osrm-backend/src/extractor/guidance/turn_lane_handler.cpp

823 lines
34 KiB
C++
Raw Normal View History

#include "util/debug.hpp"
2016-05-13 13:18:00 -04:00
#include "extractor/guidance/constants.hpp"
#include "extractor/guidance/turn_discovery.hpp"
#include "extractor/guidance/turn_lane_augmentation.hpp"
#include "extractor/guidance/turn_lane_handler.hpp"
2016-06-15 08:38:24 -04:00
#include "extractor/guidance/turn_lane_matcher.hpp"
2016-05-13 13:18:00 -04:00
#include "util/simple_logger.hpp"
#include "util/typedefs.hpp"
#include <cstdint>
#include <boost/algorithm/string/predicate.hpp>
#include <boost/numeric/conversion/cast.hpp>
namespace osrm
{
namespace extractor
{
namespace guidance
{
namespace lanes
{
namespace
{
std::size_t getNumberOfTurns(const Intersection &intersection)
{
return std::count_if(intersection.begin(), intersection.end(), [](const ConnectedRoad &road) {
return road.entry_allowed;
});
}
} // namespace
const constexpr char *TurnLaneHandler::scenario_names[TurnLaneScenario::NUM_SCENARIOS];
2016-05-13 13:18:00 -04:00
TurnLaneHandler::TurnLaneHandler(const util::NodeBasedDynamicGraph &node_based_graph,
std::vector<std::uint32_t> &turn_lane_offsets,
std::vector<TurnLaneType::Mask> &turn_lane_masks,
LaneDescriptionMap &lane_description_map,
const std::vector<QueryNode> &node_info_list,
const TurnAnalysis &turn_analysis,
LaneDataIdMap &id_map)
: node_based_graph(node_based_graph), turn_lane_offsets(turn_lane_offsets),
turn_lane_masks(turn_lane_masks), lane_description_map(lane_description_map),
node_info_list(node_info_list), turn_analysis(turn_analysis), id_map(id_map)
2016-05-13 13:18:00 -04:00
{
count_handled = new unsigned;
count_called = new unsigned;
*count_handled = *count_called = 0;
}
TurnLaneHandler::~TurnLaneHandler()
{
std::cout << "Handled: " << *count_handled << " of " << *count_called
<< " lanes: " << (double)(*count_handled * 100) / (*count_called) << " %."
<< std::endl;
delete count_called;
delete count_handled;
2016-05-13 13:18:00 -04:00
}
/*
2016-06-15 08:38:24 -04:00
Turn lanes are given in the form of strings that closely correspond to the direction modifiers
2016-05-13 13:18:00 -04:00
we use for our turn types. However, we still cannot simply perform a 1:1 assignment.
This function parses the turn_lane_descriptions of a format that describes an intersection as:
2016-05-13 13:18:00 -04:00
----------
A -^
----------
B -> -v
----------
C -v
----------
witch is the result of a string like looking |left|through;right|right| and performs an
assignment onto the turns.
For example: (130, turn slight right), (180, ramp straight), (320, turn sharp left).
2016-05-13 13:18:00 -04:00
*/
Intersection
TurnLaneHandler::assignTurnLanes(const NodeID at, const EdgeID via_edge, Intersection intersection)
2016-05-13 13:18:00 -04:00
{
2016-07-26 09:00:58 -04:00
// if only a uturn exists, there is nothing we can do
if (intersection.size() == 1)
return intersection;
// A list of output parameters to be filled in during deduceScenario.
