adjusted for comments

This commit is contained in:
Moritz Kobitzsch 2016-08-11 09:44:30 +02:00 committed by Patrick Niklaus
parent 9485c97738
commit e14bc30428
No known key found for this signature in database
GPG Key ID: E426891B5F978B1B
3 changed files with 85 additions and 28 deletions

View File

@ -1,5 +1,5 @@
#include "extractor/guidance/intersection_generator.hpp"
#include "extractor/guidance/constants.hpp" #include "extractor/guidance/constants.hpp"
#include "extractor/guidance/intersection_generator.hpp"
#include "extractor/guidance/toolkit.hpp" #include "extractor/guidance/toolkit.hpp"
#include <algorithm> #include <algorithm>
@ -147,9 +147,9 @@ Intersection IntersectionGenerator::getConnectedRoads(const NodeID from_node,
// after intersections sorting by angles, find the u-turn with (from_node == to_node) // after intersections sorting by angles, find the u-turn with (from_node == to_node)
// that was inserted together with setting uturn_could_be_valid flag // that was inserted together with setting uturn_could_be_valid flag
std::size_t self_u_turn = 0; std::size_t self_u_turn = 0;
while (self_u_turn < intersection.size() while (self_u_turn < intersection.size() &&
&& intersection[self_u_turn].turn.angle < std::numeric_limits<double>::epsilon() intersection[self_u_turn].turn.angle < std::numeric_limits<double>::epsilon() &&
&& from_node != node_based_graph.GetTarget(intersection[self_u_turn].turn.eid)) from_node != node_based_graph.GetTarget(intersection[self_u_turn].turn.eid))
{ {
++self_u_turn; ++self_u_turn;
} }
@ -244,9 +244,41 @@ Intersection IntersectionGenerator::mergeSegregatedRoads(Intersection intersecti
}(); }();
// check for merges including the basic u-turn // check for merges including the basic u-turn
// these result in an adjustment of all other angles // these result in an adjustment of all other angles. This is due to how these angles are
// perceived. Considering the following example:
//
// c b
// Y
// a
//
// coming from a to b (given a road that splits at the fork into two one-ways), the turn is not
// considered as a turn but rather as going straight.
// Now if we look at the situation merging:
//
// a b
// \ /
// e - + - d
// |
// c
//
// With a,b representing the same road, the intersection itself represents a classif for way
// intersection so we handle it like
//
// (a),b
// |
// e - + - d
// |
// c
//
// To be able to consider this adjusted representation down the line, we merge some roads.
// If the merge occurs at the u-turn edge, we need to adjust all angles, though, since they are
// with respect to the now changed perceived location of a. If we move (a) to the left, we add
// the difference to all angles. Otherwise we subtract it.
bool merged_first = false;
if (mergable(0, intersection.size() - 1)) if (mergable(0, intersection.size() - 1))
{ {
merged_first = true;
// moving `a` to the left
const double correction_factor = const double correction_factor =
(360 - intersection[intersection.size() - 1].turn.angle) / 2; (360 - intersection[intersection.size() - 1].turn.angle) / 2;
for (std::size_t i = 1; i + 1 < intersection.size(); ++i) for (std::size_t i = 1; i + 1 < intersection.size(); ++i)
@ -256,7 +288,21 @@ Intersection IntersectionGenerator::mergeSegregatedRoads(Intersection intersecti
intersection[0] = merge(intersection.front(), intersection.back()); intersection[0] = merge(intersection.front(), intersection.back());
intersection[0].turn.angle = 0; intersection[0].turn.angle = 0;
if (is_connected_to_roundabout) intersection.pop_back();
}
else if (mergable(0, 1))
{
merged_first = true;
// moving `a` to the right
const double correction_factor = (intersection[1].turn.angle) / 2;
for (std::size_t i = 2; i < intersection.size(); ++i)
intersection[i].turn.angle -= correction_factor;
intersection[0] = merge(intersection[0], intersection[1]);
intersection[0].turn.angle = 0;
intersection.erase(intersection.begin() + 1);
}
if (merged_first && is_connected_to_roundabout)
{ {
/* /*
* We are merging a u-turn against the direction of a roundabout * We are merging a u-turn against the direction of a roundabout
@ -271,18 +317,6 @@ Intersection IntersectionGenerator::mergeSegregatedRoads(Intersection intersecti
intersection[0].entry_allowed = false; intersection[0].entry_allowed = false;
} }
intersection.pop_back();
}
else if (mergable(0, 1))
{
const double correction_factor = (intersection[1].turn.angle) / 2;
for (std::size_t i = 2; i < intersection.size(); ++i)
intersection[i].turn.angle -= correction_factor;
intersection[0] = merge(intersection[0], intersection[1]);
intersection[0].turn.angle = 0;
intersection.erase(intersection.begin() + 1);
}
// a merge including the first u-turn requres an adjustment of the turn angles // a merge including the first u-turn requres an adjustment of the turn angles
// therefore these are handled prior to this step // therefore these are handled prior to this step
for (std::size_t index = 2; index < intersection.size(); ++index) for (std::size_t index = 2; index < intersection.size(); ++index)

