osrm-backend/include/extractor/guidance/turn_analysis.hpp

211 lines
9.2 KiB
C++
Raw Normal View History

#ifndef OSRM_EXTRACTOR_TURN_ANALYSIS
#define OSRM_EXTRACTOR_TURN_ANALYSIS
2016-03-01 16:30:31 -05:00
#include "extractor/guidance/turn_classification.hpp"
#include "extractor/guidance/toolkit.hpp"
#include "extractor/restriction_map.hpp"
#include "extractor/compressed_edge_container.hpp"
#include "util/name_table.hpp"
#include <cstdint>
#include <string>
#include <vector>
#include <memory>
2016-03-07 08:52:26 -05:00
#include <utility>
#include <unordered_set>
namespace osrm
{
namespace extractor
{
2016-03-01 16:30:31 -05:00
namespace guidance
{
struct TurnCandidate
{
EdgeID eid; // the id of the arc
bool valid; // a turn may be relevant to good instructions, even if we cannot take the road
double angle; // the approximated angle of the turn
2016-03-01 16:30:31 -05:00
TurnInstruction instruction; // a proposed instruction
double confidence; // how close to the border is the turn?
std::string toString() const
{
std::string result = "[turn] ";
result += std::to_string(eid);
result += " valid: ";
result += std::to_string(valid);
result += " angle: ";
result += std::to_string(angle);
result += " instruction: ";
result += std::to_string(static_cast<std::int32_t>(instruction.type)) + " " +
std::to_string(static_cast<std::int32_t>(instruction.direction_modifier));
result += " confidence: ";
result += std::to_string(confidence);
return result;
}
};
2016-03-08 06:40:45 -05:00
class TurnAnalysis
{
2016-03-08 06:40:45 -05:00
public:
TurnAnalysis(const util::NodeBasedDynamicGraph &node_based_graph,
const std::vector<QueryNode> &node_info_list,
const RestrictionMap &restriction_map,
const std::unordered_set<NodeID> &barrier_nodes,
const CompressedEdgeContainer &compressed_edge_container,
const util::NameTable &name_table);
2016-03-08 06:40:45 -05:00
// the entry into the turn analysis
std::vector<TurnCandidate> getTurns(const NodeID from_node, const EdgeID via_eid) const;
private:
const util::NodeBasedDynamicGraph &node_based_graph;
const std::vector<QueryNode> &node_info_list;
const RestrictionMap &restriction_map;
const std::unordered_set<NodeID> &barrier_nodes;
const CompressedEdgeContainer &compressed_edge_container;
const util::NameTable &name_table;
2016-03-08 06:40:45 -05:00
// Check for restrictions/barriers and generate a list of valid and invalid turns present at the
// node reached
// from `from_node` via `via_eid`
// The resulting candidates have to be analysed for their actual instructions later on.
std::vector<TurnCandidate> getTurnCandidates(const NodeID from_node,
const EdgeID via_eid) const;
// Merge segregated roads to omit invalid turns in favor of treating segregated roads as
// one.
// This function combines roads the following way:
//
// * *
// * is converted to *
// v ^ +
// v ^ +
//
// The treatment results in a straight turn angle of 180º rather than a turn angle of approx
// 160
std::vector<TurnCandidate>
mergeSegregatedRoads(const NodeID from_node,
const EdgeID via_eid,
std::vector<TurnCandidate> turn_candidates) const;
// TODO distinguish roundabouts and rotaries
// TODO handle bike/walk cases that allow crossing a roundabout!
// Processing of roundabouts
// Produces instructions to enter/exit a roundabout or to stay on it.
// Performs the distinction between roundabout and rotaries.
std::vector<TurnCandidate> handleRoundabouts(const NodeID from,
const EdgeID via_edge,
const bool on_roundabout,
const bool can_enter_roundabout,
const bool can_exit_roundabout,
std::vector<TurnCandidate> turn_candidates) const;
// Indicates a Junction containing a motoryway
bool isMotorwayJunction(const NodeID from,
const EdgeID via_edge,
const std::vector<TurnCandidate> &turn_candidates) const;
// Decide whether a turn is a turn or a ramp access
TurnType findBasicTurnType(const EdgeID via_edge, const TurnCandidate &candidate) const;
// Get the Instruction for an obvious turn
// Instruction will be a silent instruction
TurnInstruction getInstructionForObvious(const std::size_t number_of_candidates,
const EdgeID via_edge,
2016-03-08 06:40:45 -05:00
const TurnCandidate &candidate) const;
// Helper Function that decides between NoTurn or NewName
TurnInstruction
noTurnOrNewName(const NodeID from, const EdgeID via_edge, const TurnCandidate &candidate) const;
// Basic Turn Handling
// Dead end.
