00
m_coordinates[intersection_node],
conditions}}};
}
const auto &edge_data1 = m_node_based_graph.GetEdgeData(node_based_edge_from);
const auto &edge_data2 = m_node_based_graph.GetEdgeData(node_based_edge_to);
BOOST_ASSERT(nbe_to_ebn_mapping[node_based_edge_from] !=
nbe_to_ebn_mapping[node_based_edge_to]);
BOOST_ASSERT(!edge_data1.reversed);
BOOST_ASSERT(!edge_data2.reversed);
// compute weight and duration penalties
const auto is_traffic_light = m_traffic_lights.count(intersection_node);
const auto is_uturn =
guidance::getTurnDirection(turn_angle) == guidance::DirectionModifier::UTurn;
ExtractionTurn extracted_turn(
// general info
turn_angle,
road_legs_on_the_right.size() + road_legs_on_the_left.size() + 2 - is_uturn,
is_uturn,
is_traffic_light,
m_edge_based_node_container.GetAnnotation(edge_data1.annotation_data)
.is_left_hand_driving,
// source info
edge_data1.flags.restricted,
m_edge_based_node_container.GetAnnotation(edge_data1.annotation_data).travel_mode,
edge_data1.flags.road_classification.IsMotorwayClass(),
edge_data1.flags.road_classification.IsLinkClass(),
edge_data1.flags.road_classification.GetNumberOfLanes(),
edge_data1.flags.highway_turn_classification,
edge_data1.flags.access_turn_classification,
((double)intersection::findEdgeLength(edge_geometries, node_based_edge_from) /
edge_data1.duration) *
36,
edge_data1.flags.road_classification.GetPriority(),
// target info
edge_data2.flags.restricted,
m_edge_based_node_container.GetAnnotation(edge_data2.annotation_data).travel_mode,
edge_data2.flags.road_classification.IsMotorwayClass(),
edge_data2.flags.road_classification.IsLinkClass(),
edge_data2.flags.road_classification.GetNumberOfLanes(),
edge_data2.flags.highway_turn_classification,
edge_data2.flags.access_turn_classification,
((double)intersection::findEdgeLength(edge_geometries, node_based_edge_to) /
edge_data2.duration) *
36,
edge_data2.flags.road_classification.GetPriority(),
// connected roads
road_legs_on_the_right,
road_legs_on_the_left);
scripting_environment.ProcessTurn(extracted_turn);
// turn penalties are limited to [-2^15, 2^15) which roughly translates to 54 minutes
// and fits signed 16bit deci-seconds
auto weight_penalty =
boost::numeric_cast<TurnPenalty>(extracted_turn.weight * weight_multiplier);
auto duration_penalty = boost::numeric_cast<TurnPenalty>(extracted_turn.duration * 10.);
BOOST_ASSERT(SPECIAL_NODEID != nbe_to_ebn_mapping[node_based_edge_from]);
BOOST_ASSERT(SPECIAL_NODEID != nbe_to_ebn_mapping[node_based_edge_to]);
// auto turn_id = m_edge_based_edge_list.size();
auto weight = boost::numeric_cast<EdgeWeight>(edge_data1.weight + weight_penalty);
auto duration = boost::numeric_cast<EdgeWeight>(edge_data1.duration + duration_penalty);
auto distance = boost::numeric_cast<EdgeDistance>(edge_data1.distance);
EdgeBasedEdge edge_based_edge = {edge_based_node_from,
edge_based_node_to,
SPECIAL_NODEID, // This will be updated once the main
// loop completes!
weight,
duration,
distance,
true,
false};
// We write out the mapping between the edge-expanded edges and the original nodes.
// Since each edge represents a possible maneuver, external programs can use this to
// quickly perform updates to edge weights in order to penalize certain turns.
