refactor graph contractor for readability

move to a dedicated dijkstra, separate code and header
reduce heap size, we don't use more than 2000 nodes, so why allocate 170k?
This commit is contained in:
Moritz Kobitzsch 2017-01-13 08:32:17 +01:00 committed by Patrick Niklaus
parent fce3bb180c
commit 226ee62981
10 changed files with 959 additions and 817 deletions

View File

@ -78,20 +78,19 @@ class Contractor
private:
ContractorConfig config;
EdgeID
LoadEdgeExpandedGraph(const std::string &edge_based_graph_path,
util::DeallocatingVector<extractor::EdgeBasedEdge> &edge_based_edge_list,
std::vector<EdgeWeight> &node_weights,
const std::string &edge_segment_lookup_path,
const std::string &edge_penalty_path,
const std::vector<std::string> &segment_speed_path,
const std::vector<std::string> &turn_penalty_path,
const std::string &nodes_filename,
const std::string &geometry_filename,
const std::string &datasource_names_filename,
const std::string &datasource_indexes_filename,
const std::string &rtree_leaf_filename,
const double log_edge_updates_factor);
EdgeID LoadEdgeExpandedGraph(const std::string &edge_based_graph_path,
std::vector<extractor::EdgeBasedEdge> &edge_based_edge_list,
std::vector<EdgeWeight> &node_weights,
const std::string &edge_segment_lookup_path,
const std::string &edge_penalty_path,
const std::vector<std::string> &segment_speed_path,
const std::vector<std::string> &turn_penalty_path,
const std::string &nodes_filename,
const std::string &geometry_filename,
const std::string &datasource_names_filename,
const std::string &datasource_indexes_filename,
const std::string &rtree_leaf_filename,
const double log_edge_updates_factor);
};
}
}

View File

@ -0,0 +1,50 @@
#ifndef OSRM_CONTRACTOR_DIJKSTRA_HPP
#define OSRM_CONTRACTOR_DIJKSTRA_HPP
#include "contractor/contractor_graph.hpp"
#include "contractor/contractor_heap.hpp"
#include "util/typedefs.hpp"
#include <cstddef>
namespace osrm
{
namespace contractor
{
// allow access to the heap itself, add Dijkstra functionality on top
class ContractorDijkstra
{
public:
ContractorDijkstra(std::size_t heap_size);
// search the graph up
void Run(const unsigned number_of_targets,
const int node_limit,
const int weight_limit,
const NodeID forbidden_node,
const ContractorGraph &graph);
// adaption of the heap interface
void Clear();
bool WasInserted(const NodeID node) const;
void Insert(const NodeID node,
const ContractorHeap::WeightType weight,
const ContractorHeap::DataType &data);
// cannot be const due to node-hash access in the binary heap :(
ContractorHeap::WeightType GetKey(const NodeID node);
private:
void RelaxNode(const NodeID node,
const int node_weight,
const NodeID forbidden_node,
const ContractorGraph &graph);
ContractorHeap heap;
};
} // namespace contractor
} // namespace osrm
#endif // OSRM_CONTRACTOR_DIJKSTRA_HPP

View File

@ -0,0 +1,44 @@
#ifndef OSRM_CONTRACTOR_CONTRACTOR_GRAPH_HPP_
#define OSRM_CONTRACTOR_CONTRACTOR_GRAPH_HPP_
#include "util/dynamic_graph.hpp"
#include <algorithm>
namespace osrm
{
namespace contractor
{
struct ContractorEdgeData
{
ContractorEdgeData()
: weight(0), id(0), originalEdges(0), shortcut(0), forward(0), backward(0),
is_original_via_node_ID(false)
{
}
ContractorEdgeData(unsigned weight,
unsigned original_edges,
unsigned id,
bool shortcut,
bool forward,
bool backward)
: weight(weight), id(id), originalEdges(std::min((unsigned)1 << 28, original_edges)),
shortcut(shortcut), forward(forward), backward(backward), is_original_via_node_ID(false)
{
}
unsigned weight;
unsigned id;
unsigned originalEdges : 28;
bool shortcut : 1;
bool forward : 1;
bool backward : 1;
bool is_original_via_node_ID : 1;
};
using ContractorGraph = util::DynamicGraph<ContractorEdgeData>;
using ContractorEdge = ContractorGraph::InputEdge;
} // namespace contractor
} // namespace osrm
#endif // OSRM_CONTRACTOR_CONTRACTOR_GRAPH_HPP_

View File

@ -0,0 +1,27 @@
#ifndef OSRM_CONTRACTOR_CONTRACTOR_HEAP_HPP_
#define OSRM_CONTRACTOR_CONTRACTOR_HEAP_HPP_
#include "util/binary_heap.hpp"
#include "util/typedefs.hpp"
#include "util/xor_fast_hash_storage.hpp"
namespace osrm
{
namespace contractor
{
struct ContractorHeapData
{
ContractorHeapData() {}
ContractorHeapData(short hop_, bool target_) : hop(hop_), target(target_) {}
short hop = 0;
bool target = false;
};
using ContractorHeap = util::
BinaryHeap<NodeID, NodeID, int, ContractorHeapData, util::XORFastHashStorage<NodeID, NodeID>>;
} // namespace contractor
} // namespace osrm
#endif // OSRM_CONTRACTOR_CONTRACTOR_HEAP_HPP_