// Data for the current intersection
LaneDescriptionID lane_description_id = INVALID_LANE_DESCRIPTIONID;
LaneDataVector lane_data;
// Data for the previous intersection
NodeID previous_node = SPECIAL_NODEID;
EdgeID previous_via_edge = SPECIAL_EDGEID;
Intersection previous_intersection;
LaneDataVector previous_lane_data;
LaneDescriptionID previous_description_id = INVALID_LANE_DESCRIPTIONID;
const auto scenario = deduceScenario(at,
via_edge,
intersection,
lane_description_id,
lane_data,
previous_node,
previous_via_edge,
previous_intersection,
previous_lane_data,
previous_description_id);
std::cout << "[turn lane] " << scenario_names[scenario] << std::endl;
if (scenario != TurnLaneHandler::NONE)
(*count_called)++;
switch (scenario)
{
// A turn based on current lane data
case TurnLaneScenario::SIMPLE:
case TurnLaneScenario::PARTITION_LOCAL:
lane_data = handleNoneValueAtSimpleTurn(std::move(lane_data), intersection);
return simpleMatchTuplesToTurns(std::move(intersection), lane_data, lane_description_id);
// Cases operating on data carried over from a previous lane
case TurnLaneScenario::SIMPLE_PREVIOUS:
case TurnLaneScenario::PARTITION_PREVIOUS:
previous_lane_data =
handleNoneValueAtSimpleTurn(std::move(previous_lane_data), intersection);
return simpleMatchTuplesToTurns(
std::move(intersection), previous_lane_data, previous_description_id);
// Sliproads-turns that are to be handled as a single entity
case TurnLaneScenario::SLIPROAD:
return handleSliproadTurn(std::move(intersection),
lane_description_id,
std::move(lane_data),
previous_intersection,
previous_description_id,
previous_lane_data);
case TurnLaneScenario::MERGE:
return intersection;
default:
// All different values that we cannot handle. For some me might want to print debug output
// later on, when the handling is actually improved to work in close to all cases.
// case TurnLaneScenario::UNKNOWN:
// case TurnLaneScenario::NONE:
// case TurnLaneScenario::INVALID:
{
/*
static int print_count = 0;
if (TurnLaneScenario::NONE != scenario && print_count++ < 10)
{
std::cout << "[Unhandled] " << (int)lane_description_id << " -- "
<< (int)previous_description_id << "\n"
<< std::endl;
util::guidance::printTurnAssignmentData(
at, lane_data, intersection, node_info_list);
if (previous_node != SPECIAL_NODEID)
util::guidance::printTurnAssignmentData(
previous_node, previous_lane_data, previous_intersection, node_info_list);
}
*/
}
return intersection;
}
}
2016-05-13 13:18:00 -04:00
// Find out which scenario we have to handle
TurnLaneHandler::TurnLaneScenario
TurnLaneHandler::deduceScenario(const NodeID at,
const EdgeID via_edge,
const Intersection &intersection,
// Output Variables
LaneDescriptionID &lane_description_id,
LaneDataVector &lane_data,
NodeID &previous_node,
EdgeID &previous_via_edge,
Intersection &previous_intersection,
LaneDataVector &previous_lane_data,
LaneDescriptionID &previous_description_id)
{
// if only a uturn exists, there is nothing we can do
if (intersection.size() == 1)
return TurnLaneHandler::NONE;
extractLaneData(via_edge, lane_description_id, lane_data);
// traffic lights are not compressed during our preprocessing. Due to this *shortcoming*, we can
// get to the following situation:
//
// d
// a - b - c
// e
//
// with a traffic light at b and a-b as well as b-c offering the same turn lanes.
// In such a situation, we don't need to handle the lanes at a-b, since we will get the same
// information at b-c, where the actual turns are taking place.
