migrated out of edge based graph factory
This commit is contained in:
parent
6605f293b4
commit
daf2bbf991
@ -86,7 +86,6 @@ class RouteAPI : public BaseAPI
|
||||
leg_geometries.reserve(number_of_legs);
|
||||
|
||||
unpacked_path_segments = guidance::postProcess(std::move(unpacked_path_segments));
|
||||
BOOST_ASSERT(locations.size() == number_of_legs + 1);
|
||||
for (auto idx : util::irange(0UL, number_of_legs))
|
||||
{
|
||||
const auto &phantoms = segment_end_coordinates[idx];
|
||||
|
@ -79,7 +79,7 @@ std::vector<RouteStep> assembleSteps(const DataFacadeT &facade,
|
||||
steps.reserve(number_of_segments);
|
||||
|
||||
// TODO do computation based on distance and choose better next vertex
|
||||
BOOST_ASSERT(leg_geometry.size() >= 4); // source, phantom, closest positions on way
|
||||
BOOST_ASSERT(leg_geometry.locations.size() >= 4); // source, phantom, closest positions on way
|
||||
const auto initial_modifier =
|
||||
source_location
|
||||
? angleToDirectionModifier(util::coordinate_calculation::computeAngle(
|
||||
|
@ -51,7 +51,7 @@ classifyIntersection(NodeID nid,
|
||||
const auto base_coordinate = getRepresentativeCoordinate(nid, graph.GetTarget(base_id), base_id,
|
||||
graph.GetEdgeData(base_id).reversed,
|
||||
compressed_geometries, query_nodes);
|
||||
const auto node_coordinate = Coordinate(query_nodes[nid].lon, query_nodes[nid].lat);
|
||||
const auto node_coordinate = util::Coordinate(query_nodes[nid].lon, query_nodes[nid].lat);
|
||||
|
||||
// generate a list of all turn angles between a base edge, the node and a current edge
|
||||
for (const EdgeID eid : graph.GetAdjacentEdgeRange(nid))
|
||||
|
@ -10,6 +10,7 @@
|
||||
#include "extractor/edge_based_node.hpp"
|
||||
#include "extractor/original_edge_data.hpp"
|
||||
#include "extractor/query_node.hpp"
|
||||
#include "extractor/turn_analysis.hpp"
|
||||
|
||||
#include "engine/guidance/turn_instruction.hpp"
|
||||
|
||||
@ -128,52 +129,9 @@ class EdgeBasedGraphFactory
|
||||
void FlushVectorToStream(std::ofstream &edge_data_file,
|
||||
std::vector<OriginalEdgeData> &original_edge_data_vector) const;
|
||||
|
||||
struct TurnCandidate
|
||||
{
|
||||
EdgeID eid; // the id of the arc
|
||||
bool valid; // a turn may be relevant to good instructions, even if we cannot take the road
|
||||
double angle; // the approximated angle of the turn
|
||||
engine::guidance::TurnInstruction instruction; // a proposed instruction
|
||||
double confidence; // how close to the border is the turn?
|
||||
|
||||
std::string toString() const
|
||||
{
|
||||
std::string result = "[turn] ";
|
||||
result += std::to_string(eid);
|
||||
result += " valid: ";
|
||||
result += std::to_string(valid);
|
||||
result += " angle: ";
|
||||
result += std::to_string(angle);
|
||||
result += " instruction: ";
|
||||
result += std::to_string(static_cast<std::int32_t>(instruction.type)) + " " +
|
||||
std::to_string(static_cast<std::int32_t>(instruction.direction_modifier));
|
||||
result += " confidence: ";
|
||||
result += std::to_string(confidence);
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
// Use In Order to generate base turns
|
||||
|
||||
std::vector<TurnCandidate> getTurns(const NodeID from, const EdgeID via_edge);
|
||||
// cannot be const due to the counters...
|
||||
std::vector<TurnCandidate> getTurnCandidates(const NodeID from, const EdgeID via_edge);
|
||||
std::vector<TurnCandidate> optimizeCandidates(const EdgeID via_edge,
|
||||
std::vector<TurnCandidate> turn_candidates) const;
|
||||
|
||||
std::vector<TurnCandidate> optimizeRamps(const EdgeID via_edge,
|
||||
std::vector<TurnCandidate> turn_candidates) const;
|
||||
|
||||
engine::guidance::TurnType
|
||||
checkForkAndEnd(const EdgeID via_edge, const std::vector<TurnCandidate> &turn_candidates) const;
|
||||
std::vector<TurnCandidate> handleForkAndEnd(const engine::guidance::TurnType type,
|
||||
std::vector<TurnCandidate> turn_candidates) const;
|
||||
|
||||
std::vector<TurnCandidate> suppressTurns(const EdgeID via_edge,
|
||||
std::vector<TurnCandidate> turn_candidates) const;
|
||||
|
||||
bool isObviousChoice(const EdgeID coming_from_eid,
|
||||
const std::size_t turn_index,
|
||||
const std::vector<TurnCandidate> &turn_candidates) const;
|
||||
|
||||
std::size_t restricted_turns_counter;
|
||||
std::size_t skipped_uturns_counter;
|
||||
|
109
include/extractor/turn_analysis.hpp
Normal file
109
include/extractor/turn_analysis.hpp
Normal file
@ -0,0 +1,109 @@
|
||||
#ifndef OSRM_EXTRACTOR_TURN_ANALYSIS
|
||||
#define OSRM_EXTRACTOR_TURN_ANALYSIS
|
||||
|
||||
#include "engine/guidance/turn_classification.hpp"
|
||||
#include "engine/guidance/guidance_toolkit.hpp"
|
||||
|
||||
#include "extractor/restriction_map.hpp"
|
||||
#include "extractor/compressed_edge_container.hpp"
|
||||
|
||||
#include <unordered_set>
|
||||
|
||||
namespace osrm
|
||||
{
|
||||
namespace extractor
|
||||
{
|
||||
|
||||
struct TurnCandidate
|
||||
{
|
||||
EdgeID eid; // the id of the arc
|
||||
bool valid; // a turn may be relevant to good instructions, even if we cannot take the road
|
||||
double angle; // the approximated angle of the turn
|
||||
engine::guidance::TurnInstruction instruction; // a proposed instruction
|
||||
double confidence; // how close to the border is the turn?
|
||||
|
||||
std::string toString() const
|
||||
{
|
||||
std::string result = "[turn] ";
|
||||
result += std::to_string(eid);
|
||||
result += " valid: ";
|
||||
result += std::to_string(valid);
|
||||
result += " angle: ";
|
||||
result += std::to_string(angle);
|
||||
result += " instruction: ";
|
||||
result += std::to_string(static_cast<std::int32_t>(instruction.type)) + " " +
|
||||
std::to_string(static_cast<std::int32_t>(instruction.direction_modifier));
|
||||
result += " confidence: ";
|
||||
result += std::to_string(confidence);
|
||||
return result;
|
||||
}
|
||||
};
|
||||
namespace turn_analysis
|
||||
{
|
||||
|
||||
std::vector<TurnCandidate>
|
||||
getTurns(const NodeID from_node,
|
||||
const EdgeID via_eid,
|
||||
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph,
|
||||
const std::vector<QueryNode> &node_info_list,
|
||||
const std::shared_ptr<RestrictionMap const> restriction_map,
|
||||
const std::unordered_set<NodeID> &barrier_nodes,
|
||||
const CompressedEdgeContainer &compressed_edge_container);
|
||||
|
||||
std::vector<TurnCandidate>
|
||||
setTurnTypes(const NodeID from,
|
||||
const EdgeID via_edge,
|
||||
std::vector<TurnCandidate> turn_candidates,
|
||||
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph);
|
||||
|
||||
std::vector<TurnCandidate>
|
||||
optimizeRamps(const EdgeID via_edge,
|
||||
std::vector<TurnCandidate> turn_candidates,
|
||||
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph);
|
||||
|
||||
engine::guidance::TurnType
|
||||
checkForkAndEnd(const EdgeID via_eid,
|
||||
const std::vector<TurnCandidate> &turn_candidates,
|
||||
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph);
|
||||
|
||||
std::vector<TurnCandidate> handleForkAndEnd(const engine::guidance::TurnType type,
|
||||
std::vector<TurnCandidate> turn_candidates);
|
||||
std::vector<TurnCandidate>
|
||||
optimizeCandidates(const EdgeID via_eid,
|
||||
std::vector<TurnCandidate> turn_candidates,
|
||||
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph,
|
||||
const std::vector<QueryNode> &node_info_list);
|
||||
|
||||
bool isObviousChoice(const EdgeID via_eid,
|
||||
const std::size_t turn_index,
|
||||
const std::vector<TurnCandidate> &turn_candidates,
|
||||
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph);
|
||||
|
||||
std::vector<TurnCandidate>
|
||||
suppressTurns(const EdgeID via_eid,
|
||||
std::vector<TurnCandidate> turn_candidates,
|
||||
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph);
|
||||
|
||||
std::vector<TurnCandidate>
|
||||
getTurnCandidates(const NodeID from_node,
|
||||
const EdgeID via_eid,
|
||||
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph,
|
||||
const std::vector<QueryNode> &node_info_list,
|
||||
const std::shared_ptr<RestrictionMap const> restriction_map,
|
||||
const std::unordered_set<NodeID> &barrier_nodes,
|
||||
const CompressedEdgeContainer &compressed_edge_container);
|
||||
|
||||
// node_u -- (edge_1) --> node_v -- (edge_2) --> node_w
|
||||
engine::guidance::TurnInstruction
|
||||
AnalyzeTurn(const NodeID node_u,
|
||||
const EdgeID edge1,
|
||||
const NodeID node_v,
|
||||
const EdgeID edge2,
|
||||
const NodeID node_w,
|
||||
const double angle,
|
||||
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph);
|
||||
} // namespace turn_analysis
|
||||
} // namespace extractor
|
||||
} // namespace osrm
|
||||
|
||||
#endif // OSRM_EXTRACTOR_TURN_ANALYSIS
|
@ -100,7 +100,7 @@ util::json::Object makeStepManeuver(const guidance::StepManeuver &maneuver)
|
||||
{
|
||||
util::json::Object step_maneuver;
|
||||
step_maneuver.values["type"] = detail::instructionTypeToString(maneuver.instruction.type);
|
||||
if( isValidModifier( maneuver.instruction.type, maneuver.instruction.direction_modifier )
|
||||
