osrm-backend/src/extractor/guidance/turn_handler.cpp

784 lines
32 KiB
C++
Raw Normal View History

2016-12-07 14:26:34 -05:00
#include "extractor/guidance/turn_handler.hpp"
2017-01-03 16:11:59 -05:00
#include "extractor/guidance/constants.hpp"
#include "util/bearing.hpp"
#include "util/guidance/name_announcements.hpp"
#include <algorithm>
#include <limits>
#include <utility>
#include <boost/assert.hpp>
#include <boost/optional.hpp>
using osrm::extractor::guidance::getTurnDirection;
using osrm::util::angularDeviation;
namespace
{
using namespace osrm::extractor::guidance;
// given two adjacent roads in clockwise order and `road1` being a candidate for a fork,
// return false, if next road `road2` is also a fork candidate or
// return true, if `road2` is not a suitable fork candidate and thus, `road1` the outermost fork
bool isOutermostForkCandidate(const ConnectedRoad &road1, const ConnectedRoad &road2)
{
const auto angle_between_next_road_and_straight = angularDeviation(road2.angle, STRAIGHT_ANGLE);
const auto angle_between_prev_road_and_next = angularDeviation(road1.angle, road2.angle);
const auto angle_between_prev_road_and_straight = angularDeviation(road1.angle, STRAIGHT_ANGLE);
// a road is a fork candidate if it is close to straight or
// close to a street that goes close to straight
// (reverse to find fork non-candidate)
if (angle_between_next_road_and_straight > NARROW_TURN_ANGLE)
{
if (angle_between_prev_road_and_next > NARROW_TURN_ANGLE ||
angle_between_prev_road_and_straight > GROUP_ANGLE)
{
return true;
}
}
return false;
}
bool isEndOfRoad(const ConnectedRoad &,
const ConnectedRoad &possible_right_turn,
const ConnectedRoad &possible_left_turn)
{
return angularDeviation(possible_right_turn.angle, 90) < NARROW_TURN_ANGLE &&
angularDeviation(possible_left_turn.angle, 270) < NARROW_TURN_ANGLE &&
angularDeviation(possible_right_turn.angle, possible_left_turn.angle) >
2 * NARROW_TURN_ANGLE;
}
template <typename InputIt>
InputIt findOutermostForkCandidate(const InputIt start, const InputIt end)
{
static_assert(std::is_base_of<std::input_iterator_tag,
typename std::iterator_traits<InputIt>::iterator_category>::value,
"findOutermostForkCandidate() only accepts input iterators");
const auto outermost = std::adjacent_find(start, end, isOutermostForkCandidate);
if (outermost != end)
{
return outermost;
}
// if all roads are part of a fork, set `candidate` to the last road
else
{
return outermost - 1;
}
}
}
namespace osrm
{
namespace extractor
{
namespace guidance
{
// a wrapper to handle road indices of forks at intersections
TurnHandler::Fork::Fork(const Intersection::iterator right, const Intersection::iterator left)
: right(right), left(left), size((left - right) + 1)
{
BOOST_ASSERT(right < left);
BOOST_ASSERT(size >= 2);
BOOST_ASSERT(size <= 3);
}
TurnHandler::TurnHandler(const util::NodeBasedDynamicGraph &node_based_graph,
const std::vector<QueryNode> &node_info_list,
2016-04-22 05:31:46 -04:00
const util::NameTable &name_table,
2016-08-15 06:43:26 -04:00
const SuffixTable &street_name_suffix_table,
const IntersectionGenerator &intersection_generator)
: IntersectionHandler(node_based_graph,
node_info_list,
name_table,
street_name_suffix_table,
intersection_generator)
{
}
bool TurnHandler::canProcess(const NodeID, const EdgeID, const Intersection &) const
{
return true;
}
// Handles and processes possible turns
// Input parameters describe an intersection as described in
// #IntersectionExplanation@intersection_handler.hpp
Intersection TurnHandler::
2016-07-04 06:19:49 -04:00
operator()(const NodeID, const EdgeID via_edge, Intersection intersection) const
{
if (intersection.size() == 1)
return handleOneWayTurn(std::move(intersection));
// if u-turn is allowed, set the turn type of intersection[0] to its basic type and u-turn
if (intersection[0].entry_allowed)
{
intersection[0].instruction = {findBasicTurnType(via_edge, intersection[0]),
DirectionModifier::UTurn};
}
if (intersection.size() == 2)
2016-07-04 06:19:49 -04:00
return handleTwoWayTurn(via_edge, std::move(intersection));
if (intersection.size() == 3)
