osrm-backend/DataStructures/EdgeBasedNode.h

244 lines
8.3 KiB
C
Raw Normal View History

#ifndef EDGE_BASED_NODE_H
#define EDGE_BASED_NODE_H
#include "../Util/MercatorUtil.h"
#include "../typedefs.h"
2013-12-20 07:12:56 -05:00
#include <osrm/Coordinate.h>
// An EdgeBasedNode represents a node in the edge-expanded graph.
2014-02-11 05:42:24 -05:00
#include <limits>
struct EdgeBasedNode {
EdgeBasedNode() :
2014-02-26 09:55:04 -05:00
forward_edge_based_node_id(SPECIAL_NODEID),
reverse_edge_based_node_id(SPECIAL_NODEID),
u(SPECIAL_NODEID),
v(SPECIAL_NODEID),
name_id(0),
2014-02-28 11:14:38 -05:00
forward_weight(INVALID_EDGE_WEIGHT >> 1),
reverse_weight(INVALID_EDGE_WEIGHT >> 1),
forward_offset(0),
2014-02-26 09:55:04 -05:00
reverse_offset(0),
2014-02-28 11:14:38 -05:00
packed_geometry_id(SPECIAL_EDGEID),
2014-02-26 09:55:04 -05:00
fwd_segment_position( std::numeric_limits<unsigned short>::max() ),
2014-02-28 11:14:38 -05:00
belongsToTinyComponent(false)
2014-02-11 05:42:24 -05:00
{ }
2014-02-27 13:49:53 -05:00
explicit EdgeBasedNode(
2014-02-11 05:42:24 -05:00
NodeID forward_edge_based_node_id,
NodeID reverse_edge_based_node_id,
2014-02-26 09:55:04 -05:00
NodeID u,
NodeID v,
unsigned name_id,
2014-02-11 05:42:24 -05:00
int forward_weight,
int reverse_weight,
int forward_offset,
2014-02-26 09:55:04 -05:00
int reverse_offset,
2014-02-28 11:14:38 -05:00
unsigned packed_geometry_id,
2014-02-26 09:55:04 -05:00
unsigned short fwd_segment_position,
2014-02-28 11:14:38 -05:00
bool belongs_to_tiny_component
2014-02-11 05:42:24 -05:00
) :
forward_edge_based_node_id(forward_edge_based_node_id),
reverse_edge_based_node_id(reverse_edge_based_node_id),
2014-02-26 09:55:04 -05:00
u(u),
v(v),
2014-02-11 05:42:24 -05:00
name_id(name_id),
forward_weight(forward_weight),
reverse_weight(reverse_weight),
forward_offset(forward_offset),
2014-02-26 09:55:04 -05:00
reverse_offset(reverse_offset),
2014-02-28 11:14:38 -05:00
packed_geometry_id(packed_geometry_id),
2014-02-26 09:55:04 -05:00
fwd_segment_position(fwd_segment_position),
2014-02-28 11:14:38 -05:00
belongsToTinyComponent(belongs_to_tiny_component)
2014-02-27 13:49:53 -05:00
{
BOOST_ASSERT(
( forward_edge_based_node_id != SPECIAL_NODEID ) ||
( reverse_edge_based_node_id != SPECIAL_NODEID )
);
}
2014-02-26 09:55:04 -05:00
inline static double ComputePerpendicularDistance(
const FixedPointCoordinate & coord_a,
const FixedPointCoordinate & coord_b,
// the query location on the line defined by p and q.
double ComputePerpendicularDistance(
2014-02-26 09:55:04 -05:00
const FixedPointCoordinate & query_location,
FixedPointCoordinate & nearest_location,
2014-02-26 09:55:04 -05:00
double & r
) {
2014-01-08 11:18:59 -05:00
BOOST_ASSERT( query_location.isValid() );
2014-03-12 05:48:54 -04:00
const double epsilon = 1.0/precision;
2014-02-11 05:42:24 -05:00
const double y = query_location.lon/COORDINATE_PRECISION;
2014-02-26 09:55:04 -05:00
const double a = lat2y(coord_a.lat/COORDINATE_PRECISION);
const double b = coord_a.lon/COORDINATE_PRECISION;
const double c = lat2y(coord_b.lat/COORDINATE_PRECISION);
const double d = coord_b.lon/COORDINATE_PRECISION;
2014-02-11 05:42:24 -05:00
double p,q/*,mX*/,nY;
if( std::abs(a-c) > std::numeric_limits<double>::epsilon() ){
const double m = (d-b)/(c-a); // slope
// Projection of (x,y) on line joining (a,b) and (c,d)
p = ((x + (m*y)) + (m*m*a - m*b))/(1. + m*m);
q = b + m*(p - a);
} else {
p = c;
q = y;
}
nY = (d*p - c*q)/(a*d - b*c);
2014-02-11 05:42:24 -05:00
//discretize the result to coordinate precision. it's a hack!