if( isValidModifier( maneuver.instruction.type, maneuver.instruction.direction_modifier ) )
|
||||
step_maneuver.values["modifier"] =
|
||||
detail::instructionModifierToString(maneuver.instruction.direction_modifier);
|
||||
step_maneuver.values["location"] = detail::coordinateToLonLat(maneuver.location);
|
||||
|
@ -98,7 +98,9 @@ std::vector<std::vector<PathData>> postProcess(std::vector<std::vector<PathData>
|
||||
bool on_roundabout = false;
|
||||
for (auto &path_data : leg_data)
|
||||
{
|
||||
path_data[0].exit = carry_exit;
|
||||
if( not path_data.empty() )
|
||||
path_data[0].exit = carry_exit;
|
||||
|
||||
for (std::size_t data_index = 0; data_index + 1 < path_data.size(); ++data_index)
|
||||
{
|
||||
if (entersRoundabout(path_data[data_index].turn_instruction) )
|
||||
|
@ -1,5 +1,6 @@
|
||||
#include "extractor/edge_based_edge.hpp"
|
||||
#include "extractor/edge_based_graph_factory.hpp"
|
||||
#include "extractor/turn_analysis.hpp"
|
||||
#include "util/coordinate.hpp"
|
||||
#include "util/coordinate_calculation.hpp"
|
||||
#include "util/percent.hpp"
|
||||
@ -27,41 +28,6 @@ namespace osrm
|
||||
{
|
||||
namespace extractor
|
||||
{
|
||||
|
||||
// configuration of turn classification
|
||||
const bool constexpr INVERT = true;
|
||||
const bool constexpr RESOLVE_TO_RIGHT = true;
|
||||
const bool constexpr RESOLVE_TO_LEFT = false;
|
||||
|
||||
// what angle is interpreted as going straight
|
||||
const double constexpr STRAIGHT_ANGLE = 180.;
|
||||
// if a turn deviates this much from going straight, it will be kept straight
|
||||
const double constexpr MAXIMAL_ALLOWED_NO_TURN_DEVIATION = 2.;
|
||||
// angle that lies between two nearly indistinguishable roads
|
||||
const double constexpr NARROW_TURN_ANGLE = 35.;
|
||||
// angle difference that can be classified as straight, if its the only narrow turn
|
||||
const double constexpr FUZZY_STRAIGHT_ANGLE = 15.;
|
||||
const double constexpr DISTINCTION_RATIO = 2;
|
||||
|
||||
using engine::guidance::TurnPossibility;
|
||||
using engine::guidance::TurnInstruction;
|
||||
using engine::guidance::DirectionModifier;
|
||||
using engine::guidance::TurnType;
|
||||
using engine::guidance::FunctionalRoadClass;
|
||||
|
||||
using engine::guidance::classifyIntersection;
|
||||
using engine::guidance::isLowPriorityRoadClass;
|
||||
using engine::guidance::angularDeviation;
|
||||
using engine::guidance::getTurnDirection;
|
||||
using engine::guidance::getRepresentativeCoordinate;
|
||||
using engine::guidance::isBasic;
|
||||
using engine::guidance::isRampClass;
|
||||
using engine::guidance::isUturn;
|
||||
using engine::guidance::isConflict;
|
||||
using engine::guidance::isSlightTurn;
|
||||
using engine::guidance::isSlightModifier;
|
||||
using engine::guidance::mirrorDirectionModifier;
|
||||
|
||||
// Configuration to find representative candidate for turn angle calculations
|
||||
|
||||
EdgeBasedGraphFactory::EdgeBasedGraphFactory(
|
||||
@ -344,8 +310,8 @@ void EdgeBasedGraphFactory::GenerateEdgeExpandedEdges(
|
||||
|
||||
struct CompareTurnPossibilities
|
||||
{
|
||||
bool operator()(const std::vector<TurnPossibility> &left,
|
||||
const std::vector<TurnPossibility> &right) const
|
||||
bool operator()(const std::vector<engine::guidance::TurnPossibility> &left,
|
||||
const std::vector<engine::guidance::TurnPossibility> &right) const
|
||||
{
|
||||
if (left.size() < right.size())
|
||||
return true;
|
||||
@ -367,8 +333,8 @@ void EdgeBasedGraphFactory::GenerateEdgeExpandedEdges(
|
||||
// temporary switch to allow display of turn types
|
||||
#define SHOW_TURN_TYPES 0
|
||||
#if SHOW_TURN_TYPES
|
||||
std::map<std::vector<TurnPossibility>, std::vector<util::FixedPointCoordinate>,
|
||||
CompareTurnPossibilities> turn_types;
|
||||
std::map<std::vector<engine::guidance::TurnPossibility>,
|
||||
std::vector<util::FixedPointCoordinate>, CompareTurnPossibilities> turn_types;
|
||||
#endif
|
||||
|
||||
for (const auto node_u : util::irange(0u, m_node_based_graph->GetNumberOfNodes()))
|
||||
@ -392,44 +358,18 @@ void EdgeBasedGraphFactory::GenerateEdgeExpandedEdges(
|
||||
}
|
||||
#endif
|
||||
// progress.printStatus(node_u);
|
||||
for (const EdgeID edge_form_u : m_node_based_graph->GetAdjacentEdgeRange(node_u))
|
||||
for (const EdgeID edge_from_u : m_node_based_graph->GetAdjacentEdgeRange(node_u))
|
||||
{
|
||||
if (m_node_based_graph->GetEdgeData(edge_form_u).reversed)
|
||||
if (m_node_based_graph->GetEdgeData(edge_from_u).reversed)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
++node_based_edge_counter;
|
||||
auto turn_candidates = getTurnCandidates(node_u, edge_form_u);
|
||||
#define PRINT_DEBUG_CANDIDATES 0
|
||||
#if PRINT_DEBUG_CANDIDATES
|
||||
std::cout << "Initial Candidates:\n";
|
||||
for (auto tc : turn_candidates)
|
||||
std::cout << "\t" << tc.toString() << " "
|
||||
<< (int)m_node_based_graph->GetEdgeData(tc.eid)
|
||||
.road_classification.road_class
|
||||
<< std::endl;
|
||||
#endif
|
||||
turn_candidates = optimizeCandidates(edge_form_u, turn_candidates);
|
||||
#if PRINT_DEBUG_CANDIDATES
|
||||
std::cout << "Optimized Candidates:\n";
|
||||
for (auto tc : turn_candidates)
|
||||
std::cout << "\t" << tc.toString() << " "
|
||||
<< (int)m_node_based_graph->GetEdgeData(tc.eid)
|
||||
.road_classification.road_class
|
||||
<< std::endl;
|
||||
#endif
|
||||
turn_candidates = suppressTurns(edge_form_u, turn_candidates);
|
||||
#if PRINT_DEBUG_CANDIDATES
|
||||
std::cout << "Suppressed Candidates:\n";
|
||||
for (auto tc : turn_candidates)
|
||||
std::cout << "\t" << tc.toString() << " "
|
||||
<< (int)m_node_based_graph->GetEdgeData(tc.eid)
|
||||
.road_classification.road_class
|
||||
<< std::endl;
|
||||
#endif
|
||||
auto turn_candidates = turn_analysis::getTurns(node_u, edge_from_u, m_node_based_graph, m_node_info_list, m_restriction_map, m_barrier_nodes,
|
||||
m_compressed_edge_container);
|
||||
|
||||
const NodeID node_v = m_node_based_graph->GetTarget(edge_form_u);
|
||||
const NodeID node_v = m_node_based_graph->GetTarget(edge_from_u);
|
||||
|
||||
for (const auto turn : turn_candidates)
|
||||
{
|
||||
@ -439,7 +379,7 @@ void EdgeBasedGraphFactory::GenerateEdgeExpandedEdges(
|
||||
const double turn_angle = turn.angle;
|
||||
|
||||
// only add an edge if turn is not prohibited
|
||||
const EdgeData &edge_data1 = m_node_based_graph->GetEdgeData(edge_form_u);
|
||||
const EdgeData &edge_data1 = m_node_based_graph->GetEdgeData(edge_from_u);
|
||||
const EdgeData &edge_data2 = m_node_based_graph->GetEdgeData(turn.eid);
|
||||
|
||||
BOOST_ASSERT(edge_data1.edge_id != edge_data2.edge_id);
|
||||
@ -463,9 +403,9 @@ void EdgeBasedGraphFactory::GenerateEdgeExpandedEdges(
|
||||
|
||||
distance += turn_penalty;
|
||||
|
||||
BOOST_ASSERT(m_compressed_edge_container.HasEntryForID(edge_form_u));
|
||||
BOOST_ASSERT(m_compressed_edge_container.HasEntryForID(edge_from_u));
|
||||
original_edge_data_vector.emplace_back(
|
||||
m_compressed_edge_container.GetPositionForID(edge_form_u), edge_data1.name_id,
|
||||
m_compressed_edge_container.GetPositionForID(edge_from_u), edge_data1.name_id,
|
||||
turn_instruction, edge_data1.travel_mode);
|
||||
|
||||
++original_edges_counter;
|
||||
@ -502,7 +442,7 @@ void EdgeBasedGraphFactory::GenerateEdgeExpandedEdges(
|
||||
edge_penalty_file.write(reinterpret_cast<const char *>(&fixed_penalty),
|
||||
sizeof(fixed_penalty));
|
||||
const auto node_based_edges =
|
||||
m_compressed_edge_container.GetBucketReference(edge_form_u);
|
||||
m_compressed_edge_container.GetBucketReference(edge_from_u);
|
||||
NodeID previous = node_u;
|
||||
|
||||
const unsigned node_count = node_based_edges.size() + 1;
|
||||
@ -571,673 +511,6 @@ void EdgeBasedGraphFactory::GenerateEdgeExpandedEdges(
|
||||
<< " turns over barriers";
|
||||
}
|
||||
|
||||
std::vector<EdgeBasedGraphFactory::TurnCandidate>
|
||||
EdgeBasedGraphFactory::optimizeRamps(const EdgeID via_edge,
|
||||
std::vector<TurnCandidate> turn_candidates) const
|
||||
{
|
||||
EdgeID continue_eid = SPECIAL_EDGEID;
|
||||
double continue_angle = 0;
|
||||
const auto &in_edge_data = m_node_based_graph->GetEdgeData(via_edge);
|
||||
for (auto &candidate : turn_candidates)
|
||||
{
|
||||
if (candidate.instruction.direction_modifier == DirectionModifier::UTurn)
|
||||
continue;
|
||||
|
||||
const auto &out_edge_data = m_node_based_graph->GetEdgeData(candidate.eid);
|
||||
if (out_edge_data.name_id == in_edge_data.name_id)
|
||||
{
|
||||
continue_eid = candidate.eid;
|
||||
continue_angle = candidate.angle;
|
||||
if (angularDeviation(candidate.angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE &&
|
||||
isRampClass(in_edge_data.road_classification.road_class))
|
||||
candidate.instruction = TurnType::Suppressed;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (continue_eid != SPECIAL_EDGEID)
|
||||
{
|
||||
bool to_the_right = true;
|
||||
for (auto &candidate : turn_candidates)
|
||||
{
|
||||
if (candidate.eid == continue_eid)
|
||||
{
|
||||