// If this edge is 'trivial' -- where the compressed edge corresponds exactly to an
// original OSM segment -- we can pull the turn's preceding node ID directly with
// `node_along_road_entering`;
// otherwise, we need to look up the node immediately preceding the turn from the
// compressed edge container.
const bool isTrivial = m_compressed_edge_container.IsTrivial(node_based_edge_from);
const auto &from_node =
isTrivial ? node_along_road_entering
: m_compressed_edge_container.GetLastEdgeSourceID(node_based_edge_from);
const auto &to_node =
m_compressed_edge_container.GetFirstEdgeTargetID(node_based_edge_to);
2017-12-05 08:54:20 -05:00
lookup::TurnIndexBlock turn_index_block = {from_node, intersection_node, to_node};
// insert data into the designated buffer
return std::make_pair(
EdgeWithData{edge_based_edge, turn_index_block, weight_penalty, duration_penalty},
conditional);
};
//
// Edge-based-graph stage
//
tbb::filter_t<tbb::blocked_range<NodeID>, EdgesPipelineBufferPtr> processor_stage(
tbb::filter::parallel, [&](const tbb::blocked_range<NodeID> &intersection_node_range) {
auto buffer = std::make_shared<EdgesPipelineBuffer>();
buffer->nodes_processed = intersection_node_range.size();
2017-12-05 08:54:20 -05:00
for (auto intersection_node = intersection_node_range.begin(),
end = intersection_node_range.end();
2017-12-05 08:54:20 -05:00
intersection_node < end;
++intersection_node)
{
// We capture the thread-local work in these objects, then flush them in a
// controlled manner at the end of the parallel range
2017-12-05 08:54:20 -05:00
const auto &incoming_edges =
intersection::getIncomingEdges(m_node_based_graph, intersection_node);
const auto &outgoing_edges =
intersection::getOutgoingEdges(m_node_based_graph, intersection_node);
intersection::IntersectionEdgeGeometries edge_geometries;
std::unordered_set<EdgeID> merged_edge_ids;
std::tie(edge_geometries, merged_edge_ids) =
intersection::getIntersectionGeometries(m_node_based_graph,
m_compressed_edge_container,
m_coordinates,
mergable_road_detector,
2017-12-05 08:54:20 -05:00
intersection_node);
buffer->checksum.process_byte(incoming_edges.size());
buffer->checksum.process_byte(outgoing_edges.size());
// all nodes in the graph are connected in both directions. We check all
// outgoing nodes to find the incoming edge. This is a larger search overhead,
// but the cost we need to pay to generate edges here is worth the additional
// search overhead.
//
// a -> b <-> c
// |
// v
// d
//
// will have:
// a: b,rev=0
// b: a,rev=1 c,rev=0 d,rev=0
// c: b,rev=0
//
// From the flags alone, we cannot determine which nodes are connected to `b` by
// an outgoing edge. Therefore, we have to search all connected edges for edges
// entering `b`
for (const auto &incoming_edge : incoming_edges)
{
++node_based_edge_counter;
const auto intersection_view =
convertToIntersectionView(m_node_based_graph,
m_edge_based_node_container,
node_restriction_map,
m_barrier_nodes,
edge_geometries,
turn_lanes_data,
incoming_edge,
outgoing_edges,
merged_edge_ids);
// check if we are turning off a via way