const bool is_going_straight_and_turns_continue =
(intersection.size() == 2 &&
((lane_description_id != INVALID_LANE_DESCRIPTIONID &&
lane_description_id ==
node_based_graph.GetEdgeData(intersection[1].turn.eid).lane_description_id) ||
angularDeviation(intersection[1].turn.angle, STRAIGHT_ANGLE) < FUZZY_ANGLE_DIFFERENCE));
if (is_going_straight_and_turns_continue)
return TurnLaneHandler::NONE;
2016-05-13 13:18:00 -04:00
// if we see an invalid conversion, we stop immediately
if (lane_description_id != INVALID_LANE_DESCRIPTIONID && lane_data.empty())
return TurnLaneScenario::INVALID;
2016-05-13 13:18:00 -04:00
// might be reasonable to handle multiple turns, if we know of a sequence of lanes
// e.g. one direction per lane, if three lanes and right, through, left available
if (lane_description_id != INVALID_LANE_DESCRIPTIONID && lane_data.size() == 1 &&
lane_data[0].tag == TurnLaneType::none)
return TurnLaneScenario::NONE;
// Due to sliproads, we might need access to the previous intersection at this point already;
previous_node = SPECIAL_NODEID;
previous_via_edge = SPECIAL_EDGEID;
if (findPreviousIntersection(at,
via_edge,
intersection,
turn_analysis,
node_based_graph,
previous_node,
previous_via_edge,
previous_intersection))
{
extractLaneData(previous_via_edge, previous_description_id, previous_lane_data);
for (std::size_t road_index = 0; road_index < previous_intersection.size(); ++road_index)
{
const auto &road = previous_intersection[road_index];
// in case of a sliproad that is connected to road of simlar angle, we handle the
// turn as a combined turn
if (road.turn.instruction.type == TurnType::Sliproad)
{
if (via_edge == road.turn.eid)
return TurnLaneScenario::SLIPROAD;
const auto &closest_road = [&]() {
if (road_index + 1 == previous_intersection.size())
{
BOOST_ASSERT(road_index > 1);
return previous_intersection[road_index - 1];
}
else if (road_index == 1)
{
BOOST_ASSERT(road_index + 1 < previous_intersection.size());
return previous_intersection[road_index + 1];
}
else if (angularDeviation(road.turn.angle,
previous_intersection.at(road_index - 1).turn.angle) <
angularDeviation(road.turn.angle,
previous_intersection.at(road_index + 1).turn.angle))
return previous_intersection[road_index - 1];
else
return previous_intersection[road_index + 1];
}();
if (via_edge == closest_road.turn.eid)
return TurnLaneScenario::SLIPROAD;
}
}
}
2016-05-13 13:18:00 -04:00
const std::size_t possible_entries = getNumberOfTurns(intersection);
// merge does not justify an instruction
2016-06-15 08:38:24 -04:00
const bool has_merge_lane =
hasTag(TurnLaneType::merge_to_left | TurnLaneType::merge_to_right, lane_data);
if (has_merge_lane)
return TurnLaneScenario::MERGE;
2016-05-13 13:18:00 -04:00
// Dead end streets that don't have any left-tag. This can happen due to the fallbacks for
// broken data/barriers.
const bool has_non_usable_u_turn = (intersection[0].entry_allowed &&
!hasTag(TurnLaneType::none | TurnLaneType::left |
TurnLaneType::sharp_left | TurnLaneType::uturn,
lane_data) &&
lane_data.size() + 1 == possible_entries);
2016-05-13 13:18:00 -04:00
if (has_non_usable_u_turn)
return TurnLaneScenario::INVALID;
2016-05-13 13:18:00 -04:00
2016-08-11 03:44:30 -04:00
// check if a u-turn is allowed (for some reason) and is missing from the list of tags (u-turn
// is often allowed from the `left` lane without an additional indication dedicated to u-turns).
const bool is_missing_valid_u_turn =
!lane_data.empty() && canMatchTrivially(intersection, lane_data) &&
2016-05-13 13:18:00 -04:00
lane_data.size() !=
static_cast<std::size_t>((
!hasTag(TurnLaneType::uturn, lane_data) && intersection[0].entry_allowed ? 1 : 0)) +
2016-05-13 13:18:00 -04:00
possible_entries &&
2016-08-11 03:44:30 -04:00
intersection[0].entry_allowed;
// FIXME the lane to add depends on the side of driving/u-turn rules in the country
if (!lane_data.empty() && canMatchTrivially(intersection, lane_data) &&
2016-08-12 11:04:40 -04:00
is_missing_valid_u_turn && !hasTag(TurnLaneType::none, lane_data))
lane_data.push_back({TurnLaneType::uturn, lane_data.back().to, lane_data.back().to});
2016-05-13 13:18:00 -04:00
bool is_simple = isSimpleIntersection(lane_data, intersection);
2016-05-13 13:18:00 -04:00
if (is_simple)
return TurnLaneScenario::SIMPLE;
// In case of intersections that don't offer all turns right away, we have to account for
// *delayed* turns. Consider the following example:
//
// e
// a - b - c - f
// d
//
// With lanes on a-b indicating: | left | through | right |.