to_the_right = false;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (candidate.instruction.type != TurnType::Ramp)
|
||||
continue;
|
||||
|
||||
if (isSlightModifier(candidate.instruction.direction_modifier))
|
||||
candidate.instruction.direction_modifier =
|
||||
(to_the_right) ? DirectionModifier::SlightRight : DirectionModifier::SlightLeft;
|
||||
}
|
||||
}
|
||||
return turn_candidates;
|
||||
}
|
||||
|
||||
TurnType
|
||||
EdgeBasedGraphFactory::checkForkAndEnd(const EdgeID via_eid,
|
||||
const std::vector<TurnCandidate> &turn_candidates) const
|
||||
{
|
||||
if (turn_candidates.size() != 3 ||
|
||||
turn_candidates.front().instruction.direction_modifier != DirectionModifier::UTurn)
|
||||
return TurnType::Invalid;
|
||||
|
||||
if (isOnRoundabout(turn_candidates[1].instruction))
|
||||
{
|
||||
BOOST_ASSERT(isOnRoundabout(turn_candidates[2].instruction));
|
||||
return TurnType::Invalid;
|
||||
}
|
||||
BOOST_ASSERT(!isOnRoundabout(turn_candidates[2].instruction));
|
||||
|
||||
FunctionalRoadClass road_classes[3] = {
|
||||
m_node_based_graph->GetEdgeData(via_eid).road_classification.road_class,
|
||||
m_node_based_graph->GetEdgeData(turn_candidates[1].eid).road_classification.road_class,
|
||||
m_node_based_graph->GetEdgeData(turn_candidates[2].eid).road_classification.road_class};
|
||||
|
||||
if (angularDeviation(turn_candidates[1].angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE &&
|
||||
angularDeviation(turn_candidates[2].angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE)
|
||||
{
|
||||
if (road_classes[0] != road_classes[1] || road_classes[1] != road_classes[2])
|
||||
return TurnType::Invalid;
|
||||
|
||||
if (turn_candidates[1].valid && turn_candidates[2].valid)
|
||||
return TurnType::Fork;
|
||||
}
|
||||
|
||||
else if (angularDeviation(turn_candidates[1].angle, 90) < NARROW_TURN_ANGLE &&
|
||||
angularDeviation(turn_candidates[2].angle, 270) < NARROW_TURN_ANGLE)
|
||||
{
|
||||
return TurnType::EndOfRoad;
|
||||
}
|
||||
|
||||
return TurnType::Invalid;
|
||||
}
|
||||
|
||||
std::vector<EdgeBasedGraphFactory::TurnCandidate>
|
||||
EdgeBasedGraphFactory::handleForkAndEnd(const TurnType type,
|
||||
std::vector<TurnCandidate> turn_candidates) const
|
||||
{
|
||||
turn_candidates[1].instruction.type = type;
|
||||
turn_candidates[1].instruction.direction_modifier =
|
||||
(type == TurnType::Fork) ? DirectionModifier::SlightRight : DirectionModifier::Right;
|
||||
turn_candidates[2].instruction.type = type;
|
||||
turn_candidates[2].instruction.direction_modifier =
|
||||
(type == TurnType::Fork) ? DirectionModifier::SlightLeft : DirectionModifier::Left;
|
||||
return turn_candidates;
|
||||
}
|
||||
|
||||
// requires sorted candidates
|
||||
std::vector<EdgeBasedGraphFactory::TurnCandidate>
|
||||
EdgeBasedGraphFactory::optimizeCandidates(const EdgeID via_eid,
|
||||
std::vector<TurnCandidate> turn_candidates) const
|
||||
{
|
||||
BOOST_ASSERT_MSG(std::is_sorted(turn_candidates.begin(), turn_candidates.end(),
|
||||
[](const TurnCandidate &left, const TurnCandidate &right)
|
||||
{
|
||||
return left.angle < right.angle;
|
||||
}),
|
||||
"Turn Candidates not sorted by angle.");
|
||||
if (turn_candidates.size() <= 1)
|
||||
return turn_candidates;
|
||||
|
||||
TurnType type = checkForkAndEnd(via_eid, turn_candidates);
|
||||
if (type != TurnType::Invalid)
|
||||
return handleForkAndEnd(type, std::move(turn_candidates));
|
||||
|
||||
turn_candidates = optimizeRamps(via_eid, std::move(turn_candidates));
|
||||
|
||||
const auto getLeft = [&turn_candidates](std::size_t index)
|
||||
{
|
||||
return (index + 1) % turn_candidates.size();
|
||||
};
|
||||
const auto getRight = [&turn_candidates](std::size_t index)
|
||||
{
|
||||
return (index + turn_candidates.size() - 1) % turn_candidates.size();
|
||||
};
|
||||
|
||||
// handle availability of multiple u-turns (e.g. street with separated small parking roads)
|
||||
if (isUturn(turn_candidates[0].instruction) && turn_candidates[0].angle == 0)
|
||||
{
|
||||
if (isUturn(turn_candidates[getLeft(0)].instruction))
|
||||
turn_candidates[getLeft(0)].instruction.direction_modifier =
|
||||
DirectionModifier::SharpLeft;
|
||||
if (isUturn(turn_candidates[getRight(0)].instruction))
|
||||
turn_candidates[getRight(0)].instruction.direction_modifier =
|
||||
DirectionModifier::SharpRight;
|
||||
}
|
||||
|
||||
const auto keepStraight = [](double angle)
|
||||
{
|
||||
return std::abs(angle - 180) < 5;
|
||||
};
|
||||
|
||||
for (std::size_t turn_index = 0; turn_index < turn_candidates.size(); ++turn_index)
|
||||
{
|
||||
auto &turn = turn_candidates[turn_index];
|
||||
if (!isBasic(turn.instruction.type) || isUturn(turn.instruction) ||
|
||||
isOnRoundabout(turn.instruction))
|
||||
continue;
|
||||
auto &left = turn_candidates[getLeft(turn_index)];
|
||||
if (turn.angle == left.angle)
|
||||
{
|
||||
util::SimpleLogger().Write(logDEBUG)
|
||||
<< "[warning] conflicting turn angles, identical road duplicated? "
|
||||
<< m_node_info_list[m_node_based_graph->GetTarget(via_eid)].lat << " "
|
||||
<< m_node_info_list[m_node_based_graph->GetTarget(via_eid)].lon << std::endl;
|
||||
}
|
||||
if (isConflict(turn.instruction, left.instruction))
|
||||
{
|
||||
// begin of a conflicting region
|
||||
std::size_t conflict_begin = turn_index;
|
||||
std::size_t conflict_end = getLeft(turn_index);
|
||||
std::size_t conflict_size = 2;
|
||||
while (
|
||||
isConflict(turn_candidates[getLeft(conflict_end)].instruction, turn.instruction) &&
|
||||
conflict_size < turn_candidates.size())
|
||||
{
|
||||
conflict_end = getLeft(conflict_end);
|
||||
++conflict_size;
|
||||
}
|
||||
|
||||
turn_index = (conflict_end < conflict_begin) ? turn_candidates.size() : conflict_end;
|
||||
|
||||
if (conflict_size > 3)
|
||||
{
|
||||
// check if some turns are invalid to find out about good handling
|
||||
}
|
||||
|
||||
auto &instruction_left_of_end = turn_candidates[getLeft(conflict_end)].instruction;
|
||||
auto &instruction_right_of_begin =
|
||||
turn_candidates[getRight(conflict_begin)].instruction;
|
||||
auto &candidate_at_end = turn_candidates[conflict_end];
|
||||
auto &candidate_at_begin = turn_candidates[conflict_begin];
|
||||
if (conflict_size == 2)
|
||||
{
|
||||
if (turn.instruction.direction_modifier == DirectionModifier::Straight)
|
||||
{
|
||||
if (instruction_left_of_end.direction_modifier !=
|
||||
DirectionModifier::SlightLeft &&
|
||||
instruction_right_of_begin.direction_modifier !=
|
||||
DirectionModifier::SlightRight)
|
||||
{
|
||||
std::int32_t resolved_count = 0;
|
||||
// uses side-effects in resolve
|
||||
if (!keepStraight(candidate_at_end.angle) &&
|
||||
!resolve(candidate_at_end.instruction, instruction_left_of_end,
|
||||
RESOLVE_TO_LEFT))
|
||||
util::SimpleLogger().Write(logDEBUG)
|
||||
<< "[warning] failed to resolve conflict";
|
||||
else
|
||||
++resolved_count;
|
||||
// uses side-effects in resolve
|
||||
if (!keepStraight(candidate_at_begin.angle) &&
|
||||
!resolve(candidate_at_begin.instruction, instruction_right_of_begin,
|
||||
RESOLVE_TO_RIGHT))
|
||||
util::SimpleLogger().Write(logDEBUG)
|
||||
<< "[warning] failed to resolve conflict";
|
||||
else
|
||||
++resolved_count;
|
||||
if (resolved_count >= 1 &&
|
||||
(!keepStraight(candidate_at_begin.angle) ||
|
||||
!keepStraight(candidate_at_end.angle))) // should always be the
|
||||
// case, theoretically
|
||||
continue;
|
||||
}
|
||||
}
|
||||
if (candidate_at_begin.confidence < candidate_at_end.confidence)
|
||||
{ // if right shift is cheaper, or only option
|
||||
if (resolve(candidate_at_begin.instruction, instruction_right_of_begin,
|
||||
RESOLVE_TO_RIGHT))
|
||||
continue;
|
||||
else if (resolve(candidate_at_end.instruction, instruction_left_of_end,
|
||||
RESOLVE_TO_LEFT))
|
||||
continue;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (resolve(candidate_at_end.instruction, instruction_left_of_end,
|
||||
RESOLVE_TO_LEFT))
|
||||
continue;
|
||||
else if (resolve(candidate_at_begin.instruction, instruction_right_of_begin,
|
||||
RESOLVE_TO_RIGHT))
|
||||
continue;
|
||||
}
|
||||
if (isSlightTurn(turn.instruction) || isSharpTurn(turn.instruction))
|
||||
{
|
||||
auto resolve_direction =
|
||||
(turn.instruction.direction_modifier == DirectionModifier::SlightRight ||
|
||||
turn.instruction.direction_modifier == DirectionModifier::SharpLeft)
|
||||
? RESOLVE_TO_RIGHT
|
||||
: RESOLVE_TO_LEFT;
|
||||
if (resolve_direction == RESOLVE_TO_RIGHT &&
|
||||
resolveTransitive(
|
||||
candidate_at_begin.instruction, instruction_right_of_begin,
|
||||
turn_candidates[getRight(getRight(conflict_begin))].instruction,
|
||||
RESOLVE_TO_RIGHT))
|
||||
continue;
|
||||
else if (resolve_direction == RESOLVE_TO_LEFT &&
|
||||
resolveTransitive(
|
||||
candidate_at_end.instruction, instruction_left_of_end,
|
||||
turn_candidates[getLeft(getLeft(conflict_end))].instruction,
|
||||
RESOLVE_TO_LEFT))
|
||||
continue;
|
||||
}
|
||||
}
|
||||
else if (conflict_size >= 3)
|
||||
{
|
||||
// a conflict of size larger than three cannot be handled with the current
|
||||
// model.