2017-12-05 08:54:20 -05:00
const auto turning_off_via_way =
way_restriction_map.IsViaWay(incoming_edge.node, intersection_node);
for (const auto &outgoing_edge : outgoing_edges)
{
auto is_turn_allowed =
intersection::isTurnAllowed(m_node_based_graph,
m_edge_based_node_container,
node_restriction_map,
m_barrier_nodes,
edge_geometries,
turn_lanes_data,
incoming_edge,
outgoing_edge);
buffer->checksum.process_bit(is_turn_allowed);
if (!is_turn_allowed)
continue;
const auto turn =
std::find_if(intersection_view.begin(),
intersection_view.end(),
[edge = outgoing_edge.edge](const auto &road) {
return road.eid == edge;
});
OSRM_ASSERT(turn != intersection_view.end(),
2017-12-05 08:54:20 -05:00
m_coordinates[intersection_node]);
std::vector<ExtractionTurnLeg> road_legs_on_the_right;
std::vector<ExtractionTurnLeg> road_legs_on_the_left;
auto get_connected_road_info = [&](const auto &connected_edge) {
const auto &edge_data =
m_node_based_graph.GetEdgeData(connected_edge.eid);
return ExtractionTurnLeg(
edge_data.flags.restricted,
edge_data.flags.road_classification.IsMotorwayClass(),
edge_data.flags.road_classification.IsLinkClass(),
edge_data.flags.road_classification.GetNumberOfLanes(),
edge_data.flags.highway_turn_classification,
edge_data.flags.access_turn_classification,
((double)intersection::findEdgeLength(edge_geometries,
connected_edge.eid) /
edge_data.duration) *
36,
edge_data.flags.road_classification.GetPriority(),
!connected_edge.entry_allowed ||
(edge_data.flags.forward &&
edge_data.flags.backward), // is incoming
connected_edge.entry_allowed);
};
// all connected roads on the right of a u turn
const auto is_uturn = guidance::getTurnDirection(turn->angle) ==
guidance::DirectionModifier::UTurn;
if (is_uturn)
{
if (turn != intersection_view.begin())
{
std::transform(intersection_view.begin() + 1,
turn,
std::back_inserter(road_legs_on_the_right),
get_connected_road_info);
}
std::transform(turn + 1,
intersection_view.end(),
std::back_inserter(road_legs_on_the_right),
get_connected_road_info);
}
else
{
if (intersection_view.begin() != turn)
{
std::transform(intersection_view.begin() + 1,
turn,
std::back_inserter(road_legs_on_the_right),
get_connected_road_info);
}
std::transform(turn + 1,
intersection_view.end(),
std::back_inserter(road_legs_on_the_left),
get_connected_road_info);
}
if (is_uturn && turn != intersection_view.begin())
{
util::Log(logWARNING)
<< "Turn is a u turn but not turning to the first connected "
"edge of the intersection. Node ID: "
<< intersection_node << ", OSM link: "
<< toOSMLink(m_coordinates[intersection_node]);
}
else if (turn == intersection_view.begin() && !is_uturn)
{
util::Log(logWARNING)
<< "Turn is a u turn but not classified as a u turn. Node ID: "
<< intersection_node << ", OSM link: "
<< toOSMLink(m_coordinates[intersection_node]);
}
// In case a way restriction starts at a given location, add a turn onto
// every artificial node eminating here.
//
// e - f
// |
// a - b
// |
// c - d
//
// ab via bc to cd
// ab via be to ef
//
// has two artifical nodes (be/bc) with restrictions starting at `ab`.