// While right obviously refers to a-b-d, through and left refer to a-b-c-f and a-b-c-e
// respectively. While we are at a-b, we have to consider the right turn only.
// The turn a-b-c gets assigned the lanes of both *left* and *through*.
// At b-c, we get access to either a new set of lanes, or -- via the previous intersection
// -- to
// the second part of | left | through | right |. Lane anticipation can then deduce which
// lanes
// correspond to what and suppress unnecessary instructions.
//
// For our initial case, we consider only the turns that are available at the current
// location,
// which are given by partitioning the lane data and selecting the first part.
if (!lane_data.empty())
2016-05-13 13:18:00 -04:00
{
if (lane_data.size() >= possible_entries)
{
lane_data = partitionLaneData(node_based_graph.GetTarget(via_edge),
std::move(lane_data),
intersection)
.first;
// check if we were successfull in trimming
if (lane_data.size() == possible_entries &&
isSimpleIntersection(lane_data, intersection))
return TurnLaneScenario::PARTITION_LOCAL;
2016-05-13 13:18:00 -04:00
}
// If partitioning doesn't solve the problem, we don't know how to handle it right now
return TurnLaneScenario::UNKNOWN;
2016-05-13 13:18:00 -04:00
}
if (lane_description_id != INVALID_LANE_DESCRIPTIONID)
return TurnLaneScenario::UNKNOWN;
2016-05-13 13:18:00 -04:00
// acquire the lane data of a previous segment and, if possible, use it for the current
// intersection.
if (previous_via_edge == SPECIAL_EDGEID)
return TurnLaneScenario::NONE;
2016-05-13 13:18:00 -04:00
if (previous_lane_data.empty())
return TurnLaneScenario::NONE;
2016-05-13 13:18:00 -04:00
const bool previous_has_merge_lane =
hasTag(TurnLaneType::merge_to_left | TurnLaneType::merge_to_right, previous_lane_data);
if (previous_has_merge_lane)
return TurnLaneScenario::MERGE;
2016-05-13 13:18:00 -04:00
const auto is_simple_previous =
isSimpleIntersection(previous_lane_data, intersection) && previous_intersection.size() == 2;
if (is_simple_previous)
return TurnLaneScenario::SIMPLE_PREVIOUS;
2016-05-13 13:18:00 -04:00
// This is the second part of the previously described partitioning scenario.
if (previous_lane_data.size() >= getNumberOfTurns(previous_intersection) &&
previous_intersection.size() != 2)
2016-05-13 13:18:00 -04:00
{
previous_lane_data = partitionLaneData(node_based_graph.GetTarget(previous_via_edge),
std::move(previous_lane_data),
previous_intersection)
.second;
2016-05-13 13:18:00 -04:00
std::sort(previous_lane_data.begin(), previous_lane_data.end());
2016-05-13 13:18:00 -04:00
// check if we were successfull in trimming
if ((previous_lane_data.size() == possible_entries) &&
isSimpleIntersection(previous_lane_data, intersection))
return TurnLaneScenario::PARTITION_PREVIOUS;
2016-05-13 13:18:00 -04:00
}
return TurnLaneScenario::UNKNOWN;
}
void TurnLaneHandler::extractLaneData(const EdgeID via_edge,
LaneDescriptionID &lane_description_id,
LaneDataVector &lane_data) const
{
const auto &edge_data = node_based_graph.GetEdgeData(via_edge);
// TODO access correct data
lane_description_id = edge_data.lane_description_id;
const auto lane_description =
lane_description_id != INVALID_LANE_DESCRIPTIONID
? TurnLaneDescription(turn_lane_masks.begin() + turn_lane_offsets[lane_description_id],
turn_lane_masks.begin() +
turn_lane_offsets[lane_description_id + 1])
: TurnLaneDescription();
if (!lane_description.empty())
lane_data = laneDataFromDescription(lane_description);
BOOST_ASSERT(lane_description.empty() ||
lane_description.size() == (turn_lane_offsets[lane_description_id + 1] -
turn_lane_offsets[lane_description_id]));
2016-05-13 13:18:00 -04:00
}
/* A simple intersection does not depend on the next intersection coming up. This is important
* for turn lanes, since traffic signals and/or segregated a intersection can influence the
* interpretation of turn-lanes at a given turn.