View File

@ -1,17 +1,16 @@
#ifndef GRAPH_CONTRACTOR_HPP
#define GRAPH_CONTRACTOR_HPP
#ifndef OSRM_CONTRACTOR_GRAPH_CONTRACTOR_HPP
#define OSRM_CONTRACTOR_GRAPH_CONTRACTOR_HPP
#include "contractor/contractor_dijkstra.hpp"
#include "contractor/contractor_graph.hpp"
#include "contractor/query_edge.hpp"
#include "util/binary_heap.hpp"
#include "util/deallocating_vector.hpp"
#include "util/dynamic_graph.hpp"
#include "util/integer_range.hpp"
#include "util/log.hpp"
#include "util/percent.hpp"
#include "util/timing_util.hpp"
#include "util/typedefs.hpp"
#include "util/xor_fast_hash.hpp"
#include "util/xor_fast_hash_storage.hpp"
#include <boost/assert.hpp>
@ -34,59 +33,12 @@ namespace contractor
class GraphContractor
{
private:
struct ContractorEdgeData
{
ContractorEdgeData()
: weight(0), id(0), originalEdges(0), shortcut(0), forward(0), backward(0),
is_original_via_node_ID(false)
{
}
ContractorEdgeData(unsigned weight,
unsigned original_edges,
unsigned id,
bool shortcut,
bool forward,
bool backward)
: weight(weight), id(id), originalEdges(std::min((unsigned)1 << 28, original_edges)),
shortcut(shortcut), forward(forward), backward(backward),
is_original_via_node_ID(false)
{
}
unsigned weight;
unsigned id;
unsigned originalEdges : 28;
bool shortcut : 1;
bool forward : 1;
bool backward : 1;
bool is_original_via_node_ID : 1;
} data;
struct ContractorHeapData
{
ContractorHeapData() {}
ContractorHeapData(short hop_, bool target_) : hop(hop_), target(target_) {}
short hop = 0;
bool target = false;
};
using ContractorGraph = util::DynamicGraph<ContractorEdgeData>;
// using ContractorHeap = util::BinaryHeap<NodeID, NodeID, int, ContractorHeapData,
// ArrayStorage<NodeID, NodeID>
// >;
using ContractorHeap = util::BinaryHeap<NodeID,
NodeID,
int,
ContractorHeapData,
util::XORFastHashStorage<NodeID, NodeID>>;
using ContractorEdge = ContractorGraph::InputEdge;
struct ContractorThreadData
{
ContractorHeap heap;
ContractorDijkstra dijkstra;
std::vector<ContractorEdge> inserted_edges;
std::vector<NodeID> neighbours;
explicit ContractorThreadData(NodeID nodes) : heap(nodes) {}
explicit ContractorThreadData(NodeID nodes) : dijkstra(nodes) {}
};
using NodeDepth = int;
@ -121,7 +73,8 @@ class GraphContractor
auto &ref = data.local(exists);
if (!exists)
{
ref = std::make_shared<ContractorThreadData>(number_of_nodes);
// ref = std::make_shared<ContractorThreadData>(number_of_nodes);
ref = std::make_shared<ContractorThreadData>(4000);
}
return ref.get();
@ -134,478 +87,23 @@ class GraphContractor
};
public:
template <class ContainerT>
GraphContractor(int nodes, ContainerT &input_edge_list)
: GraphContractor(nodes, input_edge_list, {}, {})
{
}
GraphContractor(int nodes, std::vector<ContractorEdge> input_edge_list);
template <class ContainerT>
GraphContractor(int nodes,
ContainerT &input_edge_list,
std::vector<ContractorEdge> edges,
std::vector<float> &&node_levels_,
std::vector<EdgeWeight> &&node_weights_)
: node_levels(std::move(node_levels_)), node_weights(std::move(node_weights_))
{
std::vector<ContractorEdge> edges;
edges.reserve(input_edge_list.size() * 2);
const auto dend = input_edge_list.dend();
for (auto diter = input_edge_list.dbegin(); diter != dend; ++diter)
{
#ifndef NDEBUG
if (static_cast<unsigned int>(std::max(diter->weight, 1)) > 24 * 60 * 60 * 10)
{
util::Log(logWARNING) << "Edge weight large -> "
<< static_cast<unsigned int>(std::max(diter->weight, 1))
<< " : " << static_cast<unsigned int>(diter->source) << " -> "
<< static_cast<unsigned int>(diter->target);
}
#endif
edges.emplace_back(diter->source,
diter->target,
static_cast<unsigned int>(std::max(diter->weight, 1)),
1,
diter->edge_id,
false,
diter->forward ? true : false,
diter->backward ? true : false);
edges.emplace_back(diter->target,
diter->source,
static_cast<unsigned int>(std::max(diter->weight, 1)),
1,
diter->edge_id,
false,
diter->backward ? true : false,
diter->forward ? true : false);
}
// clear input vector
input_edge_list.clear();
// FIXME not sure if we need this
edges.shrink_to_fit();
tbb::parallel_sort(edges.begin(), edges.end());
NodeID edge = 0;
for (NodeID i = 0; i < edges.size();)
{
const NodeID source = edges[i].source;
const NodeID target = edges[i].target;
const NodeID id = edges[i].data.id;
// remove eigenloops
if (source == target)
{
++i;
continue;
}
ContractorEdge forward_edge;
ContractorEdge reverse_edge;
forward_edge.source = reverse_edge.source = source;
forward_edge.target = reverse_edge.target = target;
forward_edge.data.forward = reverse_edge.data.backward = true;
forward_edge.data.backward = reverse_edge.data.forward = false;
forward_edge.data.shortcut = reverse_edge.data.shortcut = false;
forward_edge.data.id = reverse_edge.data.id = id;
forward_edge.data.originalEdges = reverse_edge.data.originalEdges = 1;
forward_edge.data.weight = reverse_edge.data.weight = INVALID_EDGE_WEIGHT;
// remove parallel edges
while (i < edges.size() && edges[i].source == source && edges[i].target == target)
{
if (edges[i].data.forward)
{
forward_edge.data.weight =
std::min(edges[i].data.weight, forward_edge.data.weight);
}
if (edges[i].data.backward)
{
reverse_edge.data.weight =
std::min(edges[i].data.weight, reverse_edge.data.weight);
}
++i;
}
// merge edges (s,t) and (t,s) into bidirectional edge
if (forward_edge.data.weight == reverse_edge.data.weight)
{
if ((int)forward_edge.data.weight != INVALID_EDGE_WEIGHT)
{
forward_edge.data.backward = true;
edges[edge++] = forward_edge;
}
}
else
{ // insert seperate edges
if (((int)forward_edge.data.weight) != INVALID_EDGE_WEIGHT)
{
edges[edge++] = forward_edge;
}
if ((int)reverse_edge.data.weight != INVALID_EDGE_WEIGHT)
{
edges[edge++] = reverse_edge;
}
}
}
util::Log() << "merged " << edges.size() - edge << " edges out of " << edges.size();
edges.resize(edge);
contractor_graph = std::make_shared<ContractorGraph>(nodes, edges);
edges.clear();
edges.shrink_to_fit();
BOOST_ASSERT(0 == edges.capacity());
util::Log() << "contractor finished initalization";
}
std::vector<EdgeWeight> &&node_weights_);
/* Flush all data from the contraction to disc and reorder stuff for better locality */
void FlushDataAndRebuildContractorGraph(ThreadDataContainer &thread_data_list,
std::vector<RemainingNodeData> &remaining_nodes,
std::vector<float> &node_priorities)
{
util::DeallocatingVector<ContractorEdge> new_edge_set; // this one is not explicitely
// cleared since it goes out of
// scope anywa
// Delete old heap data to free memory that we need for the coming operations
thread_data_list.data.clear();
// Create new priority array
std::vector<float> new_node_priority(remaining_nodes.size());
std::vector<EdgeWeight> new_node_weights(remaining_nodes.size());
// this map gives the old IDs from the new ones, necessary to get a consistent graph
// at the end of contraction
orig_node_id_from_new_node_id_map.resize(remaining_nodes.size());
// this map gives the new IDs from the old ones, necessary to remap targets from the
// remaining graph
const auto number_of_nodes = contractor_graph->GetNumberOfNodes();
std::vector<NodeID> new_node_id_from_orig_id_map(number_of_nodes, SPECIAL_NODEID);
for (const auto new_node_id : util::irange<std::size_t>(0UL, remaining_nodes.size()))
{
auto &node = remaining_nodes[new_node_id];
BOOST_ASSERT(node_priorities.size() > node.id);
new_node_priority[new_node_id] = node_priorities[node.id];
BOOST_ASSERT(node_weights.size() > node.id);
new_node_weights[new_node_id] = node_weights[node.id];
}
// build forward and backward renumbering map and remap ids in remaining_nodes
for (const auto new_node_id : util::irange<std::size_t>(0UL, remaining_nodes.size()))
{
auto &node = remaining_nodes[new_node_id];
// create renumbering maps in both directions
orig_node_id_from_new_node_id_map[new_node_id] = node.id;
new_node_id_from_orig_id_map[node.id] = new_node_id;
node.id = new_node_id;
}
// walk over all nodes
for (const auto source : util::irange<NodeID>(0UL, contractor_graph->GetNumberOfNodes()))
{
for (auto current_edge : contractor_graph->GetAdjacentEdgeRange(source))
{
ContractorGraph::EdgeData &data = contractor_graph->GetEdgeData(current_edge);
const NodeID target = contractor_graph->GetTarget(current_edge);
if (SPECIAL_NODEID == new_node_id_from_orig_id_map[source])
{
external_edge_list.push_back({source, target, data});
}
else
{
// node is not yet contracted.
// add (renumbered) outgoing edges to new util::DynamicGraph.
ContractorEdge new_edge = {new_node_id_from_orig_id_map[source],
new_node_id_from_orig_id_map[target],
data};
new_edge.data.is_original_via_node_ID = true;
BOOST_ASSERT_MSG(SPECIAL_NODEID != new_node_id_from_orig_id_map[source],
"new source id not resolveable");