2016-07-04 06:19:49 -04:00
return handleThreeWayTurn(via_edge, std::move(intersection));
2016-07-04 06:19:49 -04:00
return handleComplexTurn(via_edge, std::move(intersection));
}
Intersection TurnHandler::handleOneWayTurn(Intersection intersection) const
{
BOOST_ASSERT(intersection[0].angle < 0.001);
return intersection;
}
Intersection TurnHandler::handleTwoWayTurn(const EdgeID via_edge, Intersection intersection) const
{
BOOST_ASSERT(intersection[0].angle < 0.001);
intersection[1].instruction =
getInstructionForObvious(intersection.size(), via_edge, false, intersection[1]);
return intersection;
}
// checks whether it is obvious to turn on `road` coming from `via_edge` while there is an`other`
// road at the same intersection
2016-07-04 06:19:49 -04:00
bool TurnHandler::isObviousOfTwo(const EdgeID via_edge,
const ConnectedRoad &road,
const ConnectedRoad &other) const
{
const auto &via_data = node_based_graph.GetEdgeData(via_edge);
const auto &road_data = node_based_graph.GetEdgeData(road.eid);
const auto &other_data = node_based_graph.GetEdgeData(other.eid);
const auto &via_classification = via_data.road_classification;
const auto &road_classification = road_data.road_classification;
const auto &other_classification = other_data.road_classification;
2016-04-11 06:51:06 -04:00
// if one of the given roads is obvious by class, obviousness is trivial
if (obviousByRoadClass(via_classification, road_classification, other_classification))
{
return true;
}
else if (obviousByRoadClass(via_classification, other_classification, road_classification))
{
2016-07-04 06:19:49 -04:00
return false;
}
2016-04-11 06:51:06 -04:00
2016-07-04 06:19:49 -04:00
const bool turn_is_perfectly_straight =
angularDeviation(road.angle, STRAIGHT_ANGLE) < std::numeric_limits<double>::epsilon();
if (via_data.name_id != EMPTY_NAMEID)
{
const auto same_name = !util::guidance::requiresNameAnnounced(
via_data.name_id, road_data.name_id, name_table, street_name_suffix_table);
if (turn_is_perfectly_straight && same_name)
{
return true;
}
}
2016-04-11 06:51:06 -04:00
2016-07-04 06:19:49 -04:00
const bool is_much_narrower_than_other =
angularDeviation(other.angle, STRAIGHT_ANGLE) /
angularDeviation(road.angle, STRAIGHT_ANGLE) >
2016-07-04 06:19:49 -04:00
INCREASES_BY_FOURTY_PERCENT &&
angularDeviation(angularDeviation(other.angle, STRAIGHT_ANGLE),
angularDeviation(road.angle, STRAIGHT_ANGLE)) > FUZZY_ANGLE_DIFFERENCE;
2016-07-04 06:19:49 -04:00
return is_much_narrower_than_other;
}
bool TurnHandler::hasObvious(const EdgeID &via_edge, const Fork &fork) const
{
for (auto road = fork.right; road < fork.left; ++road)
{
if (isObviousOfTwo(via_edge, *road, *(road + 1)) ||
isObviousOfTwo(via_edge, *(road + 1), *road))
{
return true;
}
}
return false;
}
// handles a turn at a three-way intersection _coming from_ `via_edge`
// with `intersection` as described as in #IntersectionExplanation@intersection_handler.hpp
2016-07-04 06:19:49 -04:00
Intersection TurnHandler::handleThreeWayTurn(const EdgeID via_edge, Intersection intersection) const
{
BOOST_ASSERT(intersection.size() == 3);
const auto obvious_index = findObviousTurn(via_edge, intersection);
BOOST_ASSERT(intersection[0].angle < 0.001);
/* Two nearly straight turns -> FORK
OOOOOOO
/
IIIIII
\
OOOOOOO
*/
2016-12-07 14:26:34 -05:00
auto fork = findFork(via_edge, intersection);
if (fork && obvious_index == 0)
{
assignFork(via_edge, *fork->left, *fork->right);
}
2016-07-04 06:19:49 -04:00
/* T Intersection
OOOOOOO T OOOOOOOO
I
I
I
*/
else if (isEndOfRoad(intersection[0], intersection[1], intersection[2]) && obvious_index == 0)
{
if (intersection[1].entry_allowed)
{
if (TurnType::OnRamp != findBasicTurnType(via_edge, intersection[1]))
intersection[1].instruction = {TurnType::EndOfRoad, DirectionModifier::Right};
else
intersection[1].instruction = {TurnType::OnRamp, DirectionModifier::Right};
}
if (intersection[2].entry_allowed)
{
if (TurnType::OnRamp != findBasicTurnType(via_edge, intersection[2]))
intersection[2].instruction = {TurnType::EndOfRoad, DirectionModifier::Left};
else