|
||||
// Handle it as best as possible and keep the rest of the conflicting turns
|
||||
if (conflict_size > 3)
|
||||
{
|
||||
NodeID conflict_location = m_node_based_graph->GetTarget(via_eid);
|
||||
util::SimpleLogger().Write(logDEBUG)
|
||||
<< "[warning] found conflict larget than size three at "
|
||||
<< m_node_info_list[conflict_location].lat << ", "
|
||||
<< m_node_info_list[conflict_location].lon;
|
||||
}
|
||||
|
||||
if (!resolve(candidate_at_begin.instruction, instruction_right_of_begin,
|
||||
RESOLVE_TO_RIGHT))
|
||||
{
|
||||
if (isSlightTurn(turn.instruction))
|
||||
resolveTransitive(
|
||||
candidate_at_begin.instruction, instruction_right_of_begin,
|
||||
turn_candidates[getRight(getRight(conflict_begin))].instruction,
|
||||
RESOLVE_TO_RIGHT);
|
||||
else if (isSharpTurn(turn.instruction))
|
||||
resolveTransitive(
|
||||
candidate_at_end.instruction, instruction_left_of_end,
|
||||
turn_candidates[getLeft(getLeft(conflict_end))].instruction,
|
||||
RESOLVE_TO_LEFT);
|
||||
}
|
||||
if (!resolve(candidate_at_end.instruction, instruction_left_of_end,
|
||||
RESOLVE_TO_LEFT))
|
||||
{
|
||||
if (isSlightTurn(turn.instruction))
|
||||
resolveTransitive(
|
||||
candidate_at_end.instruction, instruction_left_of_end,
|
||||
turn_candidates[getLeft(getLeft(conflict_end))].instruction,
|
||||
RESOLVE_TO_LEFT);
|
||||
else if (isSharpTurn(turn.instruction))
|
||||
resolveTransitive(
|
||||
candidate_at_begin.instruction, instruction_right_of_begin,
|
||||
turn_candidates[getRight(getRight(conflict_begin))].instruction,
|
||||
RESOLVE_TO_RIGHT);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return turn_candidates;
|
||||
}
|
||||
|
||||
bool EdgeBasedGraphFactory::isObviousChoice(const EdgeID via_eid,
|
||||
const std::size_t turn_index,
|
||||
const std::vector<TurnCandidate> &turn_candidates) const
|
||||
{
|
||||
const auto getLeft = [&turn_candidates](std::size_t index)
|
||||
{
|
||||
return (index + 1) % turn_candidates.size();
|
||||
};
|
||||
const auto getRight = [&turn_candidates](std::size_t index)
|
||||
{
|
||||
return (index + turn_candidates.size() - 1) % turn_candidates.size();
|
||||
};
|
||||
const auto &candidate = turn_candidates[turn_index];
|
||||
const EdgeData &in_data = m_node_based_graph->GetEdgeData(via_eid);
|
||||
const EdgeData &out_data = m_node_based_graph->GetEdgeData(candidate.eid);
|
||||
const auto &candidate_to_the_left = turn_candidates[getLeft(turn_index)];
|
||||
|
||||
const auto &candidate_to_the_right = turn_candidates[getRight(turn_index)];
|
||||
|
||||
const auto hasValidRatio = [this](const TurnCandidate &left, const TurnCandidate ¢er,
|
||||
const TurnCandidate &right)
|
||||
{
|
||||
auto angle_left = (left.angle > 180) ? angularDeviation(left.angle, STRAIGHT_ANGLE) : 180;
|
||||
auto angle_right =
|
||||
(right.angle < 180) ? angularDeviation(right.angle, STRAIGHT_ANGLE) : 180;
|
||||
auto self_angle = angularDeviation(center.angle, STRAIGHT_ANGLE);
|
||||
return angularDeviation(center.angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE &&
|
||||
((center.angle < STRAIGHT_ANGLE)
|
||||
? (angle_right > self_angle && angle_left / self_angle > DISTINCTION_RATIO)
|
||||
: (angle_left > self_angle && angle_right / self_angle > DISTINCTION_RATIO));
|
||||
};
|
||||
// only valid turn
|
||||
if (!isLowPriorityRoadClass(
|
||||
m_node_based_graph->GetEdgeData(candidate.eid).road_classification.road_class))
|
||||
{
|
||||
bool is_only_normal_road = true;
|
||||
BOOST_ASSERT(turn_candidates[0].instruction.type == TurnType::Turn &&
|
||||
turn_candidates[0].instruction.direction_modifier == DirectionModifier::UTurn);
|
||||
for (size_t i = 0; i < turn_candidates.size(); ++i)
|
||||
{
|
||||
if (i == turn_index || turn_candidates[i].angle == 0) // skip self and u-turn
|
||||
continue;
|
||||
if (!isLowPriorityRoadClass(m_node_based_graph->GetEdgeData(turn_candidates[i].eid)
|
||||
.road_classification.road_class))
|
||||
{
|
||||
is_only_normal_road = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (is_only_normal_road == true)
|
||||
return true;
|
||||
}
|
||||
|
||||
return turn_candidates.size() == 1 ||
|
||||
// only non u-turn
|
||||
(turn_candidates.size() == 2 &&
|
||||
isUturn(candidate_to_the_left.instruction)) || // nearly straight turn
|
||||
angularDeviation(candidate.angle, STRAIGHT_ANGLE) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION ||
|
||||
hasValidRatio(candidate_to_the_left, candidate, candidate_to_the_right) ||
|
||||
(in_data.name_id != 0 && in_data.name_id == out_data.name_id &&
|
||||
angularDeviation(candidate.angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE / 2);
|
||||
}
|
||||
|
||||
std::vector<EdgeBasedGraphFactory::TurnCandidate>
|
||||
EdgeBasedGraphFactory::suppressTurns(const EdgeID via_eid,
|
||||
std::vector<TurnCandidate> turn_candidates) const
|
||||
{
|
||||
if (turn_candidates.size() == 3)
|
||||
{
|
||||
BOOST_ASSERT(turn_candidates[0].instruction.direction_modifier == DirectionModifier::UTurn);
|
||||
if (isLowPriorityRoadClass(m_node_based_graph->GetEdgeData(turn_candidates[1].eid)
|
||||
.road_classification.road_class) &&
|
||||
!isLowPriorityRoadClass(m_node_based_graph->GetEdgeData(turn_candidates[2].eid)
|
||||
.road_classification.road_class))
|
||||
{
|
||||
if (angularDeviation(turn_candidates[2].angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE)
|
||||
{
|
||||
if (m_node_based_graph->GetEdgeData(turn_candidates[2].eid).name_id ==
|
||||
m_node_based_graph->GetEdgeData(via_eid).name_id)
|
||||
{
|
||||
turn_candidates[2].instruction = TurnInstruction::NO_TURN();
|
||||
}
|
||||
else
|
||||
{
|
||||
turn_candidates[2].instruction.type = TurnType::NewName;
|
||||
}
|
||||
return turn_candidates;
|
||||
}
|
||||
}
|
||||
else if (isLowPriorityRoadClass(m_node_based_graph->GetEdgeData(turn_candidates[2].eid)
|
||||
.road_classification.road_class) &&
|
||||
!isLowPriorityRoadClass(m_node_based_graph->GetEdgeData(turn_candidates[1].eid)
|
||||
.road_classification.road_class))
|
||||
{
|
||||
if (angularDeviation(turn_candidates[1].angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE)
|
||||
{
|
||||
if (m_node_based_graph->GetEdgeData(turn_candidates[1].eid).name_id ==
|
||||
m_node_based_graph->GetEdgeData(via_eid).name_id)
|
||||
{
|
||||
turn_candidates[1].instruction = TurnInstruction::NO_TURN();
|
||||
}
|
||||
else
|
||||
{
|
||||
turn_candidates[1].instruction.type = TurnType::NewName;
|
||||
}
|
||||
return turn_candidates;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
BOOST_ASSERT_MSG(std::is_sorted(turn_candidates.begin(), turn_candidates.end(),
|
||||
[](const TurnCandidate &left, const TurnCandidate &right)
|
||||
{
|
||||