BOOST_ASSERT_MSG(SPECIAL_NODEID != new_node_id_from_orig_id_map[target],
"new target id not resolveable");
new_edge_set.push_back(new_edge);
}
}
}
// Replace old priorities array by new one
node_priorities.swap(new_node_priority);
// Delete old node_priorities vector
node_weights.swap(new_node_weights);
// old Graph is removed
contractor_graph.reset();
// create new graph
tbb::parallel_sort(new_edge_set.begin(), new_edge_set.end());
contractor_graph = std::make_shared<ContractorGraph>(remaining_nodes.size(), new_edge_set);
new_edge_set.clear();
// INFO: MAKE SURE THIS IS THE LAST OPERATION OF THE FLUSH!
// reinitialize heaps and ThreadData objects with appropriate size
thread_data_list.number_of_nodes = contractor_graph->GetNumberOfNodes();
}
std::vector<float> &node_priorities);
void Run(double core_factor = 1.0)
{
// for the preperation we can use a big grain size, which is much faster (probably cache)
const constexpr size_t InitGrainSize = 100000;
const constexpr size_t PQGrainSize = 100000;
// auto_partitioner will automatically increase the blocksize if we have
// a lot of data. It is *important* for the last loop iterations
// (which have a very small dataset) that it is devisible.
const constexpr size_t IndependentGrainSize = 1;
const constexpr size_t ContractGrainSize = 1;
const constexpr size_t NeighboursGrainSize = 1;
const constexpr size_t DeleteGrainSize = 1;
void Run(double core_factor = 1.0);
const NodeID number_of_nodes = contractor_graph->GetNumberOfNodes();
void GetCoreMarker(std::vector<bool> &out_is_core_node);
ThreadDataContainer thread_data_list(number_of_nodes);
NodeID number_of_contracted_nodes = 0;
std::vector<NodeDepth> node_depth;
std::vector<float> node_priorities;
is_core_node.resize(number_of_nodes, false);
std::vector<RemainingNodeData> remaining_nodes(number_of_nodes);
// initialize priorities in parallel
tbb::parallel_for(tbb::blocked_range<NodeID>(0, number_of_nodes, InitGrainSize),
[this, &remaining_nodes](const tbb::blocked_range<NodeID> &range) {
for (auto x = range.begin(), end = range.end(); x != end; ++x)
{
remaining_nodes[x].id = x;
}
});
bool use_cached_node_priorities = !node_levels.empty();
if (use_cached_node_priorities)
{
util::UnbufferedLog log;
log << "using cached node priorities ...";
node_priorities.swap(node_levels);
log << "ok";
}
else
{
node_depth.resize(number_of_nodes, 0);
node_priorities.resize(number_of_nodes);
node_levels.resize(number_of_nodes);
util::UnbufferedLog log;
log << "initializing elimination PQ ...";
tbb::parallel_for(tbb::blocked_range<NodeID>(0, number_of_nodes, PQGrainSize),
[this, &node_priorities, &node_depth, &thread_data_list](
const tbb::blocked_range<NodeID> &range) {
ContractorThreadData *data = thread_data_list.GetThreadData();
for (auto x = range.begin(), end = range.end(); x != end; ++x)
{
node_priorities[x] =
this->EvaluateNodePriority(data, node_depth[x], x);
}
});
log << "ok";
}
BOOST_ASSERT(node_priorities.size() == number_of_nodes);
util::Log() << "preprocessing " << number_of_nodes << " nodes ...";
util::UnbufferedLog log;
util::Percent p(log, number_of_nodes);
unsigned current_level = 0;
bool flushed_contractor = false;
while (number_of_nodes > 2 &&
number_of_contracted_nodes < static_cast<NodeID>(number_of_nodes * core_factor))
{
if (!flushed_contractor && (number_of_contracted_nodes >
static_cast<NodeID>(number_of_nodes * 0.65 * core_factor)))
{
log << " [flush " << number_of_contracted_nodes << " nodes] ";
FlushDataAndRebuildContractorGraph(
thread_data_list, remaining_nodes, node_priorities);
flushed_contractor = true;
}
tbb::parallel_for(
tbb::blocked_range<NodeID>(0, remaining_nodes.size(), IndependentGrainSize),
[this, &node_priorities, &remaining_nodes, &thread_data_list](
const tbb::blocked_range<NodeID> &range) {
ContractorThreadData *data = thread_data_list.GetThreadData();
// determine independent node set
for (auto i = range.begin(), end = range.end(); i != end; ++i)
{
const NodeID node = remaining_nodes[i].id;
remaining_nodes[i].is_independent =
this->IsNodeIndependent(node_priorities, data, node);
}
});
// sort all remaining nodes to the beginning of the sequence
const auto begin_independent_nodes = stable_partition(
remaining_nodes.begin(), remaining_nodes.end(), [](RemainingNodeData node_data) {
return !node_data.is_independent;
});
auto begin_independent_nodes_idx =
std::distance(remaining_nodes.begin(), begin_independent_nodes);
auto end_independent_nodes_idx = remaining_nodes.size();
if (!use_cached_node_priorities)
{
// write out contraction level
tbb::parallel_for(
tbb::blocked_range<NodeID>(
begin_independent_nodes_idx, end_independent_nodes_idx, ContractGrainSize),
[this, remaining_nodes, flushed_contractor, current_level](
const tbb::blocked_range<NodeID> &range) {
if (flushed_contractor)
{
for (auto position = range.begin(), end = range.end(); position != end;
++position)
{
const NodeID x = remaining_nodes[position].id;
node_levels[orig_node_id_from_new_node_id_map[x]] = current_level;
}
}
else
{
for (auto position = range.begin(), end = range.end(); position != end;
++position)
{
const NodeID x = remaining_nodes[position].id;
node_levels[x] = current_level;
}
}
});
}
// contract independent nodes
tbb::parallel_for(
tbb::blocked_range<NodeID>(
begin_independent_nodes_idx, end_independent_nodes_idx, ContractGrainSize),
[this, &remaining_nodes, &thread_data_list](
const tbb::blocked_range<NodeID> &range) {
ContractorThreadData *data = thread_data_list.GetThreadData();
for (auto position = range.begin(), end = range.end(); position != end;
++position)
{
const NodeID x = remaining_nodes[position].id;
this->ContractNode<false>(data, x);
}
});
tbb::parallel_for(
tbb::blocked_range<NodeID>(
begin_independent_nodes_idx, end_independent_nodes_idx, DeleteGrainSize),
[this, &remaining_nodes, &thread_data_list](
const tbb::blocked_range<NodeID> &range) {
ContractorThreadData *data = thread_data_list.GetThreadData();
for (auto position = range.begin(), end = range.end(); position != end;
++position)
{
const NodeID x = remaining_nodes[position].id;
this->DeleteIncomingEdges(data, x);
}
});
// make sure we really sort each block
tbb::parallel_for(
thread_data_list.data.range(),
[&](const ThreadDataContainer::EnumerableThreadData::range_type &range) {
for (auto &data : range)
tbb::parallel_sort(data->inserted_edges.begin(),
data->inserted_edges.end());
});
// insert new edges
for (auto &data : thread_data_list.data)
{
for (const ContractorEdge &edge : data->inserted_edges)
{
const EdgeID current_edge_ID =
contractor_graph->FindEdge(edge.source, edge.target);
if (current_edge_ID < contractor_graph->EndEdges(edge.source))
{
ContractorGraph::EdgeData &current_data =
contractor_graph->GetEdgeData(current_edge_ID);
if (current_data.shortcut && edge.data.forward == current_data.forward &&
edge.data.backward == current_data.backward &&
edge.data.weight < current_data.weight)
{
// found a duplicate edge with smaller weight, update it.
current_data = edge.data;
continue;
}
}
contractor_graph->InsertEdge(edge.source, edge.target, edge.data);
}
data->inserted_edges.clear();
}
if (!use_cached_node_priorities)
{
tbb::parallel_for(
tbb::blocked_range<NodeID>(begin_independent_nodes_idx,
end_independent_nodes_idx,
NeighboursGrainSize),
[this, &node_priorities, &remaining_nodes, &node_depth, &thread_data_list](
const tbb::blocked_range<NodeID> &range) {
ContractorThreadData *data = thread_data_list.GetThreadData();
for (auto position = range.begin(), end = range.end(); position != end;
++position)
{
NodeID x = remaining_nodes[position].id;
this->UpdateNodeNeighbours(node_priorities, node_depth, data, x);
}
});
}
// remove contracted nodes from the pool
number_of_contracted_nodes += end_independent_nodes_idx - begin_independent_nodes_idx;
remaining_nodes.resize(begin_independent_nodes_idx);
p.PrintStatus(number_of_contracted_nodes);
++current_level;
}
if (remaining_nodes.size() > 2)
{
if (orig_node_id_from_new_node_id_map.size() > 0)
{
tbb::parallel_for(
tbb::blocked_range<NodeID>(0, remaining_nodes.size(), InitGrainSize),
[this, &remaining_nodes](const tbb::blocked_range<NodeID> &range) {
for (auto x = range.begin(), end = range.end(); x != end; ++x)
{
const auto orig_id = remaining_nodes[x].id;
is_core_node[orig_node_id_from_new_node_id_map[orig_id]] = true;
}
});
}
else
{
tbb::parallel_for(
tbb::blocked_range<NodeID>(0, remaining_nodes.size(), InitGrainSize),
[this, &remaining_nodes](const tbb::blocked_range<NodeID> &range) {
for (auto x = range.begin(), end = range.end(); x != end; ++x)
{
const auto orig_id = remaining_nodes[x].id;
is_core_node[orig_id] = true;
}
});
}
}
else
{
// in this case we don't need core markers since we fully contracted