intersection[2].instruction = {TurnType::OnRamp, DirectionModifier::Left};
}
}
2016-10-07 03:34:26 -04:00
else if (obvious_index != 0) // has an obvious continuing road/obvious turn
{
const auto direction_at_one = getTurnDirection(intersection[1].angle);
const auto direction_at_two = getTurnDirection(intersection[2].angle);
2016-08-10 08:35:02 -04:00
if (obvious_index == 1)
{
intersection[1].instruction = getInstructionForObvious(
2016-04-11 06:51:06 -04:00
3, via_edge, isThroughStreet(1, intersection), intersection[1]);
2016-10-07 03:34:26 -04:00
const auto second_direction = (direction_at_one == direction_at_two &&
direction_at_two == DirectionModifier::Straight)
? DirectionModifier::SlightLeft
: direction_at_two;
intersection[2].instruction = {findBasicTurnType(via_edge, intersection[2]),
second_direction};
}
else
{
2016-10-07 03:34:26 -04:00
BOOST_ASSERT(obvious_index == 2);
intersection[2].instruction = getInstructionForObvious(
2016-04-11 06:51:06 -04:00
3, via_edge, isThroughStreet(2, intersection), intersection[2]);
2016-10-07 03:34:26 -04:00
const auto first_direction = (direction_at_one == direction_at_two &&
direction_at_one == DirectionModifier::Straight)
? DirectionModifier::SlightRight
: direction_at_one;
intersection[1].instruction = {findBasicTurnType(via_edge, intersection[1]),
first_direction};
}
2016-10-07 03:34:26 -04:00
}
else // basic turn assignment
{
intersection[1].instruction = {findBasicTurnType(via_edge, intersection[1]),
getTurnDirection(intersection[1].angle)};
intersection[2].instruction = {findBasicTurnType(via_edge, intersection[2]),
getTurnDirection(intersection[2].angle)};
}
return intersection;
}
Intersection TurnHandler::handleComplexTurn(const EdgeID via_edge, Intersection intersection) const
{
const std::size_t obvious_index = findObviousTurn(via_edge, intersection);
const auto fork = findFork(via_edge, intersection);
const auto straightmost = intersection.findClosestTurn(STRAIGHT_ANGLE);
const auto straightmost_index = std::distance(intersection.begin(), straightmost);
const auto straightmost_angle_dev = angularDeviation(straightmost->angle, STRAIGHT_ANGLE);
// check whether the obvious choice is actually a through street
if (obvious_index != 0)
{
intersection[obvious_index].instruction =
2016-05-27 15:05:04 -04:00
getInstructionForObvious(intersection.size(),
via_edge,
isThroughStreet(obvious_index, intersection),
intersection[obvious_index]);
// assign left/right turns
intersection = assignLeftTurns(via_edge, std::move(intersection), obvious_index + 1);
intersection = assignRightTurns(via_edge, std::move(intersection), obvious_index);
}
else if (fork) // found fork
{
if (fork->size == 2)
{
const auto left_classification =
node_based_graph.GetEdgeData((*fork->left).eid).road_classification;
const auto right_classification =
node_based_graph.GetEdgeData((*fork->right).eid).road_classification;
if (canBeSeenAsFork(left_classification, right_classification))
{
assignFork(via_edge, *fork->left, *fork->right);
}
else if (left_classification.GetPriority() > right_classification.GetPriority())
{
(*fork->right).instruction =
getInstructionForObvious(intersection.size(), via_edge, false, *fork->right);
(*fork->left).instruction = {findBasicTurnType(via_edge, *fork->left),
DirectionModifier::SlightLeft};
}
else
{
(*fork->left).instruction =
getInstructionForObvious(intersection.size(), via_edge, false, *fork->left);
(*fork->right).instruction = {findBasicTurnType(via_edge, *fork->right),
DirectionModifier::SlightRight};
}
}
else if (fork->size == 3)
{
2016-05-27 15:05:04 -04:00
assignFork(via_edge,
*fork->left,
// middle fork road
*(fork->right + 1),
*fork->right);
}
// assign left/right turns
const auto left_index = fork->left - intersection.begin();
const auto right_index = fork->right - intersection.begin();
intersection = assignLeftTurns(via_edge, std::move(intersection), left_index + 1);
intersection = assignRightTurns(via_edge, std::move(intersection), right_index);
}
else if (straightmost_angle_dev < FUZZY_ANGLE_DIFFERENCE && !straightmost->entry_allowed)
{
// invalid straight turn