// Since every restriction group (abc | abe) refers to the same
// artificial node, we simply have to find a single representative for
// the turn. Here we check whether the turn in question is the start of
// a via way restriction. If that should be the case, we switch the id
// of the edge-based-node for the target to the ID of the duplicated
// node associated with the turn. (e.g. ab via bc switches bc to bc_dup)
auto const target_id = way_restriction_map.RemapIfRestricted(
nbe_to_ebn_mapping[outgoing_edge.edge],
incoming_edge.node,
outgoing_edge.node,
m_node_based_graph.GetTarget(outgoing_edge.edge),
m_number_of_edge_based_nodes);
2018-02-09 13:32:09 -05:00
/***************************/
const auto edgetarget =
m_node_based_graph.GetTarget(outgoing_edge.edge);
// TODO: this loop is not optimized - once we have a few
// overrides available, we should index this for faster
// lookups
2018-03-22 14:26:40 -04:00
for (auto & override : unresolved_maneuver_overrides)
2018-02-09 13:32:09 -05:00
{
for (auto &turn : override.turn_sequence)
{
if (turn.from == incoming_edge.node &&
turn.via == intersection_node && turn.to == edgetarget)
{
const auto &ebn_from =
nbe_to_ebn_mapping[incoming_edge.edge];
const auto &ebn_to = target_id;
buffer->turn_to_ebn_map[turn] =
std::make_pair(ebn_from, ebn_to);
}
}
}
2017-07-27 05:42:13 -04:00
{ // scope to forget edge_with_data after
const auto edge_with_data_and_condition =
generate_edge(nbe_to_ebn_mapping[incoming_edge.edge],
2017-07-27 05:42:13 -04:00
target_id,
incoming_edge.node,
incoming_edge.edge,
outgoing_edge.node,
outgoing_edge.edge,
turn->angle,
road_legs_on_the_right,
road_legs_on_the_left,
edge_geometries);
2017-07-27 05:42:13 -04:00
buffer->continuous_data.push_back(
edge_with_data_and_condition.first);
if (edge_with_data_and_condition.second)
{
buffer->conditionals.push_back(
*edge_with_data_and_condition.second);
}
2017-07-27 05:42:13 -04:00
}
// when turning off a a via-way turn restriction, we need to not only
// handle the normal edges for the way, but also add turns for every
// duplicated node. This process is integrated here to avoid doing the
// turn analysis multiple times.
if (turning_off_via_way)
{
const auto duplicated_nodes = way_restriction_map.DuplicatedNodeIDs(
2017-12-05 08:54:20 -05:00
incoming_edge.node, intersection_node);
// next to the normal restrictions tracked in `entry_allowed`, via
// ways might introduce additional restrictions. These are handled
// here when turning off a via-way
2017-08-01 16:57:28 -04:00
for (auto duplicated_node_id : duplicated_nodes)
{
const auto from_id =
NodeID(m_number_of_edge_based_nodes -
way_restriction_map.NumberOfDuplicatedNodes() +
duplicated_node_id);
2017-08-01 16:57:28 -04:00
auto const node_at_end_of_turn =
m_node_based_graph.GetTarget(outgoing_edge.edge);
2017-08-01 16:57:28 -04:00
const auto is_way_restricted = way_restriction_map.IsRestricted(
2017-08-01 16:57:28 -04:00
duplicated_node_id, node_at_end_of_turn);
if (is_way_restricted)
{
auto const restriction = way_restriction_map.GetRestriction(
duplicated_node_id, node_at_end_of_turn);
if (restriction.condition.empty())
continue;
// add into delayed data
auto edge_with_data_and_condition =
generate_edge(from_id,
nbe_to_ebn_mapping[outgoing_edge.edge],
incoming_edge.node,
incoming_edge.edge,
outgoing_edge.node,
outgoing_edge.edge,
turn->angle,
road_legs_on_the_right,
road_legs_on_the_left,
edge_geometries);
buffer->delayed_data.push_back(
edge_with_data_and_condition.first);
if (edge_with_data_and_condition.second)
{
buffer->conditionals.push_back(
*edge_with_data_and_condition.second);
}
// also add the conditions for the way
if (is_way_restricted && !restriction.condition.empty())
{
// add a new conditional for the edge we just created
buffer->conditionals.push_back(
{from_id,
nbe_to_ebn_mapping[outgoing_edge.edge],
{static_cast<std::uint64_t>(-1),
2017-12-05 08:54:20 -05:00
m_coordinates[intersection_node],
restriction.condition}});
}
}
else
{
auto edge_with_data_and_condition =
generate_edge(from_id,
nbe_to_ebn_mapping[outgoing_edge.edge],
incoming_edge.node,
incoming_edge.edge,
outgoing_edge.node,
outgoing_edge.edge,
turn->angle,
road_legs_on_the_right,
road_legs_on_the_left,
edge_geometries);
buffer->delayed_data.push_back(
edge_with_data_and_condition.first);