// the graph
is_core_node.clear();
}
util::Log() << "[core] " << remaining_nodes.size() << " nodes "
<< contractor_graph->GetNumberOfEdges() << " edges.";
thread_data_list.data.clear();
}
inline void GetCoreMarker(std::vector<bool> &out_is_core_node)
{
out_is_core_node.swap(is_core_node);
}
inline void GetNodeLevels(std::vector<float> &out_node_levels)
{
out_node_levels.swap(node_levels);
}
void GetNodeLevels(std::vector<float> &out_node_levels);
template <class Edge> inline void GetEdges(util::DeallocatingVector<Edge> &edges)
{
@ -665,109 +163,15 @@ class GraphContractor
}
private:
inline void RelaxNode(const NodeID node,
const NodeID forbidden_node,
const int weight,
ContractorHeap &heap)
{
const short current_hop = heap.GetData(node).hop + 1;
for (auto edge : contractor_graph->GetAdjacentEdgeRange(node))
{
const ContractorEdgeData &data = contractor_graph->GetEdgeData(edge);
if (!data.forward)
{
continue;
}
const NodeID to = contractor_graph->GetTarget(edge);
if (forbidden_node == to)
{
continue;
}
const int to_weight = weight + data.weight;
// New Node discovered -> Add to Heap + Node Info Storage
if (!heap.WasInserted(to))
{
heap.Insert(to, to_weight, ContractorHeapData{current_hop, false});
}
// Found a shorter Path -> Update weight
else if (to_weight < heap.GetKey(to))
{
heap.DecreaseKey(to, to_weight);
heap.GetData(to).hop = current_hop;
}
}
}
inline void Dijkstra(const int max_weight,
const unsigned number_of_targets,
const int max_nodes,
ContractorThreadData &data,
const NodeID middle_node)
{
ContractorHeap &heap = data.heap;
int nodes = 0;
unsigned number_of_targets_found = 0;
while (!heap.Empty())
{
const NodeID node = heap.DeleteMin();
const auto weight = heap.GetKey(node);
if (++nodes > max_nodes)
{
return;
}
if (weight > max_weight)
{
return;
}
// Destination settled?
if (heap.GetData(node).target)
{
++number_of_targets_found;
if (number_of_targets_found >= number_of_targets)
{
return;
}
}
RelaxNode(node, middle_node, weight, heap);
}
}
inline float EvaluateNodePriority(ContractorThreadData *const data,
const NodeDepth node_depth,
const NodeID node)
{
ContractionStats stats;
// perform simulated contraction
ContractNode<true>(data, node, &stats);
// Result will contain the priority
float result;
if (0 == (stats.edges_deleted_count * stats.original_edges_deleted_count))
{
result = 1.f * node_depth;
}
else
{
result = 2.f * (((float)stats.edges_added_count) / stats.edges_deleted_count) +
4.f * (((float)stats.original_edges_added_count) /
stats.original_edges_deleted_count) +
1.f * node_depth;
}
BOOST_ASSERT(result >= 0);
return result;
}
float EvaluateNodePriority(ContractorThreadData *const data,
const NodeDepth node_depth,
const NodeID node);
template <bool RUNSIMULATION>
inline bool
bool
ContractNode(ContractorThreadData *data, const NodeID node, ContractionStats *stats = nullptr)
{
ContractorHeap &heap = data->heap;
auto &dijkstra = data->dijkstra;
std::size_t inserted_edges_size = data->inserted_edges.size();
std::vector<ContractorEdge> &inserted_edges = data->inserted_edges;
const constexpr bool SHORTCUT_ARC = true;
@ -794,8 +198,8 @@ class GraphContractor
continue;
}
heap.Clear();
heap.Insert(source, 0, ContractorHeapData{});
dijkstra.Clear();
dijkstra.Insert(source, 0, ContractorHeapData{});
int max_weight = 0;
unsigned number_of_targets = 0;
@ -858,9 +262,9 @@ class GraphContractor
continue;
}
max_weight = std::max(max_weight, path_weight);
if (!heap.WasInserted(target))
if (!dijkstra.WasInserted(target))
{
heap.Insert(target, INVALID_EDGE_WEIGHT, ContractorHeapData{0, true});
dijkstra.Insert(target, INVALID_EDGE_WEIGHT, ContractorHeapData{0, true});
++number_of_targets;
}
}
@ -868,12 +272,17 @@ class GraphContractor
if (RUNSIMULATION)
{
const int constexpr SIMULATION_SEARCH_SPACE_SIZE = 1000;
Dijkstra(max_weight, number_of_targets, SIMULATION_SEARCH_SPACE_SIZE, *data, node);
dijkstra.Run(number_of_targets,
SIMULATION_SEARCH_SPACE_SIZE,
max_weight,
node,
*contractor_graph);
}
else
{
const int constexpr FULL_SEARCH_SPACE_SIZE = 2000;
Dijkstra(max_weight, number_of_targets, FULL_SEARCH_SPACE_SIZE, *data, node);
dijkstra.Run(
number_of_targets, FULL_SEARCH_SPACE_SIZE, max_weight, node, *contractor_graph);
}
for (auto out_edge : contractor_graph->GetAdjacentEdgeRange(node))
{
@ -886,7 +295,7 @@ class GraphContractor
if (target == node)
continue;
const int path_weight = in_data.weight + out_data.weight;
const int weight = heap.GetKey(target);
const int weight = dijkstra.GetKey(target);
if (path_weight < weight)
{
if (RUNSIMULATION)
@ -960,138 +369,19 @@ class GraphContractor
return true;
}
inline void DeleteIncomingEdges(ContractorThreadData *data, const NodeID node)
{
std::vector<NodeID> &neighbours = data->neighbours;
neighbours.clear();
void DeleteIncomingEdges(ContractorThreadData *data, const NodeID node);
// find all neighbours
for (auto e : contractor_graph->GetAdjacentEdgeRange(node))
{
const NodeID u = contractor_graph->GetTarget(e);
if (u != node)
{
neighbours.push_back(u);
}
}
// eliminate duplicate entries ( forward + backward edges )
std::sort(neighbours.begin(), neighbours.end());
neighbours.resize(std::unique(neighbours.begin(), neighbours.end()) - neighbours.begin());
bool UpdateNodeNeighbours(std::vector<float> &priorities,
std::vector<NodeDepth> &node_depth,
ContractorThreadData *const data,
const NodeID node);
for (const auto i : util::irange<std::size_t>(0, neighbours.size()))
{
contractor_graph->DeleteEdgesTo(neighbours[i], node);
}
}
inline bool UpdateNodeNeighbours(std::vector<float> &priorities,
std::vector<NodeDepth> &node_depth,
ContractorThreadData *const data,
const NodeID node)
{
std::vector<NodeID> &neighbours = data->neighbours;
neighbours.clear();
// find all neighbours
for (auto e : contractor_graph->GetAdjacentEdgeRange(node))
{
const NodeID u = contractor_graph->GetTarget(e);
if (u == node)
{
continue;
}
neighbours.push_back(u);
node_depth[u] = std::max(node_depth[node] + 1, node_depth[u]);
}
// eliminate duplicate entries ( forward + backward edges )
std::sort(neighbours.begin(), neighbours.end());
neighbours.resize(std::unique(neighbours.begin(), neighbours.end()) - neighbours.begin());
// re-evaluate priorities of neighboring nodes
for (const NodeID u : neighbours)
{
priorities[u] = EvaluateNodePriority(data, node_depth[u], u);
}
return true;
}
inline bool IsNodeIndependent(const std::vector<float> &priorities,
ContractorThreadData *const data,
NodeID node) const
{
const float priority = priorities[node];
std::vector<NodeID> &neighbours = data->neighbours;
neighbours.clear();
for (auto e : contractor_graph->GetAdjacentEdgeRange(node))
{
const NodeID target = contractor_graph->GetTarget(e);
if (node == target)
{
continue;
}
const float target_priority = priorities[target];
BOOST_ASSERT(target_priority >= 0);
// found a neighbour with lower priority?
if (priority > target_priority)
{
return false;
}
// tie breaking
if (std::abs(priority - target_priority) < std::numeric_limits<float>::epsilon() &&
Bias(node, target))
{
return false;
}
neighbours.push_back(target);
}
std::sort(neighbours.begin(), neighbours.end());
neighbours.resize(std::unique(neighbours.begin(), neighbours.end()) - neighbours.begin());
// examine all neighbours that are at most 2 hops away
for (const NodeID u : neighbours)
{
for (auto e : contractor_graph->GetAdjacentEdgeRange(u))
{
const NodeID target = contractor_graph->GetTarget(e);
if (node == target)
{
continue;
}
const float target_priority = priorities[target];
BOOST_ASSERT(target_priority >= 0);
// found a neighbour with lower priority?
if (priority > target_priority)
{
return false;
}
// tie breaking
if (std::abs(priority - target_priority) < std::numeric_limits<float>::epsilon() &&
Bias(node, target))
{
return false;
}
}
}
return true;
}
bool IsNodeIndependent(const std::vector<float> &priorities,
ContractorThreadData *const data,
NodeID node) const;
// This bias function takes up 22 assembly instructions in total on X86
inline bool Bias(const NodeID a, const NodeID b) const
{
const unsigned short hasha = fast_hash(a);
const unsigned short hashb = fast_hash(b);
// The compiler optimizes that to conditional register flags but without branching
// statements!
if (hasha != hashb)
{
return hasha < hashb;
}
return a < b;
}
bool Bias(const NodeID a, const NodeID b) const;
std::shared_ptr<ContractorGraph> contractor_graph;
stxxl::vector<QueryEdge> external_edge_list;
@ -1107,7 +397,8 @@ class GraphContractor
std::vector<bool> is_core_node;
util::XORFastHash<> fast_hash;
};
}
}
#endif // CONTRACTOR_HPP
} // namespace contractor
} // namespace osrm
#endif // OSRM_CONTRACTOR_GRAPH_CONTRACTOR_HPP

