2013-10-11 10:14:59 -04:00
|
|
|
#ifndef EDGE_BASED_NODE_H
|
|
|
|
#define EDGE_BASED_NODE_H
|
|
|
|
|
2013-12-13 17:26:57 -05:00
|
|
|
#include <cmath>
|
|
|
|
|
2014-01-08 11:18:59 -05:00
|
|
|
#include <boost/assert.hpp>
|
|
|
|
|
2013-12-16 11:36:36 -05:00
|
|
|
#include "../Util/MercatorUtil.h"
|
|
|
|
#include "../typedefs.h"
|
2013-10-11 10:14:59 -04:00
|
|
|
|
2013-12-20 07:12:56 -05:00
|
|
|
#include <osrm/Coordinate.h>
|
2013-12-17 11:59:44 -05:00
|
|
|
|
2014-03-12 05:24:35 -04:00
|
|
|
// An EdgeBasedNode represents a node in the edge-expanded graph.
|
2013-10-11 10:14:59 -04:00
|
|
|
struct EdgeBasedNode {
|
2013-11-22 12:05:47 -05:00
|
|
|
|
2013-10-11 10:14:59 -04:00
|
|
|
EdgeBasedNode() :
|
2014-03-12 05:24:35 -04:00
|
|
|
id(INT_MAX),
|
|
|
|
lat1(INT_MAX),
|
|
|
|
lat2(INT_MAX),
|
|
|
|
lon1(INT_MAX),
|
|
|
|
lon2(INT_MAX >> 1),
|
|
|
|
belongsToTinyComponent(false),
|
|
|
|
nameID(UINT_MAX),
|
|
|
|
weight(UINT_MAX >> 1),
|
|
|
|
ignoreInGrid(false)
|
2013-10-11 10:14:59 -04:00
|
|
|
{ }
|
|
|
|
|
2014-03-12 05:24:35 -04:00
|
|
|
// Computes:
|
|
|
|
// - the distance from the given query location to nearest point on this edge (and returns it)
|
|
|
|
// - the location on this edge which is nearest to the query location
|
|
|
|
// - the ratio ps:pq, where p and q are the end points of this edge, and s is the perpendicular foot of
|
|
|
|
// the query location on the line defined by p and q.
|
2013-11-22 12:05:47 -05:00
|
|
|
double ComputePerpendicularDistance(
|
2014-03-12 05:24:35 -04:00
|
|
|
const FixedPointCoordinate& query_location,
|
|
|
|
FixedPointCoordinate & nearest_location,
|
|
|
|
double & ratio,
|
|
|
|
double precision = COORDINATE_PRECISION
|
2014-03-12 08:56:25 -04:00
|
|
|
) const {
|
2014-01-08 11:18:59 -05:00
|
|
|
BOOST_ASSERT( query_location.isValid() );
|
|
|
|
|
2014-03-12 05:48:54 -04:00
|
|
|
const double epsilon = 1.0/precision;
|
2014-03-11 11:40:20 -04:00
|
|
|
|
2013-11-22 12:43:01 -05:00
|
|
|
if( ignoreInGrid ) {
|
|
|
|
return std::numeric_limits<double>::max();
|
|
|
|
}
|
2014-03-12 05:24:35 -04:00
|
|
|
|
|
|
|
// p, q : the end points of the underlying edge
|
2014-03-11 11:40:20 -04:00
|
|
|
const Point p(lat2y(lat1/COORDINATE_PRECISION), lon1/COORDINATE_PRECISION);
|
|
|
|
const Point q(lat2y(lat2/COORDINATE_PRECISION), lon2/COORDINATE_PRECISION);
|
|
|
|
|
2014-03-12 05:24:35 -04:00
|
|
|
// r : query location
|
2014-03-11 11:40:20 -04:00
|
|
|
const Point r(lat2y(query_location.lat/COORDINATE_PRECISION),
|
2014-03-12 08:56:25 -04:00
|
|
|
query_location.lon/COORDINATE_PRECISION);
|
2014-03-11 11:40:20 -04:00
|
|
|
|
|
|
|
const Point foot = ComputePerpendicularFoot(p, q, r, epsilon);
|
2014-03-12 05:24:35 -04:00
|
|
|
ratio = ComputeRatio(p, q, foot, epsilon);
|
|
|
|
|
|
|
|
BOOST_ASSERT( !std::isnan(ratio) );
|
|
|
|
|
|
|
|
nearest_location = ComputeNearestPointOnSegment(foot, ratio);
|
|
|
|
|
|
|
|
BOOST_ASSERT( nearest_location.isValid() );
|
|
|
|
|
|
|
|
// TODO: Replace with euclidean approximation when k-NN search is done
|
|
|
|
// const double approximated_distance = FixedPointCoordinate::ApproximateEuclideanDistance(
|
|
|
|
const double approximated_distance = FixedPointCoordinate::ApproximateDistance(query_location, nearest_location);
|
|
|
|
|
|
|
|
BOOST_ASSERT( 0.0 <= approximated_distance );
|
|
|
|
return approximated_distance;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool operator<(const EdgeBasedNode & other) const {
|
|
|
|
return other.id < id;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool operator==(const EdgeBasedNode & other) const {
|
|
|
|
return id == other.id;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Returns the midpoint of the underlying edge.
|
|
|
|
inline FixedPointCoordinate Centroid() const {
|
|
|
|
return FixedPointCoordinate((lat1+lat2)/2, (lon1+lon2)/2);
|
|
|
|
}
|
|
|
|
|
|
|
|
NodeID id;
|
|
|
|
|
|
|
|
// The coordinates of the end-points of the underlying edge.