if (edge_with_data_and_condition.second)
{
buffer->conditionals.push_back(
*edge_with_data_and_condition.second);
}
}
2017-08-01 16:57:28 -04:00
}
}
}
}
}
return buffer;
});
// Last part of the pipeline puts all the calculated data into the serial buffers
util::UnbufferedLog log;
2017-12-01 18:37:09 -05:00
util::Percent routing_progress(log, node_count);
std::vector<EdgeWithData> delayed_data;
tbb::filter_t<EdgesPipelineBufferPtr, void> output_stage(
tbb::filter::serial_in_order, [&](auto buffer) {
2017-12-01 18:37:09 -05:00
routing_progress.PrintAddition(buffer->nodes_processed);
m_connectivity_checksum = buffer->checksum.update_checksum(m_connectivity_checksum);
// Copy data from local buffers into global EBG data
std::for_each(
buffer->continuous_data.begin(), buffer->continuous_data.end(), transfer_data);
conditionals.insert(
conditionals.end(), buffer->conditionals.begin(), buffer->conditionals.end());
// NOTE: potential overflow here if we hit 2^32 routable edges
BOOST_ASSERT(m_edge_based_edge_list.size() <= std::numeric_limits<NodeID>::max());
2017-07-27 05:42:13 -04:00
// Buffer writes to reduce syscall count
if (turn_indexes_write_buffer.size() >= TURN_INDEX_WRITE_BUFFER_SIZE)
{
2018-03-22 08:15:40 -04:00
turn_penalties_index_file.ContinueFrom("/extractor/turn_index",
turn_indexes_write_buffer.data(),
turn_indexes_write_buffer.size());
2017-07-27 05:42:13 -04:00
turn_indexes_write_buffer.clear();
}
// Copy via-way restrictions delayed data
delayed_data.insert(
delayed_data.end(), buffer->delayed_data.begin(), buffer->delayed_data.end());
2018-02-09 13:32:09 -05:00
std::for_each(buffer->turn_to_ebn_map.begin(),
buffer->turn_to_ebn_map.end(),
[&global_turn_to_ebn_map](const auto &p) {
// TODO: log conflicts here
global_turn_to_ebn_map.insert(p);
});
});
// Now, execute the pipeline. The value of "5" here was chosen by experimentation
// on a 16-CPU machine and seemed to give the best performance. This value needs
// to be balanced with the GRAINSIZE above - ideally, the pipeline puts as much work
// as possible in the `intersection_handler` step so that those parallel workers don't
// get blocked too much by the slower (io-performing) `buffer_storage`
tbb::parallel_pipeline(tbb::task_scheduler_init::default_num_threads() * 5,
generator_stage & processor_stage & output_stage);
// NOTE: buffer.delayed_data and buffer.delayed_turn_data have the same index
std::for_each(delayed_data.begin(), delayed_data.end(), transfer_data);
2018-02-09 13:32:09 -05:00
// Now, replace node-based-node ID values in the `node_sequence` with
// the edge-based-node values we found and stored in the `turn_to_ebn_map`
for (auto &unresolved_override : unresolved_maneuver_overrides)
{
StorageManeuverOverride storage_override;
storage_override.instruction_node = unresolved_override.instruction_node;
storage_override.override_type = unresolved_override.override_type;
storage_override.direction = unresolved_override.direction;
std::vector<NodeID> node_sequence(unresolved_override.turn_sequence.size() + 1,
SPECIAL_NODEID);
for (std::int64_t i = unresolved_override.turn_sequence.size() - 1; i >= 0; --i)
{
const auto v = global_turn_to_ebn_map.find(unresolved_override.turn_sequence[i]);
if (v != global_turn_to_ebn_map.end())
{
node_sequence[i] = v->second.first;
node_sequence[i + 1] = v->second.second;
}
}
storage_override.node_sequence_offset_begin = maneuver_override_sequences.size();
storage_override.node_sequence_offset_end =
maneuver_override_sequences.size() + node_sequence.size();
storage_override.start_node = node_sequence.front();
maneuver_override_sequences.insert(
maneuver_override_sequences.end(), node_sequence.begin(), node_sequence.end());
storage_maneuver_overrides.push_back(storage_override);
}
// Flush the turn_indexes_write_buffer if it's not empty
if (!turn_indexes_write_buffer.empty())
{
2018-03-22 08:15:40 -04:00
turn_penalties_index_file.ContinueFrom("/extractor/turn_index",
turn_indexes_write_buffer.data(),
turn_indexes_write_buffer.size());
turn_indexes_write_buffer.clear();
2011-10-10 11:52:47 -04:00
}
}
2018-02-09 13:32:09 -05:00
{
util::Log() << "Sorting and writing " << storage_maneuver_overrides.size()
<< " maneuver overrides...";
// Sort by `from_node`, so that later lookups can be done with a binary search.