View File

@ -0,0 +1,59 @@
#ifndef OSRM_CONTRACTOR_GRAPH_CONTRACTION_ADAPTORS_HPP_
#define OSRM_CONTRACTOR_GRAPH_CONTRACTION_ADAPTORS_HPP_
#include "contractor/contractor_graph.hpp"
#include "util/log.hpp"
#include <vector>
namespace osrm
{
namespace contractor
{
// Make sure to move in the input edge list!
template <typename InputEdgeContainer>
std::vector<ContractorEdge> adaptToContractorInput(InputEdgeContainer input_edge_list)
{
std::vector<ContractorEdge> edges;
edges.reserve(input_edge_list.size() * 2);
for (const auto &input_edge : input_edge_list)
{
#ifndef NDEBUG
const unsigned int constexpr DAY_IN_DECI_SECONDS = 24 * 60 * 60 * 10;
if (static_cast<unsigned int>(std::max(input_edge.weight, 1)) > DAY_IN_DECI_SECONDS)
{
util::Log(logWARNING) << "Edge weight large -> "
<< static_cast<unsigned int>(std::max(input_edge.weight, 1))
<< " : " << static_cast<unsigned int>(input_edge.source) << " -> "
<< static_cast<unsigned int>(input_edge.target);
}
#endif
edges.emplace_back(input_edge.source,
input_edge.target,
static_cast<unsigned int>(std::max(input_edge.weight, 1)),
1,
input_edge.edge_id,
false,
input_edge.forward ? true : false,
input_edge.backward ? true : false);
edges.emplace_back(input_edge.target,
input_edge.source,
static_cast<unsigned int>(std::max(input_edge.weight, 1)),
1,
input_edge.edge_id,
false,
input_edge.backward ? true : false,
input_edge.forward ? true : false);
}
// FIXME not sure if we need this
edges.shrink_to_fit();
return edges;
}
} // namespace contractor
} // namespace osrm
#endif // OSRM_CONTRACTOR_GRAPH_CONTRACTION_ADAPTORS_HPP_

View File

@ -4,6 +4,7 @@
#include <boost/assert.hpp>
#include <algorithm>
#include <cstddef>
#include <limits>
#include <map>
#include <type_traits>
@ -18,7 +19,7 @@ namespace util
template <typename NodeID, typename Key> class ArrayStorage
{
public:
explicit ArrayStorage(size_t size) : positions(size, 0) {}
explicit ArrayStorage(std::size_t size) : positions(size, 0) {}
~ArrayStorage() {}
@ -35,7 +36,7 @@ template <typename NodeID, typename Key> class ArrayStorage
template <typename NodeID, typename Key> class MapStorage
{
public:
explicit MapStorage(size_t) {}
explicit MapStorage(std::size_t) {}
Key &operator[](NodeID node) { return nodes[node]; }
@ -58,7 +59,7 @@ template <typename NodeID, typename Key> class MapStorage
template <typename NodeID, typename Key> class UnorderedMapStorage
{
public:
explicit UnorderedMapStorage(size_t) { nodes.rehash(1000); }
explicit UnorderedMapStorage(std::size_t) { nodes.rehash(1000); }
Key &operator[](const NodeID node) { return nodes[node]; }
@ -99,7 +100,7 @@ class BinaryHeap
using WeightType = Weight;
using DataType = Data;
explicit BinaryHeap(size_t maxID) : node_index(maxID) { Clear(); }
explicit BinaryHeap(std::size_t maxID) : node_index(maxID) { Clear(); }
void Clear()
{

View File

@ -1,6 +1,7 @@
#include "contractor/contractor.hpp"
#include "contractor/crc32_processor.hpp"
#include "contractor/graph_contractor.hpp"
#include "contractor/graph_contractor_adaptors.hpp"
#include "extractor/compressed_edge_container.hpp"
#include "extractor/edge_based_graph_factory.hpp"
@ -307,7 +308,7 @@ int Contractor::Run()
util::Log() << "Loading edge-expanded graph representation";
util::DeallocatingVector<extractor::EdgeBasedEdge> edge_based_edge_list;
std::vector<extractor::EdgeBasedEdge> edge_based_edge_list;
EdgeID max_edge_id = LoadEdgeExpandedGraph(config.edge_based_graph_path,
edge_based_edge_list,
@ -334,12 +335,16 @@ int Contractor::Run()
}
util::DeallocatingVector<QueryEdge> contracted_edge_list;
ContractGraph(max_edge_id,
edge_based_edge_list,
contracted_edge_list,
std::move(node_weights),
is_core_node,
node_levels);
{ // own scope to not keep the contractor around
GraphContractor graph_contractor(max_edge_id + 1,
adaptToContractorInput(std::move(edge_based_edge_list)),
std::move(node_levels),
std::move(node_weights));
graph_contractor.Run(config.core_factor);
graph_contractor.GetEdges(contracted_edge_list);
graph_contractor.GetCoreMarker(is_core_node);
graph_contractor.GetNodeLevels(node_levels);
}
TIMER_STOP(contraction);
util::Log() << "Contraction took " << TIMER_SEC(contraction) << " sec";
@ -367,21 +372,20 @@ int Contractor::Run()
return 0;
}
// Utilities for LoadEdgeExpandedGraph to restore my sanity
EdgeID Contractor::LoadEdgeExpandedGraph(
std::string const &edge_based_graph_filename,
util::DeallocatingVector<extractor::EdgeBasedEdge> &edge_based_edge_list,
std::vector<EdgeWeight> &node_weights,
const std::string &edge_segment_lookup_filename,
const std::string &edge_penalty_filename,
const std::vector<std::string> &segment_speed_filenames,
const std::vector<std::string> &turn_penalty_filenames,
const std::string &nodes_filename,
const std::string &geometry_filename,
const std::string &datasource_names_filename,
const std::string &datasource_indexes_filename,
const std::string &rtree_leaf_filename,
const double log_edge_updates_factor)
EdgeID
Contractor::LoadEdgeExpandedGraph(std::string const &edge_based_graph_filename,
std::vector<extractor::EdgeBasedEdge> &edge_based_edge_list,
std::vector<EdgeWeight> &node_weights,
const std::string &edge_segment_lookup_filename,
const std::string &edge_penalty_filename,
const std::vector<std::string> &segment_speed_filenames,
const std::vector<std::string> &turn_penalty_filenames,
const std::string &nodes_filename,
const std::string &geometry_filename,
const std::string &datasource_names_filename,
const std::string &datasource_indexes_filename,
const std::string &rtree_leaf_filename,
const double log_edge_updates_factor)
{
if (segment_speed_filenames.size() > 255 || turn_penalty_filenames.size() > 255)
throw util::exception("Limit of 255 segment speed and turn penalty files each reached" +
@ -957,26 +961,5 @@ Contractor::WriteContractedGraph(unsigned max_node_id,
return number_of_used_edges;
}
/**
\brief Build contracted graph.
*/
void Contractor::ContractGraph(
const EdgeID max_edge_id,
util::DeallocatingVector<extractor::EdgeBasedEdge> &edge_based_edge_list,
util::DeallocatingVector<QueryEdge> &contracted_edge_list,
std::vector<EdgeWeight> &&node_weights,
std::vector<bool> &is_core_node,
std::vector<float> &inout_node_levels) const
{
std::vector<float> node_levels;
node_levels.swap(inout_node_levels);
GraphContractor graph_contractor(
max_edge_id + 1, edge_based_edge_list, std::move(node_levels), std::move(node_weights));
graph_contractor.Run(config.core_factor);
graph_contractor.GetEdges(contracted_edge_list);
graph_contractor.GetCoreMarker(is_core_node);
graph_contractor.GetNodeLevels(inout_node_levels);
}
}
}
} // namespace contractor
} // namespace osrm