intersection = assignLeftTurns(via_edge, std::move(intersection), straightmost_index + 1);
intersection = assignRightTurns(via_edge, std::move(intersection), straightmost_index);
}
// no straight turn
else if (straightmost->angle > 180)
{
// at most three turns on either side
intersection = assignLeftTurns(via_edge, std::move(intersection), straightmost_index);
intersection = assignRightTurns(via_edge, std::move(intersection), straightmost_index);
}
else if (straightmost->angle < 180)
{
intersection = assignLeftTurns(via_edge, std::move(intersection), straightmost_index + 1);
intersection = assignRightTurns(via_edge, std::move(intersection), straightmost_index + 1);
}
else
{
assignTrivialTurns(via_edge, intersection, 1, intersection.size());
}
return intersection;
}
2016-04-11 06:51:06 -04:00
// Assignment of left turns hands of to right turns.
// To do so, we mirror every road segment and reverse the order.
// After the mirror and reversal / we assign right turns and
// mirror again and restore the original order.
Intersection TurnHandler::assignLeftTurns(const EdgeID via_edge,
Intersection intersection,
const std::size_t starting_at) const
{
2016-04-11 06:51:06 -04:00
BOOST_ASSERT(starting_at <= intersection.size());
const auto switch_left_and_right = [](Intersection &intersection) {
2016-04-22 05:31:46 -04:00
BOOST_ASSERT(!intersection.empty());
for (auto &road : intersection)
road.mirror();
2016-04-22 05:31:46 -04:00
std::reverse(intersection.begin() + 1, intersection.end());
};
2016-04-22 05:31:46 -04:00
switch_left_and_right(intersection);
2016-04-11 06:51:06 -04:00
// account for the u-turn in the beginning
const auto count = intersection.size() - starting_at + 1;
intersection = assignRightTurns(via_edge, std::move(intersection), count);
2016-04-22 05:31:46 -04:00
switch_left_and_right(intersection);
2016-04-11 06:51:06 -04:00
return intersection;
}
// can only assign three turns
Intersection TurnHandler::assignRightTurns(const EdgeID via_edge,
Intersection intersection,
const std::size_t up_to) const
{
BOOST_ASSERT(up_to <= intersection.size());
const auto count_valid = [&intersection, up_to]() {
std::size_t count = 0;
for (std::size_t i = 1; i < up_to; ++i)
if (intersection[i].entry_allowed)
++count;
return count;
};
if (up_to <= 1 || count_valid() == 0)
return intersection;
// handle single turn
if (up_to == 2)
{
2016-04-11 06:51:06 -04:00
assignTrivialTurns(via_edge, intersection, 1, up_to);
}
2016-04-11 06:51:06 -04:00
// Handle Turns 1-3
else if (up_to == 3)
{
const auto first_direction = getTurnDirection(intersection[1].angle);
const auto second_direction = getTurnDirection(intersection[2].angle);
if (first_direction == second_direction)
{
// conflict
handleDistinctConflict(via_edge, intersection[2], intersection[1]);
}
else
{
2016-04-11 06:51:06 -04:00
assignTrivialTurns(via_edge, intersection, 1, up_to);
}
}
2016-04-11 06:51:06 -04:00
// Handle Turns 1-4
else if (up_to == 4)
{
const auto first_direction = getTurnDirection(intersection[1].angle);
const auto second_direction = getTurnDirection(intersection[2].angle);
const auto third_direction = getTurnDirection(intersection[3].angle);
if (first_direction != second_direction && second_direction != third_direction)
{
2016-04-11 06:51:06 -04:00
// due to the circular order, the turn directions are unique
// first_direction != third_direction is implied
BOOST_ASSERT(first_direction != third_direction);
assignTrivialTurns(via_edge, intersection, 1, up_to);
}
else if (2 >= (intersection[1].entry_allowed + intersection[2].entry_allowed +
intersection[3].entry_allowed))
{
// at least a single invalid
if (!intersection[3].entry_allowed)
{
handleDistinctConflict(via_edge, intersection[2], intersection[1]);
}
else if (!intersection[1].entry_allowed)
{
handleDistinctConflict(via_edge, intersection[3], intersection[2]);
}
else // handles one-valid as well as two valid (1,3)
{
handleDistinctConflict(via_edge, intersection[3], intersection[1]);
}
}
2016-04-11 06:51:06 -04:00
// From here on out, intersection[1-3].entry_allowed has to be true (Otherwise we would have
// triggered 2>= ...)