std::sort(storage_maneuver_overrides.begin(),
storage_maneuver_overrides.end(),
[](const auto &a, const auto &b) { return a.start_node < b.start_node; });
files::writeManeuverOverrides(
maneuver_overrides_filename, storage_maneuver_overrides, maneuver_override_sequences);
2018-02-09 13:32:09 -05:00
}
util::Log() << "done.";
util::Log() << "Renumbering turns";
// Now, update the turn_id property on every EdgeBasedEdge - it will equal the position in the
// m_edge_based_edge_list array for each object.
tbb::parallel_for(tbb::blocked_range<NodeID>(0, m_edge_based_edge_list.size()),
[this](const tbb::blocked_range<NodeID> &range) {
for (auto x = range.begin(), end = range.end(); x != end; ++x)
{
m_edge_based_edge_list[x].data.turn_id = x;
}
});
// re-hash conditionals to connect to their respective edge-based edges. Due to the ordering, we
// do not really have a choice but to index the conditional penalties and walk over all
// edge-based-edges to find the ID of the edge
auto const indexed_conditionals = IndexConditionals(std::move(conditionals));
util::Log() << "Writing " << indexed_conditionals.size() << " conditional turn penalties...";
extractor::files::writeConditionalRestrictions(conditional_penalties_filename,
indexed_conditionals);
// write weight penalties per turn
BOOST_ASSERT(turn_weight_penalties.size() == turn_duration_penalties.size());
2018-03-19 11:57:57 -04:00
files::writeTurnWeightPenalty(turn_weight_penalties_filename, turn_weight_penalties);
files::writeTurnDurationPenalty(turn_duration_penalties_filename, turn_duration_penalties);
util::Log() << "Generated " << m_edge_based_node_segments.size() << " edge based node segments";
util::Log() << "Node-based graph contains " << node_based_edge_counter << " edges";
util::Log() << "Edge-expanded graph ...";
util::Log() << " contains " << m_edge_based_edge_list.size() << " edges";
}
std::vector<ConditionalTurnPenalty>
EdgeBasedGraphFactory::IndexConditionals(std::vector<Conditional> &&conditionals) const
{
boost::unordered_multimap<std::pair<NodeID, NodeID>, ConditionalTurnPenalty *> index;
// build and index of all conditional restrictions
for (auto &conditional : conditionals)
index.insert(std::make_pair(std::make_pair(conditional.from_node, conditional.to_node),
&conditional.penalty));
std::vector<ConditionalTurnPenalty> indexed_restrictions;
for (auto const &edge : m_edge_based_edge_list)
{
auto const range = index.equal_range(std::make_pair(edge.source, edge.target));
for (auto itr = range.first; itr != range.second; ++itr)
{
itr->second->turn_offset = edge.data.turn_id;
indexed_restrictions.push_back(*itr->second);
}
}
return indexed_restrictions;
}
2016-01-29 06:42:08 -05:00
} // namespace extractor
} // namespace osrm