return left.angle < right.angle;
|
||||
}),
|
||||
"Turn Candidates not sorted by angle.");
|
||||
|
||||
const auto getLeft = [&turn_candidates](std::size_t index)
|
||||
{
|
||||
return (index + 1) % turn_candidates.size();
|
||||
};
|
||||
const auto getRight = [&turn_candidates](std::size_t index)
|
||||
{
|
||||
return (index + turn_candidates.size() - 1) % turn_candidates.size();
|
||||
};
|
||||
|
||||
const EdgeData &in_data = m_node_based_graph->GetEdgeData(via_eid);
|
||||
|
||||
bool has_obvious_with_same_name = false;
|
||||
double obvious_with_same_name_angle = 0;
|
||||
for (std::size_t turn_index = 0; turn_index < turn_candidates.size(); ++turn_index)
|
||||
{
|
||||
if (m_node_based_graph->GetEdgeData(turn_candidates[turn_index].eid).name_id ==
|
||||
in_data.name_id &&
|
||||
isObviousChoice(via_eid, turn_index, turn_candidates))
|
||||
{
|
||||
has_obvious_with_same_name = true;
|
||||
obvious_with_same_name_angle = turn_candidates[turn_index].angle;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
for (std::size_t turn_index = 0; turn_index < turn_candidates.size(); ++turn_index)
|
||||
{
|
||||
auto &candidate = turn_candidates[turn_index];
|
||||
if (!isBasic(candidate.instruction.type))
|
||||
continue;
|
||||
|
||||
const EdgeData &out_data = m_node_based_graph->GetEdgeData(candidate.eid);
|
||||
if (out_data.name_id == in_data.name_id && in_data.name_id != 0 &&
|
||||
candidate.instruction.direction_modifier != DirectionModifier::UTurn &&
|
||||
!has_obvious_with_same_name)
|
||||
{
|
||||
candidate.instruction.type = TurnType::Continue;
|
||||
}
|
||||
if (candidate.valid && !isUturn(candidate.instruction))
|
||||
{
|
||||
// TODO road category would be useful to indicate obviousness of turn
|
||||
// check if turn can be omitted or at least changed
|
||||
const auto &left = turn_candidates[getLeft(turn_index)];
|
||||
const auto &right = turn_candidates[getRight(turn_index)];
|
||||
|
||||
// make very slight instructions straight, if they are the only valid choice going
|
||||
// with
|
||||
// at most a slight turn
|
||||
if ((!isSlightModifier(getTurnDirection(left.angle)) || !left.valid) &&
|
||||
(!isSlightModifier(getTurnDirection(right.angle)) || !right.valid) &&
|
||||
angularDeviation(candidate.angle, STRAIGHT_ANGLE) < FUZZY_STRAIGHT_ANGLE)
|
||||
candidate.instruction.direction_modifier = DirectionModifier::Straight;
|
||||
|
||||
// TODO this smaller comparison for turns is DANGEROUS, has to be revised if turn
|
||||
// instructions change
|
||||
if (in_data.travel_mode ==
|
||||
out_data.travel_mode) // make sure to always announce mode changes
|
||||
{
|
||||
if (isObviousChoice(via_eid, turn_index, turn_candidates))
|
||||
{
|
||||
|
||||
if (in_data.name_id == out_data.name_id) // same road
|
||||
{
|
||||
candidate.instruction.type = TurnType::Suppressed;
|
||||
}
|
||||
|
||||
else if (!has_obvious_with_same_name)
|
||||
{
|
||||
// TODO discuss, we might want to keep the current name of the turn. But
|
||||
// this would mean emitting a turn when you just keep on a road
|
||||
if (isRampClass(in_data.road_classification.road_class) &&
|
||||
!isRampClass(out_data.road_classification.road_class))
|
||||
{
|
||||
candidate.instruction.type = TurnType::Merge;
|
||||
candidate.instruction.direction_modifier =
|
||||
mirrorDirectionModifier(candidate.instruction.direction_modifier);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (engine::guidance::canBeSuppressed(candidate.instruction.type))
|
||||
candidate.instruction.type = TurnType::NewName;
|
||||
}
|
||||
}
|
||||
else if (candidate.angle < obvious_with_same_name_angle)
|
||||
candidate.instruction.direction_modifier = DirectionModifier::SlightRight;
|
||||
else
|
||||
candidate.instruction.direction_modifier = DirectionModifier::SlightLeft;
|
||||
}
|
||||
else if (candidate.instruction.direction_modifier == DirectionModifier::Straight &&
|
||||
has_obvious_with_same_name)
|
||||
{
|
||||
if (candidate.angle < obvious_with_same_name_angle)
|
||||
candidate.instruction.direction_modifier = DirectionModifier::SlightRight;
|
||||
else
|
||||
candidate.instruction.direction_modifier = DirectionModifier::SlightLeft;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return turn_candidates;
|
||||
}
|
||||
|
||||
std::vector<EdgeBasedGraphFactory::TurnCandidate>
|
||||
EdgeBasedGraphFactory::getTurnCandidates(const NodeID from_node, const EdgeID via_eid)
|
||||
{
|
||||
std::vector<TurnCandidate> turn_candidates;
|
||||
const NodeID turn_node = m_node_based_graph->GetTarget(via_eid);
|
||||
const NodeID only_restriction_to_node =
|
||||
m_restriction_map->CheckForEmanatingIsOnlyTurn(from_node, turn_node);
|
||||
const bool is_barrier_node = m_barrier_nodes.find(turn_node) != m_barrier_nodes.end();
|
||||
|
||||
bool has_non_roundabout = false, has_roundabout_entry;
|
||||
for (const EdgeID onto_edge : m_node_based_graph->GetAdjacentEdgeRange(turn_node))
|
||||
{
|
||||
bool turn_is_valid = true;
|
||||
if (m_node_based_graph->GetEdgeData(onto_edge).reversed)
|
||||
{
|
||||
turn_is_valid = false;
|
||||
}
|
||||
const NodeID to_node = m_node_based_graph->GetTarget(onto_edge);
|
||||
|
||||
if (turn_is_valid && (only_restriction_to_node != SPECIAL_NODEID) &&
|
||||
(to_node != only_restriction_to_node))
|
||||
{
|
||||
// We are at an only_-restriction but not at the right turn.
|
||||
++restricted_turns_counter;
|
||||
turn_is_valid = false;
|
||||
}
|
||||
|
||||
if (turn_is_valid)
|
||||
{
|
||||
if (is_barrier_node)
|
||||
{
|
||||
if (from_node != to_node)
|
||||
{
|
||||
++skipped_barrier_turns_counter;
|
||||
turn_is_valid = false;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (from_node == to_node && m_node_based_graph->GetOutDegree(turn_node) > 1)
|
||||
{
|
||||
auto number_of_emmiting_bidirectional_edges = 0;
|
||||
for (auto edge : m_node_based_graph->GetAdjacentEdgeRange(turn_node))
|
||||
{
|
||||
auto target = m_node_based_graph->GetTarget(edge);
|
||||
auto reverse_edge = m_node_based_graph->FindEdge(target, turn_node);
|
||||
if (!m_node_based_graph->GetEdgeData(reverse_edge).reversed)
|
||||
{
|
||||
++number_of_emmiting_bidirectional_edges;
|
||||
}
|
||||
}
|
||||
if (number_of_emmiting_bidirectional_edges > 1)
|
||||
{
|
||||
++skipped_uturns_counter;
|
||||
turn_is_valid = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// only add an edge if turn is not a U-turn except when it is
|
||||
// at the end of a dead-end street
|
||||
if (m_restriction_map->CheckIfTurnIsRestricted(from_node, turn_node, to_node) &&
|
||||
(only_restriction_to_node == SPECIAL_NODEID) && (to_node != only_restriction_to_node))
|
||||
{
|
||||
// We are at an only_-restriction but not at the right turn.