View File

@ -0,0 +1,96 @@
#include "contractor/contractor_dijkstra.hpp"
namespace osrm
{
namespace contractor
{
ContractorDijkstra::ContractorDijkstra(const std::size_t heap_size) : heap(heap_size) {}
void ContractorDijkstra::Run(const unsigned number_of_targets,
const int node_limit,
const int weight_limit,
const NodeID forbidden_node,
const ContractorGraph &graph)
{
int nodes = 0;
unsigned number_of_targets_found = 0;
while (!heap.Empty())
{
const NodeID node = heap.DeleteMin();
const auto node_weight = heap.GetKey(node);
if (++nodes > node_limit)
{
return;
}
if (node_weight > weight_limit)
{
return;
}
// Destination settled?
if (heap.GetData(node).target)
{
++number_of_targets_found;
if (number_of_targets_found >= number_of_targets)
{
return;
}
}
RelaxNode(node, node_weight, forbidden_node, graph);
}
}
void ContractorDijkstra::RelaxNode(const NodeID node,
const int node_weight,
const NodeID forbidden_node,
const ContractorGraph &graph)
{
const short current_hop = heap.GetData(node).hop + 1;
for (auto edge : graph.GetAdjacentEdgeRange(node))
{
const ContractorEdgeData &data = graph.GetEdgeData(edge);
if (!data.forward)
{
continue;
}
const NodeID to = graph.GetTarget(edge);
if (forbidden_node == to)
{
continue;
}
const int to_weight = node_weight + data.weight;
// New Node discovered -> Add to Heap + Node Info Storage
if (!heap.WasInserted(to))
{
heap.Insert(to, to_weight, ContractorHeapData{current_hop, false});
}
// Found a shorter Path -> Update weight
else if (to_weight < GetKey(to))
{
heap.DecreaseKey(to, to_weight);
heap.GetData(to).hop = current_hop;
}
}
}
void ContractorDijkstra::Clear() { heap.Clear(); }
bool ContractorDijkstra::WasInserted(const NodeID node) const { return heap.WasInserted(node); }
void ContractorDijkstra::Insert(const NodeID node,
const ContractorHeap::WeightType weight,
const ContractorHeap::DataType &data)
{
heap.Insert(node, weight, data);
}
ContractorHeap::WeightType ContractorDijkstra::GetKey(const NodeID node)
{
return heap.GetKey(node);
}
} // namespace contractor
} // namespace osrm