//
// Conflicting Turns, but at least farther than what we call a narrow turn
else if (angularDeviation(intersection[1].angle, intersection[2].angle) >=
NARROW_TURN_ANGLE &&
angularDeviation(intersection[2].angle, intersection[3].angle) >=
NARROW_TURN_ANGLE)
{
2016-04-11 06:51:06 -04:00
BOOST_ASSERT(intersection[1].entry_allowed && intersection[2].entry_allowed &&
intersection[3].entry_allowed);
intersection[1].instruction = {findBasicTurnType(via_edge, intersection[1]),
DirectionModifier::SharpRight};
intersection[2].instruction = {findBasicTurnType(via_edge, intersection[2]),
DirectionModifier::Right};
intersection[3].instruction = {findBasicTurnType(via_edge, intersection[3]),
DirectionModifier::SlightRight};
}
2016-04-11 06:51:06 -04:00
else if (((first_direction == second_direction && second_direction == third_direction) ||
(first_direction == second_direction &&
angularDeviation(intersection[2].angle, intersection[3].angle) < GROUP_ANGLE) ||
(second_direction == third_direction &&
angularDeviation(intersection[1].angle, intersection[2].angle) < GROUP_ANGLE)))
{
2016-04-11 06:51:06 -04:00
BOOST_ASSERT(intersection[1].entry_allowed && intersection[2].entry_allowed &&
intersection[3].entry_allowed);
// count backwards from the slightest turn
2016-04-18 08:57:12 -04:00
assignTrivialTurns(via_edge, intersection, 1, up_to);
}
2016-04-11 06:51:06 -04:00
else if (((first_direction == second_direction &&
angularDeviation(intersection[2].angle, intersection[3].angle) >= GROUP_ANGLE) ||
(second_direction == third_direction &&
angularDeviation(intersection[1].angle, intersection[2].angle) >= GROUP_ANGLE)))
{
2016-04-11 06:51:06 -04:00
BOOST_ASSERT(intersection[1].entry_allowed && intersection[2].entry_allowed &&
intersection[3].entry_allowed);
if (angularDeviation(intersection[2].angle, intersection[3].angle) >= GROUP_ANGLE)
{
handleDistinctConflict(via_edge, intersection[2], intersection[1]);
intersection[3].instruction = {findBasicTurnType(via_edge, intersection[3]),
third_direction};
}
else
{
intersection[1].instruction = {findBasicTurnType(via_edge, intersection[1]),
first_direction};
handleDistinctConflict(via_edge, intersection[3], intersection[2]);
}
}
else
{
2016-04-11 06:51:06 -04:00
assignTrivialTurns(via_edge, intersection, 1, up_to);
}
}
else
{
2016-04-11 06:51:06 -04:00
assignTrivialTurns(via_edge, intersection, 1, up_to);
}
return intersection;
}
// finds a fork candidate by just looking at the geometry and angle of an intersection
boost::optional<TurnHandler::Fork>
TurnHandler::findForkCandidatesByGeometry(Intersection &intersection) const
{
if (intersection.size() >= 3)
{
const auto straightmost = intersection.findClosestTurn(STRAIGHT_ANGLE);
const auto straightmost_index = std::distance(intersection.begin(), straightmost);
const auto straightmost_angle_dev = angularDeviation(straightmost->angle, STRAIGHT_ANGLE);
// Forks can only happen when two or more roads have a pretty narrow angle between each
// other and are close to going straight
//
//
// left right left right
// \ / \ | /
// \ / \|/
// | |
// | |
// | |
//
// possibly a fork possibly a fork
//
//
// left left
// / \
// /____ right \ ______ right
// | |
// | |
// | |
//
// not a fork cause not a fork cause
// it's not going angle is too wide
// straigthish
//
//
// left and right will be indices of the leftmost and rightmost connected roads that are
// fork candidates
if (straightmost_angle_dev <= NARROW_TURN_ANGLE)
{
// find the rightmost road that might be part of a fork
const auto right = findOutermostForkCandidate(
intersection.rend() - straightmost_index - 1, intersection.rend());
const int right_index = intersection.rend() - right - 1;
const auto forward_right = intersection.begin() + right_index;
// find the leftmost road that might be part of a fork
const auto left = findOutermostForkCandidate(straightmost, intersection.end());
// if the leftmost and rightmost roads with the conditions above are the same
// or if there are more than three fork candidates
// they cannot be fork candidates
if (forward_right < left && left - forward_right + 1 <= 3)