|
||||
++restricted_turns_counter;
|
||||
turn_is_valid = false;
|
||||
}
|
||||
|
||||
// unpack first node of second segment if packed
|
||||
|
||||
const auto first_coordinate = getRepresentativeCoordinate(
|
||||
from_node, turn_node, via_eid, INVERT, m_compressed_edge_container, m_node_info_list);
|
||||
const auto third_coordinate = getRepresentativeCoordinate(
|
||||
turn_node, to_node, onto_edge, !INVERT, m_compressed_edge_container, m_node_info_list);
|
||||
|
||||
const auto angle = util::coordinate_calculation::computeAngle(
|
||||
first_coordinate, m_node_info_list[turn_node], third_coordinate);
|
||||
|
||||
const auto turn = AnalyzeTurn(from_node, via_eid, turn_node, onto_edge, to_node, angle);
|
||||
|
||||
if (turn_is_valid && !entersRoundabout(turn))
|
||||
has_non_roundabout = true;
|
||||
else if (turn_is_valid)
|
||||
has_roundabout_entry = true;
|
||||
|
||||
auto confidence = getTurnConfidence(angle, turn);
|
||||
if (!turn_is_valid)
|
||||
confidence *= 0.8; // makes invalid turns more likely to be resolved in conflicts
|
||||
|
||||
turn_candidates.push_back({onto_edge, turn_is_valid, angle, turn, confidence});
|
||||
}
|
||||
|
||||
if (has_non_roundabout && has_roundabout_entry)
|
||||
{
|
||||
for (auto &candidate : turn_candidates)
|
||||
{
|
||||
if (entersRoundabout(candidate.instruction))
|
||||
{
|
||||
if (candidate.instruction.type == TurnType::EnterRotary)
|
||||
candidate.instruction.type = TurnType::EnterRotaryAtExit;
|
||||
if (candidate.instruction.type == TurnType::EnterRoundabout)
|
||||
candidate.instruction.type = TurnType::EnterRoundaboutAtExit;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const auto ByAngle = [](const TurnCandidate &first, const TurnCandidate second)
|
||||
{
|
||||
return first.angle < second.angle;
|
||||
};
|
||||
std::sort(std::begin(turn_candidates), std::end(turn_candidates), ByAngle);
|
||||
|
||||
const auto getLeft = [&](std::size_t index)
|
||||
{
|
||||
return (index + 1) % turn_candidates.size();
|
||||
};
|
||||
|
||||
const auto getRight = [&](std::size_t index)
|
||||
{
|
||||
return (index + turn_candidates.size() - 1) % turn_candidates.size();
|
||||
};
|
||||
|
||||
const auto isInvalidEquivalent = [&](std::size_t this_turn, std::size_t valid_turn)
|
||||
{
|
||||
if (!turn_candidates[valid_turn].valid || turn_candidates[this_turn].valid)
|
||||
return false;
|
||||
|
||||
return angularDeviation(turn_candidates[this_turn].angle,
|
||||
turn_candidates[valid_turn].angle) < NARROW_TURN_ANGLE;
|
||||
};
|
||||
|
||||
for (std::size_t index = 0; index < turn_candidates.size(); ++index)
|
||||
{
|
||||
if (isInvalidEquivalent(index, getRight(index)) ||
|
||||
isInvalidEquivalent(index, getLeft(index)))
|
||||
{
|
||||
turn_candidates.erase(turn_candidates.begin() + index);
|
||||
--index;
|
||||
}
|
||||
}
|
||||
return turn_candidates;
|
||||
}
|
||||
|
||||
int EdgeBasedGraphFactory::GetTurnPenalty(double angle, lua_State *lua_state) const
|
||||
{
|
||||
|
||||
@ -1258,58 +531,5 @@ int EdgeBasedGraphFactory::GetTurnPenalty(double angle, lua_State *lua_state) co
|
||||
return 0;
|
||||
}
|
||||
|
||||
// node_u -- (edge_1) --> node_v -- (edge_2) --> node_w
|
||||
TurnInstruction EdgeBasedGraphFactory::AnalyzeTurn(const NodeID node_u,
|
||||
const EdgeID edge1,
|
||||
const NodeID node_v,
|
||||
const EdgeID edge2,
|
||||
const NodeID node_w,
|
||||
const double angle) const
|
||||
{
|
||||
|
||||
const EdgeData &data1 = m_node_based_graph->GetEdgeData(edge1);
|
||||
const EdgeData &data2 = m_node_based_graph->GetEdgeData(edge2);
|
||||
bool from_ramp = isRampClass(data1.road_classification.road_class);
|
||||
bool to_ramp = isRampClass(data2.road_classification.road_class);
|
||||
if (node_u == node_w)
|
||||
{
|
||||
return {TurnType::Turn, DirectionModifier::UTurn};
|
||||
}
|
||||
|
||||
// roundabouts need to be handled explicitely
|
||||
if (data1.roundabout && data2.roundabout)
|
||||
{
|
||||
// Is a turn possible? If yes, we stay on the roundabout!
|
||||
if (1 == m_node_based_graph->GetDirectedOutDegree(node_v))
|
||||
{
|
||||
// No turn possible.
|
||||
return TurnInstruction::NO_TURN();
|
||||
}
|
||||
return TurnInstruction::REMAIN_ROUNDABOUT(getTurnDirection(angle));
|
||||
}
|
||||
// Does turn start or end on roundabout?
|
||||
if (data1.roundabout || data2.roundabout)
|
||||
{
|
||||
// We are entering the roundabout
|
||||
if ((!data1.roundabout) && data2.roundabout)
|
||||
{
|
||||
return TurnInstruction::ENTER_ROUNDABOUT(getTurnDirection(angle));
|
||||
}
|
||||
// We are leaving the roundabout
|
||||
if (data1.roundabout && (!data2.roundabout))
|
||||
{
|
||||
return TurnInstruction::EXIT_ROUNDABOUT(getTurnDirection(angle));
|
||||
}
|
||||
}
|
||||
|
||||
if (!from_ramp && to_ramp)
|
||||
{
|
||||
return {TurnType::Ramp, getTurnDirection(angle)};
|
||||
}
|
||||
|
||||
// assign a designated turn angle instruction purely based on the angle
|
||||
return {TurnType::Turn, getTurnDirection(angle)};
|
||||
}
|
||||
|
||||
} // namespace extractor
|
||||
} // namespace osrm
|
||||
|
844
src/extractor/turn_analysis.cpp
Normal file
844
src/extractor/turn_analysis.cpp
Normal file
@ -0,0 +1,844 @@
|
||||
#include "extractor/turn_analysis.hpp"
|
||||
|
||||
namespace osrm
|
||||
{
|
||||
namespace extractor
|
||||
{
|
||||
|
||||
namespace turn_analysis
|
||||
{
|
||||
// configuration of turn classification
|
||||
const bool constexpr INVERT = true;
|
||||
const bool constexpr RESOLVE_TO_RIGHT = true;
|
||||
const bool constexpr RESOLVE_TO_LEFT = false;
|
||||
|
||||
// what angle is interpreted as going straight
|
||||
const double constexpr STRAIGHT_ANGLE = 180.;
|
||||
// if a turn deviates this much from going straight, it will be kept straight
|
||||
const double constexpr MAXIMAL_ALLOWED_NO_TURN_DEVIATION = 2.;
|
||||
// angle that lies between two nearly indistinguishable roads
|
||||
const double constexpr NARROW_TURN_ANGLE = 35.;
|
||||
// angle difference that can be classified as straight, if its the only narrow turn
|
||||
const double constexpr FUZZY_STRAIGHT_ANGLE = 15.;
|
||||
const double constexpr DISTINCTION_RATIO = 2;
|
||||
|
||||
using EdgeData = util::NodeBasedDynamicGraph::EdgeData;
|
||||
|
||||
using engine::guidance::TurnPossibility;
|
||||
using engine::guidance::TurnInstruction;
|
||||
using engine::guidance::DirectionModifier;
|
||||
using engine::guidance::TurnType;
|
||||
using engine::guidance::FunctionalRoadClass;
|
||||
|
||||
using engine::guidance::classifyIntersection;
|
||||
using engine::guidance::isLowPriorityRoadClass;
|
||||
using engine::guidance::angularDeviation;
|
||||
using engine::guidance::getTurnDirection;
|
||||
using engine::guidance::getRepresentativeCoordinate;
|
||||
using engine::guidance::isBasic;
|
||||
using engine::guidance::isRampClass;
|
||||
using engine::guidance::isUturn;
|
||||
using engine::guidance::isConflict;
|
||||
using engine::guidance::isSlightTurn;
|
||||
using engine::guidance::isSlightModifier;
|
||||
using engine::guidance::mirrorDirectionModifier;
|
||||
|
||||
std::vector<TurnCandidate>
|
||||
getTurns(const NodeID from,
|
||||
const EdgeID via_edge,
|
||||
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph,
|
||||
const std::vector<QueryNode> &node_info_list,
|
||||
const std::shared_ptr<RestrictionMap const> restriction_map,
|
||||
const std::unordered_set<NodeID> &barrier_nodes,
|
||||
const CompressedEdgeContainer &compressed_edge_container)
|
||||
{
|
||||
auto turn_candidates = turn_analysis::getTurnCandidates(
|
||||
from, via_edge, node_based_graph, node_info_list, restriction_map, barrier_nodes,
|
||||
compressed_edge_container);
|
||||
turn_candidates =
|
||||
turn_analysis::setTurnTypes(from, via_edge, std::move(turn_candidates), node_based_graph);
|
||||
#define PRINT_DEBUG_CANDIDATES 0
|
||||
#if PRINT_DEBUG_CANDIDATES
|
||||
std::cout << "Initial Candidates:\n";
|
||||
for (auto tc : turn_candidates)
|
||||
std::cout << "\t" << tc.toString() << " "
|
||||
<< (int)node_based_graph->GetEdgeData(tc.eid).road_classification.road_class
|
||||
<< std::endl;
|
||||
#endif
|
||||
turn_candidates = turn_analysis::optimizeCandidates(via_edge, std::move(turn_candidates),
|
||||
node_based_graph, node_info_list);
|
||||
#if PRINT_DEBUG_CANDIDATES
|
||||
std::cout << "Optimized Candidates:\n";
|
||||
for (auto tc : turn_candidates)
|
||||
std::cout << "\t" << tc.toString() << " "
|
||||
<< (int)node_based_graph->GetEdgeData(tc.eid).road_classification.road_class
|
||||
<< std::endl;
|
||||
#endif
|
||||
turn_candidates =
|
||||
turn_analysis::suppressTurns(via_edge, std::move(turn_candidates), node_based_graph);
|
||||
#if PRINT_DEBUG_CANDIDATES
|
||||
std::cout << "Suppressed Candidates:\n";
|
||||
for (auto tc : turn_candidates)
|
||||
std::cout << "\t" << tc.toString() << " "
|
||||
<< (int)node_based_graph->GetEdgeData(tc.eid).road_classification.road_class
|
||||
<< std::endl;
|
||||
#endif
|
||||
return turn_candidates;
|
||||
}
|
||||
|
||||
std::vector<TurnCandidate>
|
||||
setTurnTypes(const NodeID from,
|
||||
const EdgeID via_edge,
|
||||
std::vector<TurnCandidate> turn_candidates,
|
||||
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph)
|
||||
{
|
||||
NodeID turn_node = node_based_graph->GetTarget(via_edge);
|
||||
|
||||
bool has_non_roundabout = false, has_roundabout_entry = false;
|
||||
for (auto &candidate : turn_candidates)
|
||||
{
|
||||
const EdgeID onto_edge = candidate.eid;
|
||||
const NodeID to_node = node_based_graph->GetTarget(onto_edge);
|
||||
|
||||
const auto turn = AnalyzeTurn(from, via_edge, turn_node, onto_edge, to_node,
|
||||
candidate.angle, node_based_graph);
|
||||
|
||||
if (candidate.valid && !entersRoundabout(turn))
|
||||
has_non_roundabout = true;
|
||||
else if (candidate.valid)
|
||||
has_roundabout_entry = true;
|
||||
|
||||
auto confidence = getTurnConfidence(candidate.angle, turn);
|
||||
if (!candidate.valid)
|
||||
confidence *= 0.8; // makes invalid turns more likely to be resolved in conflicts
|
||||
candidate.instruction = turn;
|
||||
candidate.confidence = confidence;
|
||||
}
|
||||
|
||||
if (has_non_roundabout && has_roundabout_entry)
|
||||
{
|
||||
for (auto &candidate : turn_candidates)
|
||||
{
|
||||
if (entersRoundabout(candidate.instruction))
|
||||
{
|
||||
if (candidate.instruction.type == TurnType::EnterRotary)
|
||||
candidate.instruction.type = TurnType::EnterRotaryAtExit;
|
||||
if (candidate.instruction.type == TurnType::EnterRoundabout)
|
||||