View File

@ -0,0 +1,592 @@
#include "contractor/graph_contractor.hpp"
namespace osrm
{
namespace contractor
{
GraphContractor::GraphContractor(int nodes, std::vector<ContractorEdge> input_edge_list)
: GraphContractor(nodes, std::move(input_edge_list), {}, {})
{
}
GraphContractor::GraphContractor(int nodes,
std::vector<ContractorEdge> edges,
std::vector<float> &&node_levels_,
std::vector<EdgeWeight> &&node_weights_)
: node_levels(std::move(node_levels_)), node_weights(std::move(node_weights_))
{
tbb::parallel_sort(edges.begin(), edges.end());
NodeID edge = 0;
for (NodeID i = 0; i < edges.size();)
{
const NodeID source = edges[i].source;
const NodeID target = edges[i].target;
const NodeID id = edges[i].data.id;
// remove eigenloops
if (source == target)
{
++i;
continue;
}
ContractorEdge forward_edge;
ContractorEdge reverse_edge;
forward_edge.source = reverse_edge.source = source;
forward_edge.target = reverse_edge.target = target;
forward_edge.data.forward = reverse_edge.data.backward = true;
forward_edge.data.backward = reverse_edge.data.forward = false;
forward_edge.data.shortcut = reverse_edge.data.shortcut = false;
forward_edge.data.id = reverse_edge.data.id = id;
forward_edge.data.originalEdges = reverse_edge.data.originalEdges = 1;
forward_edge.data.weight = reverse_edge.data.weight = INVALID_EDGE_WEIGHT;
// remove parallel edges
while (i < edges.size() && edges[i].source == source && edges[i].target == target)
{
if (edges[i].data.forward)
{
forward_edge.data.weight = std::min(edges[i].data.weight, forward_edge.data.weight);
}
if (edges[i].data.backward)
{
reverse_edge.data.weight = std::min(edges[i].data.weight, reverse_edge.data.weight);
}
++i;
}
// merge edges (s,t) and (t,s) into bidirectional edge
if (forward_edge.data.weight == reverse_edge.data.weight)
{
if ((int)forward_edge.data.weight != INVALID_EDGE_WEIGHT)
{
forward_edge.data.backward = true;
edges[edge++] = forward_edge;
}
}
else
{ // insert seperate edges
if (((int)forward_edge.data.weight) != INVALID_EDGE_WEIGHT)
{
edges[edge++] = forward_edge;
}
if ((int)reverse_edge.data.weight != INVALID_EDGE_WEIGHT)
{
edges[edge++] = reverse_edge;
}
}
}
util::Log() << "merged " << edges.size() - edge << " edges out of " << edges.size();
edges.resize(edge);
contractor_graph = std::make_shared<ContractorGraph>(nodes, edges);
edges.clear();
edges.shrink_to_fit();
BOOST_ASSERT(0 == edges.capacity());
util::Log() << "contractor finished initalization";
}
/* Flush all data from the contraction to disc and reorder stuff for better locality */
void GraphContractor::FlushDataAndRebuildContractorGraph(
ThreadDataContainer &thread_data_list,
std::vector<RemainingNodeData> &remaining_nodes,
std::vector<float> &node_priorities)
{
util::DeallocatingVector<ContractorEdge> new_edge_set; // this one is not explicitely
// cleared since it goes out of
// scope anywa
// Delete old heap data to free memory that we need for the coming operations
thread_data_list.data.clear();
// Create new priority array
std::vector<float> new_node_priority(remaining_nodes.size());
std::vector<EdgeWeight> new_node_weights(remaining_nodes.size());
// this map gives the old IDs from the new ones, necessary to get a consistent graph
// at the end of contraction
orig_node_id_from_new_node_id_map.resize(remaining_nodes.size());
// this map gives the new IDs from the old ones, necessary to remap targets from the
// remaining graph
const auto number_of_nodes = contractor_graph->GetNumberOfNodes();
std::vector<NodeID> new_node_id_from_orig_id_map(number_of_nodes, SPECIAL_NODEID);
for (const auto new_node_id : util::irange<std::size_t>(0UL, remaining_nodes.size()))
{
auto &node = remaining_nodes[new_node_id];
BOOST_ASSERT(node_priorities.size() > node.id);
new_node_priority[new_node_id] = node_priorities[node.id];
BOOST_ASSERT(node_weights.size() > node.id);
new_node_weights[new_node_id] = node_weights[node.id];
}
// build forward and backward renumbering map and remap ids in remaining_nodes
for (const auto new_node_id : util::irange<std::size_t>(0UL, remaining_nodes.size()))
{
auto &node = remaining_nodes[new_node_id];
// create renumbering maps in both directions
orig_node_id_from_new_node_id_map[new_node_id] = node.id;
new_node_id_from_orig_id_map[node.id] = new_node_id;
node.id = new_node_id;
}
// walk over all nodes
for (const auto source : util::irange<NodeID>(0UL, contractor_graph->GetNumberOfNodes()))
{
for (auto current_edge : contractor_graph->GetAdjacentEdgeRange(source))
{
ContractorGraph::EdgeData &data = contractor_graph->GetEdgeData(current_edge);
const NodeID target = contractor_graph->GetTarget(current_edge);
if (SPECIAL_NODEID == new_node_id_from_orig_id_map[source])
{
external_edge_list.push_back({source, target, data});
}
else
{
// node is not yet contracted.
// add (renumbered) outgoing edges to new util::DynamicGraph.
ContractorEdge new_edge = {new_node_id_from_orig_id_map[source],
new_node_id_from_orig_id_map[target],
data};
new_edge.data.is_original_via_node_ID = true;
BOOST_ASSERT_MSG(SPECIAL_NODEID != new_node_id_from_orig_id_map[source],
"new source id not resolveable");
BOOST_ASSERT_MSG(SPECIAL_NODEID != new_node_id_from_orig_id_map[target],
"new target id not resolveable");
new_edge_set.push_back(new_edge);
}
}
}
// Replace old priorities array by new one
node_priorities.swap(new_node_priority);
// Delete old node_priorities vector
node_weights.swap(new_node_weights);
// old Graph is removed
contractor_graph.reset();
// create new graph
tbb::parallel_sort(new_edge_set.begin(), new_edge_set.end());
contractor_graph = std::make_shared<ContractorGraph>(remaining_nodes.size(), new_edge_set);
new_edge_set.clear();
// INFO: MAKE SURE THIS IS THE LAST OPERATION OF THE FLUSH!
// reinitialize heaps and ThreadData objects with appropriate size
thread_data_list.number_of_nodes = contractor_graph->GetNumberOfNodes();
}
void GraphContractor::Run(double core_factor)
{
// for the preperation we can use a big grain size, which is much faster (probably cache)
const constexpr size_t InitGrainSize = 100000;
const constexpr size_t PQGrainSize = 100000;
// auto_partitioner will automatically increase the blocksize if we have
// a lot of data. It is *important* for the last loop iterations
// (which have a very small dataset) that it is devisible.
const constexpr size_t IndependentGrainSize = 1;
const constexpr size_t ContractGrainSize = 1;
const constexpr size_t NeighboursGrainSize = 1;
const constexpr size_t DeleteGrainSize = 1;
const NodeID number_of_nodes = contractor_graph->GetNumberOfNodes();
ThreadDataContainer thread_data_list(number_of_nodes);
NodeID number_of_contracted_nodes = 0;
std::vector<NodeDepth> node_depth;
std::vector<float> node_priorities;
is_core_node.resize(number_of_nodes, false);
std::vector<RemainingNodeData> remaining_nodes(number_of_nodes);
// initialize priorities in parallel
tbb::parallel_for(tbb::blocked_range<NodeID>(0, number_of_nodes, InitGrainSize),
[this, &remaining_nodes](const tbb::blocked_range<NodeID> &range) {
for (auto x = range.begin(), end = range.end(); x != end; ++x)
{
remaining_nodes[x].id = x;
}
});
bool use_cached_node_priorities = !node_levels.empty();
if (use_cached_node_priorities)
{
util::UnbufferedLog log;
log << "using cached node priorities ...";
node_priorities.swap(node_levels);
log << "ok";
}
else
{
node_depth.resize(number_of_nodes, 0);
node_priorities.resize(number_of_nodes);
node_levels.resize(number_of_nodes);
util::UnbufferedLog log;
log << "initializing elimination PQ ...";
tbb::parallel_for(tbb::blocked_range<NodeID>(0, number_of_nodes, PQGrainSize),
[this, &node_priorities, &node_depth, &thread_data_list](
const tbb::blocked_range<NodeID> &range) {
ContractorThreadData *data = thread_data_list.GetThreadData();
for (auto x = range.begin(), end = range.end(); x != end; ++x)
{
node_priorities[x] =
this->EvaluateNodePriority(data, node_depth[x], x);
}
});
log << "ok";
}
BOOST_ASSERT(node_priorities.size() == number_of_nodes);
util::Log() << "preprocessing " << number_of_nodes << " nodes ...";
util::UnbufferedLog log;
util::Percent p(log, number_of_nodes);
unsigned current_level = 0;
bool flushed_contractor = false;
while (number_of_nodes > 2 &&
number_of_contracted_nodes < static_cast<NodeID>(number_of_nodes * core_factor))
{
if (!flushed_contractor && (number_of_contracted_nodes >
static_cast<NodeID>(number_of_nodes * 0.65 * core_factor)))
{
log << " [flush " << number_of_contracted_nodes << " nodes] ";
FlushDataAndRebuildContractorGraph(thread_data_list, remaining_nodes, node_priorities);
flushed_contractor = true;
}
tbb::parallel_for(
tbb::blocked_range<NodeID>(0, remaining_nodes.size(), IndependentGrainSize),
[this, &node_priorities, &remaining_nodes, &thread_data_list](
const tbb::blocked_range<NodeID> &range) {
ContractorThreadData *data = thread_data_list.GetThreadData();
// determine independent node set
for (auto i = range.begin(), end = range.end(); i != end; ++i)
{
const NodeID node = remaining_nodes[i].id;
remaining_nodes[i].is_independent =
this->IsNodeIndependent(node_priorities, data, node);
}
});
// sort all remaining nodes to the beginning of the sequence