if( std::abs(nY) < (1./COORDINATE_PRECISION) ) {
nY = 0.;
}
// p, q : the end points of the underlying edge
2014-02-26 09:55:04 -05:00
if( std::isnan(r) ) {
r = ((coord_b.lat == query_location.lat) && (coord_b.lon == query_location.lon)) ? 1. : 0.;
// r : query location
const Point r(lat2y(query_location.lat/COORDINATE_PRECISION),
2014-02-11 05:42:24 -05:00
} else if( std::abs(r-1.) <= std::numeric_limits<double>::epsilon() ) {
2014-03-12 08:56:25 -04:00
query_location.lon/COORDINATE_PRECISION);
2014-02-26 09:55:04 -05:00
nearest_location.lat = coord_a.lat;
nearest_location.lon = coord_a.lon;
} else if( r >= 1. ){
nearest_location.lat = coord_b.lat;
nearest_location.lon = coord_b.lon;
} else {
// point lies in between
2014-02-11 05:42:24 -05:00
nearest_location.lat = y2lat(p)*COORDINATE_PRECISION;
nearest_location = ComputeNearestPointOnSegment(foot, ratio);
BOOST_ASSERT( nearest_location.isValid() );
// TODO: Replace with euclidean approximation when k-NN search is done
// const double approximated_distance = FixedPointCoordinate::ApproximateEuclideanDistance(
const double approximated_distance = FixedPointCoordinate::ApproximateDistance(query_location, nearest_location);
2014-02-11 05:42:24 -05:00
query_location,
nearest_location
);
BOOST_ASSERT( 0.0 <= approximated_distance );
return approximated_distance;
}
2014-02-26 09:55:04 -05:00
static inline FixedPointCoordinate Centroid(
const FixedPointCoordinate & a,
const FixedPointCoordinate & b
) {
return other.id < id;
2014-02-26 09:55:04 -05:00
//The coordinates of the midpoint are given by:
//x = (x1 + x2) /2 and y = (y1 + y2) /2.
centroid.lon = (std::min(a.lon, b.lon) + std::max(a.lon, b.lon))/2;
centroid.lat = (std::min(a.lat, b.lat) + std::max(a.lat, b.lat))/2;
return centroid;
}
2014-02-26 09:55:04 -05:00
bool IsCompressed() {
2014-02-28 11:14:38 -05:00
return packed_geometry_id != SPECIAL_EDGEID;
}
// Returns the midpoint of the underlying edge.
inline FixedPointCoordinate Centroid() const {
return FixedPointCoordinate((lat1+lat2)/2, (lon1+lon2)/2);
}
2014-02-11 05:42:24 -05:00
NodeID forward_edge_based_node_id;
2014-02-28 11:14:38 -05:00
NodeID reverse_edge_based_node_id; // needed for edge-expanded graph
2014-02-26 09:55:04 -05:00
NodeID u;
NodeID v;
unsigned name_id;
int forward_weight;
int reverse_weight;
int forward_offset;
int reverse_offset;
unsigned short fwd_segment_position;
2014-02-27 13:49:53 -05:00
unsigned short rev_segment_position:14; //TODO: not actually needed!
bool belongsToTinyComponent:1;
2014-02-11 05:42:24 -05:00
NodeID name_id;
// The weight of the underlying edge.
unsigned weight:31;
2014-02-11 05:42:24 -05:00
int reverse_weight;
private:
typedef std::pair<double,double> Point;
// Compute the perpendicular foot of point r on the line defined by p and q.
Point ComputePerpendicularFoot(const Point &p, const Point &q, const Point &r, double epsilon) const {
// the projection of r onto the line pq
double foot_x, foot_y;
const bool is_parallel_to_y_axis = std::abs(q.first - p.first) < epsilon;
if( is_parallel_to_y_axis ) {
foot_x = q.first;
foot_y = r.second;
} else {
// the slope of the line through (a|b) and (c|d)
const double m = (q.second - p.second) / (q.first - p.first);
// Projection of (x|y) onto the line joining (a|b) and (c|d).
foot_x = ((r.first + (m*r.second)) + (m*m*p.first - m*p.second))/(1.0 + m*m);
foot_y = p.second + m*(foot_x - p.first);
}
return Point(foot_x, foot_y);
}
// Compute the ratio of the line segment pr to line segment pq.
double ComputeRatio(const Point & p, const Point & q, const Point & r, double epsilon) const {
const bool is_parallel_to_x_axis = std::abs(q.second-p.second) < epsilon;
2014-03-12 08:56:25 -04:00
const bool is_parallel_to_y_axis = std::abs(q.first -p.first ) < epsilon;
double ratio;
if( !is_parallel_to_y_axis ) {
ratio = (r.first - p.first)/(q.first - p.first);
} else if( !is_parallel_to_x_axis ) {
ratio = (r.second - p.second)/(q.second - p.second);
} else {
// (a|b) and (c|d) are essentially the same point
// by convention, we set the ratio to 0 in this case
//ratio = ((lat2 == query_location.lat) && (lon2 == query_location.lon)) ? 1. : 0.;
ratio = 0.0;
}
// Round to integer if the ratio is close to 0 or 1.
if( std::abs(ratio) <= epsilon ) {
ratio = 0.0;
} else if( std::abs(ratio-1.0) <= epsilon ) {
ratio = 1.0;
}
return ratio;
}
// Computes the point on the segment pq which is nearest to a point r = p + lambda * (q-p).
// p and q are the end points of the underlying edge.
FixedPointCoordinate ComputeNearestPointOnSegment(const Point & r, double lambda) const {
if( lambda <= 0.0 ) {
return FixedPointCoordinate(lat1, lon1);
} else if( lambda >= 1.0 ) {
return FixedPointCoordinate(lat2, lon2);
}
2014-03-12 08:56:25 -04:00
// r lies between p and q
return FixedPointCoordinate(
y2lat(r.first)*COORDINATE_PRECISION,
r.second*COORDINATE_PRECISION
);
}
};
#endif //EDGE_BASED_NODE_H