candidate.instruction.type = TurnType::EnterRoundaboutAtExit;
|
||||
}
|
||||
}
|
||||
}
|
||||
return turn_candidates;
|
||||
}
|
||||
|
||||
std::vector<TurnCandidate>
|
||||
optimizeRamps(const EdgeID via_edge,
|
||||
std::vector<TurnCandidate> turn_candidates,
|
||||
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph)
|
||||
{
|
||||
EdgeID continue_eid = SPECIAL_EDGEID;
|
||||
double continue_angle = 0;
|
||||
const auto &in_edge_data = node_based_graph->GetEdgeData(via_edge);
|
||||
for (auto &candidate : turn_candidates)
|
||||
{
|
||||
if (candidate.instruction.direction_modifier == DirectionModifier::UTurn)
|
||||
continue;
|
||||
|
||||
const auto &out_edge_data = node_based_graph->GetEdgeData(candidate.eid);
|
||||
if (out_edge_data.name_id == in_edge_data.name_id)
|
||||
{
|
||||
continue_eid = candidate.eid;
|
||||
continue_angle = candidate.angle;
|
||||
if (angularDeviation(candidate.angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE &&
|
||||
isRampClass(in_edge_data.road_classification.road_class))
|
||||
candidate.instruction = TurnType::Suppressed;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (continue_eid != SPECIAL_EDGEID)
|
||||
{
|
||||
bool to_the_right = true;
|
||||
for (auto &candidate : turn_candidates)
|
||||
{
|
||||
if (candidate.eid == continue_eid)
|
||||
{
|
||||
to_the_right = false;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (candidate.instruction.type != TurnType::Ramp)
|
||||
continue;
|
||||
|
||||
if (isSlightModifier(candidate.instruction.direction_modifier))
|
||||
candidate.instruction.direction_modifier =
|
||||
(to_the_right) ? DirectionModifier::SlightRight : DirectionModifier::SlightLeft;
|
||||
}
|
||||
}
|
||||
return turn_candidates;
|
||||
}
|
||||
|
||||
TurnType checkForkAndEnd(const EdgeID via_eid,
|
||||
const std::vector<TurnCandidate> &turn_candidates,
|
||||
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph)
|
||||
{
|
||||
if (turn_candidates.size() != 3 ||
|
||||
turn_candidates.front().instruction.direction_modifier != DirectionModifier::UTurn)
|
||||
return TurnType::Invalid;
|
||||
|
||||
if (isOnRoundabout(turn_candidates[1].instruction))
|
||||
{
|
||||
BOOST_ASSERT(isOnRoundabout(turn_candidates[2].instruction));
|
||||
return TurnType::Invalid;
|
||||
}
|
||||
BOOST_ASSERT(!isOnRoundabout(turn_candidates[2].instruction));
|
||||
|
||||
FunctionalRoadClass road_classes[3] = {
|
||||
node_based_graph->GetEdgeData(via_eid).road_classification.road_class,
|
||||
node_based_graph->GetEdgeData(turn_candidates[1].eid).road_classification.road_class,
|
||||
node_based_graph->GetEdgeData(turn_candidates[2].eid).road_classification.road_class};
|
||||
|
||||
if (angularDeviation(turn_candidates[1].angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE &&
|
||||
angularDeviation(turn_candidates[2].angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE)
|
||||
{
|
||||
if (road_classes[0] != road_classes[1] || road_classes[1] != road_classes[2])
|
||||
return TurnType::Invalid;
|
||||
|
||||
if (turn_candidates[1].valid && turn_candidates[2].valid)
|
||||
return TurnType::Fork;
|
||||
}
|
||||
|
||||
else if (angularDeviation(turn_candidates[1].angle, 90) < NARROW_TURN_ANGLE &&
|
||||
angularDeviation(turn_candidates[2].angle, 270) < NARROW_TURN_ANGLE)
|
||||
{
|
||||
return TurnType::EndOfRoad;
|
||||
}
|
||||
|
||||
return TurnType::Invalid;
|
||||
}
|
||||
|
||||
std::vector<TurnCandidate> handleForkAndEnd(const TurnType type,
|
||||
std::vector<TurnCandidate> turn_candidates)
|
||||
{
|
||||
turn_candidates[1].instruction.type = type;
|
||||
turn_candidates[1].instruction.direction_modifier =
|
||||
(type == TurnType::Fork) ? DirectionModifier::SlightRight : DirectionModifier::Right;
|
||||
turn_candidates[2].instruction.type = type;
|
||||
turn_candidates[2].instruction.direction_modifier =
|
||||
(type == TurnType::Fork) ? DirectionModifier::SlightLeft : DirectionModifier::Left;
|
||||
return turn_candidates;
|
||||
}
|
||||
|
||||
// requires sorted candidates
|
||||
std::vector<TurnCandidate>
|
||||
optimizeCandidates(const EdgeID via_eid,
|
||||
std::vector<TurnCandidate> turn_candidates,
|
||||
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph,
|
||||
const std::vector<QueryNode> &node_info_list)
|
||||
{
|
||||
BOOST_ASSERT_MSG(std::is_sorted(turn_candidates.begin(), turn_candidates.end(),
|
||||
[](const TurnCandidate &left, const TurnCandidate &right)
|
||||
{
|
||||
return left.angle < right.angle;
|
||||
}),
|
||||
"Turn Candidates not sorted by angle.");
|
||||
if (turn_candidates.size() <= 1)
|
||||
return turn_candidates;
|
||||
|
||||
TurnType type = checkForkAndEnd(via_eid, turn_candidates, node_based_graph);
|
||||
if (type != TurnType::Invalid)
|
||||
return handleForkAndEnd(type, std::move(turn_candidates));
|
||||
|
||||
turn_candidates = optimizeRamps(via_eid, std::move(turn_candidates), node_based_graph);
|
||||
|
||||
const auto getLeft = [&turn_candidates](std::size_t index)
|
||||
{
|
||||
return (index + 1) % turn_candidates.size();
|
||||
};
|
||||
const auto getRight = [&turn_candidates](std::size_t index)
|
||||
{
|
||||
return (index + turn_candidates.size() - 1) % turn_candidates.size();
|
||||
};
|
||||
|
||||
// handle availability of multiple u-turns (e.g. street with separated small parking roads)
|
||||
if (isUturn(turn_candidates[0].instruction) && turn_candidates[0].angle == 0)
|
||||
{
|
||||
if (isUturn(turn_candidates[getLeft(0)].instruction))
|
||||
turn_candidates[getLeft(0)].instruction.direction_modifier =
|
||||
DirectionModifier::SharpLeft;
|
||||
if (isUturn(turn_candidates[getRight(0)].instruction))
|
||||
turn_candidates[getRight(0)].instruction.direction_modifier =
|
||||
DirectionModifier::SharpRight;
|
||||
}
|
||||
|
||||
const auto keepStraight = [](double angle)
|
||||
{
|
||||
return std::abs(angle - 180) < 5;
|
||||
};
|
||||
|
||||
for (std::size_t turn_index = 0; turn_index < turn_candidates.size(); ++turn_index)
|
||||
{
|
||||
auto &turn = turn_candidates[turn_index];
|
||||
if (!isBasic(turn.instruction.type) || isUturn(turn.instruction) ||
|
||||
isOnRoundabout(turn.instruction))
|
||||
continue;
|
||||
auto &left = turn_candidates[getLeft(turn_index)];
|
||||
if (turn.angle == left.angle)
|
||||
{
|
||||
util::SimpleLogger().Write(logDEBUG)
|
||||
<< "[warning] conflicting turn angles, identical road duplicated? "
|
||||
<< node_info_list[node_based_graph->GetTarget(via_eid)].lat << " "
|
||||
<< node_info_list[node_based_graph->GetTarget(via_eid)].lon << std::endl;
|
||||
}
|
||||
if (isConflict(turn.instruction, left.instruction))
|
||||
{
|
||||
// begin of a conflicting region
|
||||
std::size_t conflict_begin = turn_index;
|
||||
std::size_t conflict_end = getLeft(turn_index);
|
||||
std::size_t conflict_size = 2;
|
||||
while (
|
||||
isConflict(turn_candidates[getLeft(conflict_end)].instruction, turn.instruction) &&
|
||||
conflict_size < turn_candidates.size())
|
||||
{
|
||||
conflict_end = getLeft(conflict_end);
|
||||
++conflict_size;
|
||||
}
|
||||
|
||||
turn_index = (conflict_end < conflict_begin) ? turn_candidates.size() : conflict_end;
|
||||
|
||||
if (conflict_size > 3)
|
||||
{
|
||||
// check if some turns are invalid to find out about good handling
|
||||
}
|
||||
|
||||
auto &instruction_left_of_end = turn_candidates[getLeft(conflict_end)].instruction;
|
||||
auto &instruction_right_of_begin =
|
||||
turn_candidates[getRight(conflict_begin)].instruction;
|
||||
auto &candidate_at_end = turn_candidates[conflict_end];
|
||||
auto &candidate_at_begin = turn_candidates[conflict_begin];
|
||||
if (conflict_size == 2)
|
||||
{
|
||||
if (turn.instruction.direction_modifier == DirectionModifier::Straight)
|
||||
{
|
||||
if (instruction_left_of_end.direction_modifier !=
|
||||
DirectionModifier::SlightLeft &&
|
||||
instruction_right_of_begin.direction_modifier !=
|
||||
DirectionModifier::SlightRight)
|
||||
{
|
||||
std::int32_t resolved_count = 0;
|
||||
// uses side-effects in resolve
|
||||
if (!keepStraight(candidate_at_end.angle) &&
|
||||
!resolve(candidate_at_end.instruction, instruction_left_of_end,
|
||||
RESOLVE_TO_LEFT))
|
||||
util::SimpleLogger().Write(logDEBUG)
|
||||
<< "[warning] failed to resolve conflict";
|
||||
else
|
||||
++resolved_count;
|
||||
// uses side-effects in resolve
|
||||
if (!keepStraight(candidate_at_begin.angle) &&
|
||||
!resolve(candidate_at_begin.instruction, instruction_right_of_begin,
|
||||
RESOLVE_TO_RIGHT))
|
||||
util::SimpleLogger().Write(logDEBUG)
|
||||
<< "[warning] failed to resolve conflict";
|
||||
else
|
||||
++resolved_count;
|
||||
if (resolved_count >= 1 &&
|
||||
(!keepStraight(candidate_at_begin.angle) ||
|
||||
!keepStraight(candidate_at_end.angle))) // should always be the
|
||||
// case, theoretically
|
||||
continue;
|
||||
}
|
||||
}
|
||||
if (candidate_at_begin.confidence < candidate_at_end.confidence)
|
||||
{ // if right shift is cheaper, or only option
|
||||
if (resolve(candidate_at_begin.instruction, instruction_right_of_begin,
|
||||
RESOLVE_TO_RIGHT))
|
||||
continue;
|
||||
else if (resolve(candidate_at_end.instruction, instruction_left_of_end,
|
||||
RESOLVE_TO_LEFT))
|
||||
continue;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (resolve(candidate_at_end.instruction, instruction_left_of_end,
|
||||
RESOLVE_TO_LEFT))
|
||||
continue;
|
||||
else if (resolve(candidate_at_begin.instruction, instruction_right_of_begin,
|
||||
RESOLVE_TO_RIGHT))
|
||||
continue;
|
||||
}
|
||||
if (isSlightTurn(turn.instruction) || isSharpTurn(turn.instruction))
|
||||
{
|
||||
auto resolve_direction =
|
||||
(turn.instruction.direction_modifier == DirectionModifier::SlightRight ||
|
||||
turn.instruction.direction_modifier == DirectionModifier::SharpLeft)
|
||||
? RESOLVE_TO_RIGHT
|
||||
: RESOLVE_TO_LEFT;
|
||||
if (resolve_direction == RESOLVE_TO_RIGHT &&
|
||||
resolveTransitive(
|
||||
candidate_at_begin.instruction, instruction_right_of_begin,
|
||||
turn_candidates[getRight(getRight(conflict_begin))].instruction,
|
||||
RESOLVE_TO_RIGHT))
|
||||
continue;
|
||||
else if (resolve_direction == RESOLVE_TO_LEFT &&
|
||||
resolveTransitive(
|
||||
candidate_at_end.instruction, instruction_left_of_end,
|
||||
turn_candidates[getLeft(getLeft(conflict_end))].instruction,
|
||||
RESOLVE_TO_LEFT))
|
||||
continue;
|
||||
}
|
||||
}
|
||||
else if (conflict_size >= 3)
|
||||
{
|
||||
// a conflict of size larger than three cannot be handled with the current
|
||||
// model.