|
|
|
|
int lat1;
|
|
|
|
int lat2;
|
|
|
|
int lon1;
|
|
|
|
int lon2:31;
|
|
|
|
|
|
|
|
bool belongsToTinyComponent:1;
|
|
|
|
NodeID nameID;
|
|
|
|
|
|
|
|
// The weight of the underlying edge.
|
|
|
|
unsigned weight:31;
|
|
|
|
|
|
|
|
bool ignoreInGrid:1;
|
2014-03-11 11:40:20 -04:00
|
|
|
|
|
|
|
private:
|
|
|
|
|
2014-03-12 05:24:35 -04:00
|
|
|
typedef std::pair<double,double> Point;
|
2014-03-11 11:40:20 -04:00
|
|
|
|
2014-03-12 05:24:35 -04:00
|
|
|
// Compute the perpendicular foot of point r on the line defined by p and q.
|
2014-03-11 11:40:20 -04:00
|
|
|
Point ComputePerpendicularFoot(const Point &p, const Point &q, const Point &r, double epsilon) const {
|
|
|
|
|
2014-03-12 05:24:35 -04:00
|
|
|
// the projection of r onto the line pq
|
|
|
|
double foot_x, foot_y;
|
|
|
|
|
|
|
|
const bool is_parallel_to_y_axis = std::abs(q.first - p.first) < epsilon;
|
|
|
|
|
|
|
|
if( is_parallel_to_y_axis ) {
|
|
|
|
foot_x = q.first;
|
|
|
|
foot_y = r.second;
|
|
|
|
} else {
|
|
|
|
// the slope of the line through (a|b) and (c|d)
|
|
|
|
const double m = (q.second - p.second) / (q.first - p.first);
|
|
|
|
|
|
|
|
// Projection of (x|y) onto the line joining (a|b) and (c|d).
|
|
|
|
foot_x = ((r.first + (m*r.second)) + (m*m*p.first - m*p.second))/(1.0 + m*m);
|
|
|
|
foot_y = p.second + m*(foot_x - p.first);
|
|
|
|
}
|
|
|
|
|
|
|
|
return Point(foot_x, foot_y);
|
2013-11-22 12:05:47 -05:00
|
|
|
}
|
|
|
|
|
2014-03-11 11:40:20 -04:00
|
|
|
// Compute the ratio of the line segment pr to line segment pq.
|
|
|
|
double ComputeRatio(const Point & p, const Point & q, const Point & r, double epsilon) const {
|
|
|
|
|
2014-03-12 05:24:35 -04:00
|
|
|
const bool is_parallel_to_x_axis = std::abs(q.second-p.second) < epsilon;
|
2014-03-12 08:56:25 -04:00
|
|
|
const bool is_parallel_to_y_axis = std::abs(q.first -p.first ) < epsilon;
|
2014-03-12 05:24:35 -04:00
|
|
|
|
2014-03-11 11:40:20 -04:00
|
|
|
double ratio;
|
|
|
|
|
2014-03-12 05:24:35 -04:00
|
|
|
if( !is_parallel_to_y_axis ) {
|
|
|
|
ratio = (r.first - p.first)/(q.first - p.first);
|
|
|
|
} else if( !is_parallel_to_x_axis ) {
|
|
|
|
ratio = (r.second - p.second)/(q.second - p.second);
|
|
|
|
} else {
|
|
|
|
// (a|b) and (c|d) are essentially the same point
|
|
|
|
// by convention, we set the ratio to 0 in this case
|
|
|
|
//ratio = ((lat2 == query_location.lat) && (lon2 == query_location.lon)) ? 1. : 0.;
|
|
|
|
ratio = 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Round to integer if the ratio is close to 0 or 1.
|
|
|
|
if( std::abs(ratio) <= epsilon ) {
|
|
|
|
ratio = 0.0;
|
|
|
|
} else if( std::abs(ratio-1.0) <= epsilon ) {
|
|
|
|
ratio = 1.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ratio;
|
2013-10-11 10:14:59 -04:00
|
|
|
}
|
|
|
|
|
2014-03-11 11:40:20 -04:00
|
|
|
// Computes the point on the segment pq which is nearest to a point r = p + lambda * (q-p).
|
2014-03-12 05:24:35 -04:00
|
|
|
// p and q are the end points of the underlying edge.
|
2014-03-11 11:40:20 -04:00
|
|
|
FixedPointCoordinate ComputeNearestPointOnSegment(const Point & r, double lambda) const {
|
|
|
|
|
2014-03-12 05:24:35 -04:00
|
|
|
if( lambda <= 0.0 ) {
|
|
|
|
return FixedPointCoordinate(lat1, lon1);
|
|
|
|
} else if( lambda >= 1.0 ) {
|
|
|
|
return FixedPointCoordinate(lat2, lon2);
|
|
|
|
}
|
2013-10-11 10:14:59 -04:00
|
|
|
|
2014-03-12 08:56:25 -04:00
|
|
|
// r lies between p and q
|
|
|
|
return FixedPointCoordinate(
|
|
|
|
y2lat(r.first)*COORDINATE_PRECISION,
|
|
|
|
r.second*COORDINATE_PRECISION
|
|
|
|
);
|
2013-10-11 10:14:59 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
};
|
|
|
|
|
2013-11-22 12:05:47 -05:00
|
|
|
#endif //EDGE_BASED_NODE_H
|