std::vector<TurnCandidate> handleOneWayTurn(const NodeID from,
const EdgeID via_edge,
std::vector<TurnCandidate> turn_candidates) const;
// Mode Changes, new names...
std::vector<TurnCandidate> handleTwoWayTurn(const NodeID from,
const EdgeID via_edge,
std::vector<TurnCandidate> turn_candidates) const;
// Forks, T intersections and similar
std::vector<TurnCandidate> handleThreeWayTurn(const NodeID from,
const EdgeID via_edge,
std::vector<TurnCandidate> turn_candidates) const;
// Normal Intersection. Can still contain forks...
std::vector<TurnCandidate> handleFourWayTurn(const NodeID from,
const EdgeID via_edge,
std::vector<TurnCandidate> turn_candidates) const;
// Fallback for turns of high complexion
std::vector<TurnCandidate> handleComplexTurn(const NodeID from,
const EdgeID via_edge,
std::vector<TurnCandidate> turn_candidates) const;
// Any Junction containing motorways
std::vector<TurnCandidate> handleMotorwayJunction(
const NodeID from, const EdgeID via_edge, std::vector<TurnCandidate> turn_candidates) const;
2016-03-07 08:52:26 -05:00
std::vector<TurnCandidate> handleFromMotorway(const NodeID from,
const EdgeID via_edge,
std::vector<TurnCandidate> turn_candidates) const;
2016-02-26 11:33:18 -05:00
2016-03-07 08:52:26 -05:00
std::vector<TurnCandidate> handleMotorwayRamp(const NodeID from,
const EdgeID via_edge,
std::vector<TurnCandidate> turn_candidates) const;
2016-03-08 06:40:45 -05:00
// Utility function, setting basic turn types. Prepares for normal turn handling.
std::vector<TurnCandidate> setTurnTypes(const NodeID from,
const EdgeID via_edge,
2016-03-08 06:40:45 -05:00
std::vector<TurnCandidate> turn_candidates) const;
2016-02-26 11:33:18 -05:00
2016-03-08 06:40:45 -05:00
// Utility function to handle direction modifier conflicts if reasonably possible
std::vector<TurnCandidate> handleConflicts(const NodeID from,
const EdgeID via_edge,
std::vector<TurnCandidate> turn_candidates) const;
2016-02-26 11:33:18 -05:00
2016-03-08 06:40:45 -05:00
// node_u -- (edge_1) --> node_v -- (edge_2) --> node_w
TurnInstruction AnalyzeTurn(const NodeID node_u,
const EdgeID edge1,
const NodeID node_v,
const EdgeID edge2,
const NodeID node_w,
const double angle) const;
// Assignment of specific turn types
void assignFork(const EdgeID via_edge, TurnCandidate &left, TurnCandidate &right) const;
void assignFork(const EdgeID via_edge,
TurnCandidate &left,
TurnCandidate &center,
TurnCandidate &right) const;
2016-03-07 08:52:26 -05:00
void
handleDistinctConflict(const EdgeID via_edge, TurnCandidate &left, TurnCandidate &right) const;
// Type specific fallbacks
2016-03-08 06:40:45 -05:00
std::vector<TurnCandidate>
fallbackTurnAssignmentMotorway(std::vector<TurnCandidate> turn_candidates) const;
2016-03-07 08:52:26 -05:00
//Classification
std::size_t findObviousTurn( const EdgeID via_edge, const std::vector<TurnCandidate> &turn_candidates) const;
std::pair<std::size_t,std::size_t> findFork( const EdgeID via_edge, const std::vector<TurnCandidate> &turn_candidates) const;
std::vector<TurnCandidate> assignLeftTurns( const EdgeID via_edge, std::vector<TurnCandidate> turn_candidates, const std::size_t starting_at ) const;
std::vector<TurnCandidate> assignRightTurns( const EdgeID via_edge, std::vector<TurnCandidate> turn_candidates, const std::size_t up_to ) const;
2016-03-08 06:40:45 -05:00
}; // class TurnAnalysis
2016-02-26 11:33:18 -05:00
2016-03-01 16:30:31 -05:00
} // namespace guidance
} // namespace extractor
} // namespace osrm
#endif // OSRM_EXTRACTOR_TURN_ANALYSIS