*
* Here we check for a simple intersection. A simple intersection has a long enough segment
* followin the turn, offers no straight turn, or only non-trivial turn operations.
*/
bool TurnLaneHandler::isSimpleIntersection(const LaneDataVector &lane_data,
const Intersection &intersection) const
{
if (lane_data.empty())
return false;
// if we are on a straight road, turn lanes are only reasonable in connection to the next
// intersection, or in case of a merge. If not all but one (straight) are merges, we don't
// consider the intersection simple
if (intersection.size() == 2)
{
return std::count_if(
lane_data.begin(),
lane_data.end(),
[](const TurnLaneData &data) {
return ((data.tag & TurnLaneType::merge_to_left) != TurnLaneType::empty) ||
((data.tag & TurnLaneType::merge_to_right) != TurnLaneType::empty);
}) +
2016-05-13 13:18:00 -04:00
std::size_t{1} >=
lane_data.size();
}
// in case an intersection offers far more lane data items than actual turns, some of them
// have
// to be for another intersection. A single additional item can be for an invalid bus lane.
const auto num_turns = [&]() {
auto count = getNumberOfTurns(intersection);
if (count < lane_data.size() && !intersection[0].entry_allowed &&
lane_data.back().tag == TurnLaneType::uturn)
2016-05-13 13:18:00 -04:00
return count + 1;
return count;
}();
// more than two additional lane data entries -> lanes target a different intersection
if (num_turns + std::size_t{2} <= lane_data.size())
{
return false;
}
// single additional lane data entry is alright, if it is none at the side. This usually
// refers to a bus-lane
if (num_turns + std::size_t{1} == lane_data.size() &&
lane_data.front().tag != TurnLaneType::none && lane_data.back().tag != TurnLaneType::none)
2016-05-13 13:18:00 -04:00
{
return false;
}
// more turns than lane data
if (num_turns > lane_data.size() &&
lane_data.end() ==
std::find_if(lane_data.begin(), lane_data.end(), [](const TurnLaneData &data) {
return data.tag == TurnLaneType::none;
2016-05-13 13:18:00 -04:00
}))
{
return false;
}
if (num_turns > lane_data.size() && intersection[0].entry_allowed &&
!(hasTag(TurnLaneType::uturn, lane_data) ||
(lane_data.back().tag != TurnLaneType::left &&
lane_data.back().tag != TurnLaneType::sharp_left)))
2016-05-13 13:18:00 -04:00
{
return false;
}
// check if we can find a valid 1:1 mapping in a straightforward manner
bool all_simple = true;
bool has_none = false;
std::unordered_set<std::size_t> matched_indices;
2016-08-11 03:44:30 -04:00
for (std::size_t data_index = 0; data_index < lane_data.size(); ++data_index)
2016-05-13 13:18:00 -04:00
{
2016-08-11 03:44:30 -04:00
const auto &data = lane_data[data_index];
if (data.tag == TurnLaneType::none)
2016-05-13 13:18:00 -04:00
{
has_none = true;
continue;
}
2016-08-11 03:44:30 -04:00
// u-turn tags are at the outside of the lane-tags and require special handling, since
// locating their best match requires knowledge on the neighboring tag. (see documentation
// on findBestMatch/findBestMatchForReverse
2016-05-13 13:18:00 -04:00
const auto best_match = [&]() {
2016-08-11 03:44:30 -04:00
// normal tag or u-turn as only choice (no other tag present)
if (data.tag != TurnLaneType::uturn || lane_data.size() == 1)
2016-05-13 13:18:00 -04:00
return findBestMatch(data.tag, intersection);
2016-08-11 03:44:30 -04:00
BOOST_ASSERT(data.tag == TurnLaneType::uturn);
// u-turn at the very left, leftmost turn at data_index - 1
if (data_index + 1 == lane_data.size())
return findBestMatchForReverse(lane_data[data_index - 1].tag, intersection);
// u-turn to the right (left-handed driving) -> rightmost turn to the left (data_index +
// 1)
if (data_index == 0)