{
return Fork(forward_right, left);
}
}
}
return boost::none;
}
// check if the fork candidates (all roads between left and right) and the
// incoming edge are compatible by class
bool TurnHandler::isCompatibleByRoadClass(const Intersection &intersection, const Fork fork) const
{
const auto via_class = node_based_graph.GetEdgeData(intersection[0].eid).road_classification;
// if any of the considered roads is a link road, it cannot be a fork
// except if rightmost fork candidate is also a link road
const auto is_right_link_class =
node_based_graph.GetEdgeData((*fork.right).eid).road_classification.IsLinkClass();
if (!std::all_of(fork.right + 1, fork.left + 1, [&](ConnectedRoad &road) {
return is_right_link_class ==
node_based_graph.GetEdgeData(road.eid).road_classification.IsLinkClass();
}))
{
return false;
}
return std::all_of(fork.right, fork.left + 1, [&](ConnectedRoad &base) {
const auto base_class = node_based_graph.GetEdgeData(base.eid).road_classification;
// check that there is no turn obvious == check that all turns are non-onvious
return std::all_of(fork.right, fork.left + 1, [&](ConnectedRoad &compare) {
const auto compare_class =
node_based_graph.GetEdgeData(compare.eid).road_classification;
return compare.eid == base.eid ||
!(obviousByRoadClass(via_class, base_class, compare_class));
});
});
}
// Checks whether a three-way-intersection coming from `via_edge` is a fork
// with `intersection` as described as in #IntersectionExplanation@intersection_handler.hpp
boost::optional<TurnHandler::Fork> TurnHandler::findFork(const EdgeID via_edge,
Intersection &intersection) const
{
const auto fork = findForkCandidatesByGeometry(intersection);
if (fork)
{
// makes sure that the fork is isolated from other neighbouring streets on the left and
// right side
const auto next =
(fork->left + 1) == intersection.end() ? intersection.begin() : (fork->left + 1);
2016-07-04 06:19:49 -04:00
const bool separated_at_left_side =
angularDeviation(fork->left->angle, next->angle) >= GROUP_ANGLE;
2016-07-04 06:19:49 -04:00
const bool separated_at_right_side =
angularDeviation(fork->right->angle, (fork->right - 1)->angle) >= GROUP_ANGLE;
2016-07-04 06:19:49 -04:00
// check whether there is an obvious turn to take; forks are never obvious - if there is an
// obvious turn, it's not a fork
const bool has_obvious = hasObvious(via_edge, *fork);
2016-07-04 06:19:49 -04:00
// A fork can only happen between edges of similar types where none of the ones is obvious
const bool has_compatible_classes = isCompatibleByRoadClass(intersection, *fork);
2016-07-04 06:19:49 -04:00
// check if all entries in the fork range allow entry
const bool only_valid_entries =
intersection.hasAllValidEntries(fork->right, fork->left + 1);
if (separated_at_left_side && separated_at_right_side && !has_obvious &&
has_compatible_classes && only_valid_entries)
{
return fork;
}
}
return boost::none;
}
void TurnHandler::handleDistinctConflict(const EdgeID via_edge,
ConnectedRoad &left,
ConnectedRoad &right) const
{
// single turn of both is valid (don't change the valid one)
// or multiple identical angles -> bad OSM intersection
if ((!left.entry_allowed || !right.entry_allowed) || (left.angle == right.angle))
{
if (left.entry_allowed)
left.instruction = {findBasicTurnType(via_edge, left), getTurnDirection(left.angle)};
if (right.entry_allowed)
right.instruction = {findBasicTurnType(via_edge, right), getTurnDirection(right.angle)};
return;
}
if (getTurnDirection(left.angle) == DirectionModifier::Straight ||
getTurnDirection(left.angle) == DirectionModifier::SlightLeft ||
getTurnDirection(right.angle) == DirectionModifier::SlightRight)
{
const auto left_classification = node_based_graph.GetEdgeData(left.eid).road_classification;
const auto right_classification =
node_based_graph.GetEdgeData(right.eid).road_classification;
if (canBeSeenAsFork(left_classification, right_classification))
assignFork(via_edge, left, right);
else if (left_classification.GetPriority() > right_classification.GetPriority())
{
// FIXME this should possibly know about the actual roads?