View File

@ -116,6 +116,13 @@ LaneDataVector laneDataFromDescription(const TurnLaneDescription &turn_lane_desc
// which is invalid // which is invalid
for (std::size_t index = 1; index < lane_data.size(); ++index) for (std::size_t index = 1; index < lane_data.size(); ++index)
{ {
// u-turn located somewhere in the middle
// Right now we can only handle u-turns at the sides. If we find a u-turn somewhere in
// the middle of the tags, we abort the handling right here.
if (index + 1 < lane_data.size() &&
((lane_data[index].tag & TurnLaneType::uturn) != TurnLaneType::empty))
return false;
if (lane_data[index - 1].to > lane_data[index].from) if (lane_data[index - 1].to > lane_data[index].from)
return false; return false;
} }

View File

@ -117,12 +117,18 @@ Intersection TurnLaneHandler::assignTurnLanes(const NodeID at,
if (has_merge_lane || has_non_usable_u_turn) if (has_merge_lane || has_non_usable_u_turn)
return intersection; return intersection;
if (!lane_data.empty() && canMatchTrivially(intersection, lane_data) && // check if a u-turn is allowed (for some reason) and is missing from the list of tags (u-turn
// is often allowed from the `left` lane without an additional indication dedicated to u-turns).
const bool is_missing_valid_u_turn =
lane_data.size() != lane_data.size() !=
static_cast<std::size_t>(( static_cast<std::size_t>((
!hasTag(TurnLaneType::uturn, lane_data) && intersection[0].entry_allowed ? 1 : 0)) + !hasTag(TurnLaneType::uturn, lane_data) && intersection[0].entry_allowed ? 1 : 0)) +
possible_entries && possible_entries &&
intersection[0].entry_allowed && !hasTag(TurnLaneType::none, lane_data)) intersection[0].entry_allowed;
// FIXME the lane to add depends on the side of driving/u-turn rules in the country
if (!lane_data.empty() && canMatchTrivially(intersection, lane_data) &&
!is_missing_valid_u_turn && !hasTag(TurnLaneType::none, lane_data))
lane_data.push_back({TurnLaneType::uturn, lane_data.back().to, lane_data.back().to}); lane_data.push_back({TurnLaneType::uturn, lane_data.back().to, lane_data.back().to});
bool is_simple = isSimpleIntersection(lane_data, intersection); bool is_simple = isSimpleIntersection(lane_data, intersection);
@ -335,24 +341,34 @@ bool TurnLaneHandler::isSimpleIntersection(const LaneDataVector &lane_data,
bool all_simple = true; bool all_simple = true;
bool has_none = false; bool has_none = false;
std::unordered_set<std::size_t> matched_indices; std::unordered_set<std::size_t> matched_indices;
for (const auto &data : lane_data) for (std::size_t data_index = 0; data_index < lane_data.size(); ++data_index)
{ {
const auto &data = lane_data[data_index];
if (data.tag == TurnLaneType::none) if (data.tag == TurnLaneType::none)
{ {
has_none = true; has_none = true;
continue; continue;
} }
// u-turn tags are at the outside of the lane-tags and require special handling, since
// locating their best match requires knowledge on the neighboring tag. (see documentation
// on findBestMatch/findBestMatchForReverse
const auto best_match = [&]() { const auto best_match = [&]() {
// normal tag or u-turn as only choice (no other tag present)
if (data.tag != TurnLaneType::uturn || lane_data.size() == 1) if (data.tag != TurnLaneType::uturn || lane_data.size() == 1)
return findBestMatch(data.tag, intersection); return findBestMatch(data.tag, intersection);
// lane_data.size() > 1 BOOST_ASSERT(data.tag == TurnLaneType::uturn);
if (lane_data.back().tag == TurnLaneType::uturn) // u-turn at the very left, leftmost turn at data_index - 1
return findBestMatchForReverse(lane_data[lane_data.size() - 2].tag, intersection); if (data_index + 1 == lane_data.size())
return findBestMatchForReverse(lane_data[data_index - 1].tag, intersection);
BOOST_ASSERT(lane_data.front().tag == TurnLaneType::uturn); // u-turn to the right (left-handed driving) -> rightmost turn to the left (data_index +
return findBestMatchForReverse(lane_data[1].tag, intersection); // 1)
if (data_index == 0)
return findBestMatchForReverse(lane_data[data_index + 1].tag, intersection);
return intersection.begin();
}(); }();
std::size_t match_index = std::distance(intersection.begin(), best_match); std::size_t match_index = std::distance(intersection.begin(), best_match);
all_simple &= (matched_indices.count(match_index) == 0); all_simple &= (matched_indices.count(match_index) == 0);