return findBestMatchForReverse(lane_data[data_index + 1].tag, intersection);
2016-05-13 13:18:00 -04:00
2016-08-11 03:44:30 -04:00
return intersection.begin();
2016-05-13 13:18:00 -04:00
}();
std::size_t match_index = std::distance(intersection.begin(), best_match);
all_simple &= (matched_indices.count(match_index) == 0);
matched_indices.insert(match_index);
// in case of u-turns, we might need to activate them first
2016-08-12 11:04:40 -04:00
all_simple &= (best_match->entry_allowed ||
// check for possible u-turn match on non-reversed edge
((match_index == 0 || match_index + 1 == intersection.size()) &&
!node_based_graph.GetEdgeData(best_match->turn.eid).reversed));
2016-05-13 13:18:00 -04:00
all_simple &= isValidMatch(data.tag, best_match->turn.instruction);
}
// either all indices are matched, or we have a single none-value
if (all_simple && (matched_indices.size() == lane_data.size() ||
(matched_indices.size() + 1 == lane_data.size() && has_none)))
return true;
// better save than sorry
return false;
}
std::pair<LaneDataVector, LaneDataVector> TurnLaneHandler::partitionLaneData(
const NodeID at, LaneDataVector turn_lane_data, const Intersection &intersection) const
{
BOOST_ASSERT(turn_lane_data.size() >= getNumberOfTurns(intersection));
/*
* A Segregated intersection can provide turn lanes for turns that are not yet possible.
* The straightforward example would be coming up to the following situation:
* (1) (2)
* | A | | A |
* | | | | ^ |
* | v | | | |
* ------- ----------- ------
* B ->-^ B
* ------- ----------- ------
* B ->-v B
* ------- ----------- ------
* | A | | A |
*
* Traveling on road B, we have to pass A at (1) to turn left onto A at (2). The turn
* lane itself may only be specified prior to (1) and/or could be repeated between (1)
* and (2). To make sure to announce the lane correctly, we need to treat the (in this
* case left) turn lane as if it were to continue straight onto the intersection and
* look back between (1) and (2) to make sure we find the correct lane for the left-turn.
*
* Intersections like these have two parts. Turns that can be made at the first intersection
* and
* turns that have to be made at the second. The partitioning returns the lane data split
* into
2016-05-13 13:18:00 -04:00
* two parts, one for the first and one for the second intersection.
*/
// Try and maitch lanes to available turns. For Turns that are not directly matchable, check
// whether we can match them at the upcoming intersection.
const auto straightmost = findClosestTurn(intersection, STRAIGHT_ANGLE);
BOOST_ASSERT(straightmost < intersection.cend());
// we need to be able to enter the straightmost turn
if (!straightmost->entry_allowed)
return {turn_lane_data, {}};
std::vector<bool> matched_at_first(turn_lane_data.size(), false);
std::vector<bool> matched_at_second(turn_lane_data.size(), false);
// find out about the next intersection. To check for valid matches, we also need the turn
// types
2016-05-13 13:18:00 -04:00
auto next_intersection = turn_analysis.getIntersection(at, straightmost->turn.eid);
next_intersection =
turn_analysis.assignTurnTypes(at, straightmost->turn.eid, std::move(next_intersection));
// check where we can match turn lanes
std::size_t straightmost_tag_index = turn_lane_data.size();
for (std::size_t lane = 0; lane < turn_lane_data.size(); ++lane)
{
if ((turn_lane_data[lane].tag & (TurnLaneType::none | TurnLaneType::uturn)) !=
TurnLaneType::empty)
2016-05-13 13:18:00 -04:00
continue;
const auto best_match = findBestMatch(turn_lane_data[lane].tag, intersection);
if (best_match->entry_allowed &&
isValidMatch(turn_lane_data[lane].tag, best_match->turn.instruction))
2016-05-13 13:18:00 -04:00
{