// here we don't know about the intersection size. To be on the save side,
// we declare it
// as complex (at least size 4)
right.instruction = getInstructionForObvious(4, via_edge, false, right);
left.instruction = {findBasicTurnType(via_edge, left), DirectionModifier::SlightLeft};
}
else
{
// FIXME this should possibly know about the actual roads?
// here we don't know about the intersection size. To be on the save side,
// we declare it
// as complex (at least size 4)
left.instruction = getInstructionForObvious(4, via_edge, false, left);
right.instruction = {findBasicTurnType(via_edge, right),
DirectionModifier::SlightRight};
}
}
const auto left_type = findBasicTurnType(via_edge, left);
const auto right_type = findBasicTurnType(via_edge, right);
// Two Right Turns
if (angularDeviation(left.angle, 90) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION)
{
// Keep left perfect, shift right
left.instruction = {left_type, DirectionModifier::Right};
right.instruction = {right_type, DirectionModifier::SharpRight};
return;
}
if (angularDeviation(right.angle, 90) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION)
{
// Keep Right perfect, shift left
left.instruction = {left_type, DirectionModifier::SlightRight};
right.instruction = {right_type, DirectionModifier::Right};
return;
}
// Two Right Turns
if (angularDeviation(left.angle, 270) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION)
{
// Keep left perfect, shift right
left.instruction = {left_type, DirectionModifier::Left};
right.instruction = {right_type, DirectionModifier::SlightLeft};
return;
}
if (angularDeviation(right.angle, 270) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION)
{
// Keep Right perfect, shift left
left.instruction = {left_type, DirectionModifier::SharpLeft};
right.instruction = {right_type, DirectionModifier::Left};
return;
}
// Shift the lesser penalty
if (getTurnDirection(left.angle) == DirectionModifier::SharpLeft)
{
left.instruction = {left_type, DirectionModifier::SharpLeft};
right.instruction = {right_type, DirectionModifier::Left};
return;
}
if (getTurnDirection(right.angle) == DirectionModifier::SharpRight)
{
left.instruction = {left_type, DirectionModifier::Right};
right.instruction = {right_type, DirectionModifier::SharpRight};
return;
}
if (getTurnDirection(left.angle) == DirectionModifier::Right)
{
if (angularDeviation(left.angle, 85) >= angularDeviation(right.angle, 85))
{
left.instruction = {left_type, DirectionModifier::Right};
right.instruction = {right_type, DirectionModifier::SharpRight};
}
else
{
left.instruction = {left_type, DirectionModifier::SlightRight};
right.instruction = {right_type, DirectionModifier::Right};
}
}
else
{
if (angularDeviation(left.angle, 265) >= angularDeviation(right.angle, 265))
{
left.instruction = {left_type, DirectionModifier::SharpLeft};
right.instruction = {right_type, DirectionModifier::Left};
}
else
{
left.instruction = {left_type, DirectionModifier::Left};
right.instruction = {right_type, DirectionModifier::SlightLeft};
}
}
}
} // namespace guidance
} // namespace extractor
} // namespace osrm