const auto begin_independent_nodes =
stable_partition(remaining_nodes.begin(),
remaining_nodes.end(),
[](RemainingNodeData node_data) { return !node_data.is_independent; });
auto begin_independent_nodes_idx =
std::distance(remaining_nodes.begin(), begin_independent_nodes);
auto end_independent_nodes_idx = remaining_nodes.size();
if (!use_cached_node_priorities)
{
// write out contraction level
tbb::parallel_for(
tbb::blocked_range<NodeID>(
begin_independent_nodes_idx, end_independent_nodes_idx, ContractGrainSize),
[this, remaining_nodes, flushed_contractor, current_level](
const tbb::blocked_range<NodeID> &range) {
if (flushed_contractor)
{
for (auto position = range.begin(), end = range.end(); position != end;
++position)
{
const NodeID x = remaining_nodes[position].id;
node_levels[orig_node_id_from_new_node_id_map[x]] = current_level;
}
}
else
{
for (auto position = range.begin(), end = range.end(); position != end;
++position)
{
const NodeID x = remaining_nodes[position].id;
node_levels[x] = current_level;
}
}
});
}
// contract independent nodes
tbb::parallel_for(
tbb::blocked_range<NodeID>(
begin_independent_nodes_idx, end_independent_nodes_idx, ContractGrainSize),
[this, &remaining_nodes, &thread_data_list](const tbb::blocked_range<NodeID> &range) {
ContractorThreadData *data = thread_data_list.GetThreadData();
for (auto position = range.begin(), end = range.end(); position != end; ++position)
{
const NodeID x = remaining_nodes[position].id;
this->ContractNode<false>(data, x);
}
});
tbb::parallel_for(
tbb::blocked_range<NodeID>(
begin_independent_nodes_idx, end_independent_nodes_idx, DeleteGrainSize),
[this, &remaining_nodes, &thread_data_list](const tbb::blocked_range<NodeID> &range) {
ContractorThreadData *data = thread_data_list.GetThreadData();
for (auto position = range.begin(), end = range.end(); position != end; ++position)
{
const NodeID x = remaining_nodes[position].id;
this->DeleteIncomingEdges(data, x);
}
});
// make sure we really sort each block
tbb::parallel_for(thread_data_list.data.range(),
[&](const ThreadDataContainer::EnumerableThreadData::range_type &range) {
for (auto &data : range)
tbb::parallel_sort(data->inserted_edges.begin(),
data->inserted_edges.end());
});
// insert new edges
for (auto &data : thread_data_list.data)
{
for (const ContractorEdge &edge : data->inserted_edges)
{
const EdgeID current_edge_ID = contractor_graph->FindEdge(edge.source, edge.target);
if (current_edge_ID < contractor_graph->EndEdges(edge.source))
{
ContractorGraph::EdgeData &current_data =
contractor_graph->GetEdgeData(current_edge_ID);
if (current_data.shortcut && edge.data.forward == current_data.forward &&
edge.data.backward == current_data.backward &&
edge.data.weight < current_data.weight)
{
// found a duplicate edge with smaller weight, update it.
current_data = edge.data;
continue;
}
}
contractor_graph->InsertEdge(edge.source, edge.target, edge.data);
}
data->inserted_edges.clear();
}
if (!use_cached_node_priorities)
{
tbb::parallel_for(
tbb::blocked_range<NodeID>(
begin_independent_nodes_idx, end_independent_nodes_idx, NeighboursGrainSize),
[this, &node_priorities, &remaining_nodes, &node_depth, &thread_data_list](
const tbb::blocked_range<NodeID> &range) {
ContractorThreadData *data = thread_data_list.GetThreadData();
for (auto position = range.begin(), end = range.end(); position != end;
++position)
{
NodeID x = remaining_nodes[position].id;
this->UpdateNodeNeighbours(node_priorities, node_depth, data, x);
}
});
}
// remove contracted nodes from the pool
BOOST_ASSERT(end_independent_nodes_idx - begin_independent_nodes_idx > 0);
number_of_contracted_nodes += end_independent_nodes_idx - begin_independent_nodes_idx;
remaining_nodes.resize(begin_independent_nodes_idx);
p.PrintStatus(number_of_contracted_nodes);
++current_level;
}
if (remaining_nodes.size() > 2)
{
if (orig_node_id_from_new_node_id_map.size() > 0)
{
tbb::parallel_for(tbb::blocked_range<NodeID>(0, remaining_nodes.size(), InitGrainSize),
[this, &remaining_nodes](const tbb::blocked_range<NodeID> &range) {
for (auto x = range.begin(), end = range.end(); x != end; ++x)
{
const auto orig_id = remaining_nodes[x].id;
is_core_node[orig_node_id_from_new_node_id_map[orig_id]] =
true;
}
});
}
else
{
tbb::parallel_for(tbb::blocked_range<NodeID>(0, remaining_nodes.size(), InitGrainSize),
[this, &remaining_nodes](const tbb::blocked_range<NodeID> &range) {
for (auto x = range.begin(), end = range.end(); x != end; ++x)
{
const auto orig_id = remaining_nodes[x].id;
is_core_node[orig_id] = true;
}
});
}
}
else
{
// in this case we don't need core markers since we fully contracted
// the graph
is_core_node.clear();
}
util::Log() << "[core] " << remaining_nodes.size() << " nodes "
<< contractor_graph->GetNumberOfEdges() << " edges.";
thread_data_list.data.clear();
}
void GraphContractor::GetCoreMarker(std::vector<bool> &out_is_core_node)
{
out_is_core_node.swap(is_core_node);
}
void GraphContractor::GetNodeLevels(std::vector<float> &out_node_levels)
{
out_node_levels.swap(node_levels);
}
float GraphContractor::EvaluateNodePriority(ContractorThreadData *const data,
const NodeDepth node_depth,
const NodeID node)
{
ContractionStats stats;
// perform simulated contraction
ContractNode<true>(data, node, &stats);
// Result will contain the priority
float result;
if (0 == (stats.edges_deleted_count * stats.original_edges_deleted_count))
{
result = 1.f * node_depth;
}
else
{
result =
2.f * (((float)stats.edges_added_count) / stats.edges_deleted_count) +
4.f * (((float)stats.original_edges_added_count) / stats.original_edges_deleted_count) +
1.f * node_depth;
}
BOOST_ASSERT(result >= 0);
return result;
}
void GraphContractor::DeleteIncomingEdges(ContractorThreadData *data, const NodeID node)
{
std::vector<NodeID> &neighbours = data->neighbours;
neighbours.clear();
// find all neighbours
for (auto e : contractor_graph->GetAdjacentEdgeRange(node))
{
const NodeID u = contractor_graph->GetTarget(e);
if (u != node)
{
neighbours.push_back(u);
}
}
// eliminate duplicate entries ( forward + backward edges )
std::sort(neighbours.begin(), neighbours.end());
neighbours.resize(std::unique(neighbours.begin(), neighbours.end()) - neighbours.begin());
for (const auto i : util::irange<std::size_t>(0, neighbours.size()))
{
contractor_graph->DeleteEdgesTo(neighbours[i], node);
}
}
bool GraphContractor::UpdateNodeNeighbours(std::vector<float> &priorities,
std::vector<NodeDepth> &node_depth,
ContractorThreadData *const data,
const NodeID node)
{
std::vector<NodeID> &neighbours = data->neighbours;
neighbours.clear();
// find all neighbours
for (auto e : contractor_graph->GetAdjacentEdgeRange(node))
{
const NodeID u = contractor_graph->GetTarget(e);
if (u == node)
{
continue;
}
neighbours.push_back(u);
node_depth[u] = std::max(node_depth[node] + 1, node_depth[u]);
}
// eliminate duplicate entries ( forward + backward edges )
std::sort(neighbours.begin(), neighbours.end());
neighbours.resize(std::unique(neighbours.begin(), neighbours.end()) - neighbours.begin());
// re-evaluate priorities of neighboring nodes
for (const NodeID u : neighbours)
{
priorities[u] = EvaluateNodePriority(data, node_depth[u], u);
}
return true;
}
bool GraphContractor::IsNodeIndependent(const std::vector<float> &priorities,
ContractorThreadData *const data,
NodeID node) const
{
const float priority = priorities[node];
std::vector<NodeID> &neighbours = data->neighbours;
neighbours.clear();
for (auto e : contractor_graph->GetAdjacentEdgeRange(node))
{
const NodeID target = contractor_graph->GetTarget(e);
if (node == target)
{
continue;
}
const float target_priority = priorities[target];
BOOST_ASSERT(target_priority >= 0);
// found a neighbour with lower priority?
if (priority > target_priority)
{
return false;
}
// tie breaking
if (std::abs(priority - target_priority) < std::numeric_limits<float>::epsilon() &&
Bias(node, target))
{
return false;
}
neighbours.push_back(target);
}
std::sort(neighbours.begin(), neighbours.end());
neighbours.resize(std::unique(neighbours.begin(), neighbours.end()) - neighbours.begin());
// examine all neighbours that are at most 2 hops away
for (const NodeID u : neighbours)
{
for (auto e : contractor_graph->GetAdjacentEdgeRange(u))
{
const NodeID target = contractor_graph->GetTarget(e);
if (node == target)
{
continue;
}
const float target_priority = priorities[target];
BOOST_ASSERT(target_priority >= 0);
// found a neighbour with lower priority?
if (priority > target_priority)
{
return false;
}
// tie breaking
if (std::abs(priority - target_priority) < std::numeric_limits<float>::epsilon() &&
Bias(node, target))
{
return false;
}
}
}
return true;
}
// This bias function takes up 22 assembly instructions in total on X86
bool GraphContractor::Bias(const NodeID a, const NodeID b) const
{
const unsigned short hasha = fast_hash(a);
const unsigned short hashb = fast_hash(b);
// The compiler optimizes that to conditional register flags but without branching
// statements!
if (hasha != hashb)
{
return hasha < hashb;
}
return a < b;
}
} // namespace contractor
} // namespace osrm