matched_at_first[lane] = true;
if (straightmost == best_match)
straightmost_tag_index = lane;
}
const auto best_match_at_next_intersection =
findBestMatch(turn_lane_data[lane].tag, next_intersection);
if (best_match_at_next_intersection->entry_allowed &&
isValidMatch(turn_lane_data[lane].tag,
2016-05-13 13:18:00 -04:00
best_match_at_next_intersection->turn.instruction))
{
if (!matched_at_first[lane] || turn_lane_data[lane].tag == TurnLaneType::straight ||
getMatchingQuality(turn_lane_data[lane].tag, *best_match) >
getMatchingQuality(turn_lane_data[lane].tag, *best_match_at_next_intersection))
{
if (turn_lane_data[lane].tag != TurnLaneType::straight)
matched_at_first[lane] = false;
matched_at_second[lane] = true;
}
}
2016-05-13 13:18:00 -04:00
// we need to match all items to either the current or the next intersection
if (!(matched_at_first[lane] || matched_at_second[lane]))
return {turn_lane_data, {}};
}
std::size_t none_index =
std::distance(turn_lane_data.begin(), findTag(TurnLaneType::none, turn_lane_data));
2016-05-13 13:18:00 -04:00
// if the turn lanes are pull forward, we might have to add an additional straight tag
// did we find something that matches against the straightmost road?
if (straightmost_tag_index == turn_lane_data.size())
{
if (none_index != turn_lane_data.size())
straightmost_tag_index = none_index;
}
// handle none values
if (none_index != turn_lane_data.size())
{
if (static_cast<std::size_t>(
std::count(matched_at_first.begin(), matched_at_first.end(), true)) <=
getNumberOfTurns(intersection))
matched_at_first[none_index] = true;
if (static_cast<std::size_t>(
std::count(matched_at_second.begin(), matched_at_second.end(), true)) <=
getNumberOfTurns(next_intersection))
matched_at_second[none_index] = true;
}
const auto augmentEntry = [&](TurnLaneData &data) {
for (std::size_t lane = 0; lane < turn_lane_data.size(); ++lane)
if (matched_at_second[lane])
{
data.from = std::min(turn_lane_data[lane].from, data.from);
data.to = std::max(turn_lane_data[lane].to, data.to);
}
};
LaneDataVector first, second;
for (std::size_t lane = 0; lane < turn_lane_data.size(); ++lane)
{
if (matched_at_second[lane])
second.push_back(turn_lane_data[lane]);
// augment straightmost at this intersection to match all turns that happen at the next
if (lane == straightmost_tag_index)
{
augmentEntry(turn_lane_data[straightmost_tag_index]);
}
if (matched_at_first[lane])
first.push_back(turn_lane_data[lane]);
}
if (straightmost_tag_index == turn_lane_data.size() &&
static_cast<std::size_t>(
std::count(matched_at_second.begin(), matched_at_second.end(), true)) ==
getNumberOfTurns(next_intersection))
{
TurnLaneData data = {TurnLaneType::straight, 255, 0};
2016-05-13 13:18:00 -04:00
augmentEntry(data);
first.push_back(data);
std::sort(first.begin(), first.end());
}
// TODO augment straightmost turn
return {std::move(first), std::move(second)};
}
Intersection TurnLaneHandler::simpleMatchTuplesToTurns(Intersection intersection,
2016-06-15 08:38:24 -04:00
const LaneDataVector &lane_data,
const LaneDescriptionID lane_description_id)
2016-05-13 13:18:00 -04:00
{
if (lane_data.empty() || !canMatchTrivially(intersection, lane_data))
return intersection;
2016-05-13 13:18:00 -04:00
BOOST_ASSERT(
!hasTag(TurnLaneType::none | TurnLaneType::merge_to_left | TurnLaneType::merge_to_right,
lane_data));
2016-05-13 13:18:00 -04:00
(*count_handled)++;
2016-06-15 08:38:24 -04:00
return triviallyMatchLanesToTurns(
std::move(intersection), lane_data, node_based_graph, lane_description_id, id_map);
2016-05-13 13:18:00 -04:00
}
Intersection
TurnLaneHandler::handleSliproadTurn(Intersection intersection,
const LaneDescriptionID lane_description_id,
LaneDataVector lane_data,
const Intersection &previous_intersection,
const LaneDescriptionID &previous_lane_description_id,
const LaneDataVector &previous_lane_data)
{
const auto sliproad_index =
std::distance(previous_intersection.begin(),
std::find_if(previous_intersection.begin(),
previous_intersection.end(),
[](const ConnectedRoad &road) {
return road.turn.instruction.type == TurnType::Sliproad;
}));
BOOST_ASSERT(sliproad_index <= previous_intersection.size());
const auto &sliproad = previous_intersection[sliproad_index];
// code duplicatino with deduceScenario: TODO refactor
const auto &main_road = [&]() {
if (sliproad_index + 1 == previous_intersection.size())
{
BOOST_ASSERT(sliproad_index > 1);
return previous_intersection[sliproad_index - 1];
}
else if (sliproad_index == 1)
{
BOOST_ASSERT(sliproad_index + 1 < previous_intersection.size());
return previous_intersection[sliproad_index + 1];
}
else if (angularDeviation(sliproad.turn.angle,
previous_intersection.at(sliproad_index - 1).turn.angle) <
angularDeviation(sliproad.turn.angle,
previous_intersection.at(sliproad_index + 1).turn.angle))
return previous_intersection[sliproad_index - 1];
else
return previous_intersection[sliproad_index + 1];
}();
const auto main_description_id =
node_based_graph.GetEdgeData(main_road.turn.eid).lane_description_id;
const auto sliproad_description_id =
node_based_graph.GetEdgeData(sliproad.turn.eid).lane_description_id;
if (main_description_id == INVALID_LANE_DESCRIPTIONID ||
sliproad_description_id == INVALID_LANE_DESCRIPTIONID)
return intersection;
TurnLaneDescription combined_description;
// is the sliproad going off to the right?
if (main_road.turn.angle > sliproad.turn.angle)
{
combined_description.insert(
combined_description.end(),
turn_lane_masks.begin() + turn_lane_offsets[main_description_id],
turn_lane_masks.begin() + turn_lane_offsets[main_description_id + 1]);
combined_description.insert(
combined_description.end(),
turn_lane_masks.begin() + turn_lane_offsets[sliproad_description_id],
turn_lane_masks.begin() + turn_lane_offsets[sliproad_description_id + 1]);
// if we handle the main road, we have to adjust the lane-data
if (main_description_id == lane_description_id)
{
const auto offset = turn_lane_offsets[sliproad_description_id + 1] -
turn_lane_offsets[sliproad_description_id];
for (auto &item : lane_data)
{
item.from += offset;
item.to += offset;
}
}
}
// or to the left?
else
{
combined_description.insert(
combined_description.end(),
turn_lane_masks.begin() + turn_lane_offsets[sliproad_description_id],
turn_lane_masks.begin() + turn_lane_offsets[sliproad_description_id + 1]);
combined_description.insert(
combined_description.end(),
turn_lane_masks.begin() + turn_lane_offsets[main_description_id],
turn_lane_masks.begin() + turn_lane_offsets[main_description_id + 1]);
// if we are handling the sliproad, we have to adjust its lane data
if (sliproad_description_id == lane_description_id)
{
const auto offset =
turn_lane_offsets[main_description_id + 1] - turn_lane_offsets[main_description_id];
for (auto &item : lane_data)
{
item.from += offset;
item.to += offset;
}
}
}
const auto combined_id = [&]() {
auto itr = lane_description_map.find(combined_description);
if (lane_description_map.find(combined_description) == lane_description_map.end())
{
const auto new_id = boost::numeric_cast<LaneDescriptionID>(lane_description_map.size());
lane_description_map[combined_description] = new_id;
return new_id;
}
else
{
return itr->second;
}
}();
return simpleMatchTuplesToTurns(std::move(intersection), lane_data, combined_id);
}
2016-05-13 13:18:00 -04:00
} // namespace lanes
} // namespace guidance
} // namespace extractor
} // namespace osrm