|
||||
// Handle it as best as possible and keep the rest of the conflicting turns
|
||||
if (conflict_size > 3)
|
||||
{
|
||||
NodeID conflict_location = node_based_graph->GetTarget(via_eid);
|
||||
util::SimpleLogger().Write(logDEBUG)
|
||||
<< "[warning] found conflict larget than size three at "
|
||||
<< node_info_list[conflict_location].lat << ", "
|
||||
<< node_info_list[conflict_location].lon;
|
||||
}
|
||||
|
||||
if (!resolve(candidate_at_begin.instruction, instruction_right_of_begin,
|
||||
RESOLVE_TO_RIGHT))
|
||||
{
|
||||
if (isSlightTurn(turn.instruction))
|
||||
resolveTransitive(
|
||||
candidate_at_begin.instruction, instruction_right_of_begin,
|
||||
turn_candidates[getRight(getRight(conflict_begin))].instruction,
|
||||
RESOLVE_TO_RIGHT);
|
||||
else if (isSharpTurn(turn.instruction))
|
||||
resolveTransitive(
|
||||
candidate_at_end.instruction, instruction_left_of_end,
|
||||
turn_candidates[getLeft(getLeft(conflict_end))].instruction,
|
||||
RESOLVE_TO_LEFT);
|
||||
}
|
||||
if (!resolve(candidate_at_end.instruction, instruction_left_of_end,
|
||||
RESOLVE_TO_LEFT))
|
||||
{
|
||||
if (isSlightTurn(turn.instruction))
|
||||
resolveTransitive(
|
||||
candidate_at_end.instruction, instruction_left_of_end,
|
||||
turn_candidates[getLeft(getLeft(conflict_end))].instruction,
|
||||
RESOLVE_TO_LEFT);
|
||||
else if (isSharpTurn(turn.instruction))
|
||||
resolveTransitive(
|
||||
candidate_at_begin.instruction, instruction_right_of_begin,
|
||||
turn_candidates[getRight(getRight(conflict_begin))].instruction,
|
||||
RESOLVE_TO_RIGHT);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return turn_candidates;
|
||||
}
|
||||
|
||||
bool isObviousChoice(const EdgeID via_eid,
|
||||
const std::size_t turn_index,
|
||||
const std::vector<TurnCandidate> &turn_candidates,
|
||||
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph)
|
||||
{
|
||||
const auto getLeft = [&turn_candidates](std::size_t index)
|
||||
{
|
||||
return (index + 1) % turn_candidates.size();
|
||||
};
|
||||
const auto getRight = [&turn_candidates](std::size_t index)
|
||||
{
|
||||
return (index + turn_candidates.size() - 1) % turn_candidates.size();
|
||||
};
|
||||
const auto &candidate = turn_candidates[turn_index];
|
||||
const EdgeData &in_data = node_based_graph->GetEdgeData(via_eid);
|
||||
const EdgeData &out_data = node_based_graph->GetEdgeData(candidate.eid);
|
||||
const auto &candidate_to_the_left = turn_candidates[getLeft(turn_index)];
|
||||
|
||||
const auto &candidate_to_the_right = turn_candidates[getRight(turn_index)];
|
||||
|
||||
const auto hasValidRatio = [&](const TurnCandidate &left, const TurnCandidate ¢er,
|
||||
const TurnCandidate &right)
|
||||
{
|
||||
auto angle_left = (left.angle > 180) ? angularDeviation(left.angle, STRAIGHT_ANGLE) : 180;
|
||||
auto angle_right =
|
||||
(right.angle < 180) ? angularDeviation(right.angle, STRAIGHT_ANGLE) : 180;
|
||||
auto self_angle = angularDeviation(center.angle, STRAIGHT_ANGLE);
|
||||
return angularDeviation(center.angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE &&
|
||||
((center.angle < STRAIGHT_ANGLE)
|
||||
? (angle_right > self_angle && angle_left / self_angle > DISTINCTION_RATIO)
|
||||
: (angle_left > self_angle && angle_right / self_angle > DISTINCTION_RATIO));
|
||||
};
|
||||
// only valid turn
|
||||
if (!isLowPriorityRoadClass(
|
||||
node_based_graph->GetEdgeData(candidate.eid).road_classification.road_class))
|
||||
{
|
||||
bool is_only_normal_road = true;
|
||||
BOOST_ASSERT(turn_candidates[0].instruction.type == TurnType::Turn &&
|
||||
turn_candidates[0].instruction.direction_modifier == DirectionModifier::UTurn);
|
||||
for (size_t i = 0; i < turn_candidates.size(); ++i)
|
||||
{
|
||||
if (i == turn_index || turn_candidates[i].angle == 0) // skip self and u-turn
|
||||
continue;
|
||||
if (!isLowPriorityRoadClass(node_based_graph->GetEdgeData(turn_candidates[i].eid)
|
||||
.road_classification.road_class))
|
||||
{
|
||||
is_only_normal_road = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (is_only_normal_road == true)
|
||||
return true;
|
||||
}
|
||||
|
||||
return turn_candidates.size() == 1 ||
|
||||
// only non u-turn
|
||||
(turn_candidates.size() == 2 &&
|
||||
isUturn(candidate_to_the_left.instruction)) || // nearly straight turn
|
||||
angularDeviation(candidate.angle, STRAIGHT_ANGLE) < MAXIMAL_ALLOWED_NO_TURN_DEVIATION ||
|
||||
hasValidRatio(candidate_to_the_left, candidate, candidate_to_the_right) ||
|
||||
(in_data.name_id != 0 && in_data.name_id == out_data.name_id &&
|
||||
angularDeviation(candidate.angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE / 2);
|
||||
}
|
||||
|
||||
std::vector<TurnCandidate>
|
||||
suppressTurns(const EdgeID via_eid,
|
||||
std::vector<TurnCandidate> turn_candidates,
|
||||
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph)
|
||||
{
|
||||
if (turn_candidates.size() == 3)
|
||||
{
|
||||
BOOST_ASSERT(turn_candidates[0].instruction.direction_modifier ==
|
||||
DirectionModifier::UTurn);
|
||||
if (isLowPriorityRoadClass(node_based_graph->GetEdgeData(turn_candidates[1].eid)
|
||||
.road_classification.road_class) &&
|
||||
!isLowPriorityRoadClass(node_based_graph->GetEdgeData(turn_candidates[2].eid)
|
||||
.road_classification.road_class))
|
||||
{
|
||||
if (angularDeviation(turn_candidates[2].angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE)
|
||||
{
|
||||
if (node_based_graph->GetEdgeData(turn_candidates[2].eid).name_id ==
|
||||
node_based_graph->GetEdgeData(via_eid).name_id)
|
||||
{
|
||||
turn_candidates[2].instruction = TurnInstruction::NO_TURN();
|
||||
}
|
||||
else
|
||||
{
|
||||
turn_candidates[2].instruction.type = TurnType::NewName;
|
||||
}
|
||||
return turn_candidates;
|
||||
}
|
||||
}
|
||||
else if (isLowPriorityRoadClass(node_based_graph->GetEdgeData(turn_candidates[2].eid)
|
||||
.road_classification.road_class) &&
|
||||
!isLowPriorityRoadClass(node_based_graph->GetEdgeData(turn_candidates[1].eid)
|
||||
.road_classification.road_class))
|
||||
{
|
||||
if (angularDeviation(turn_candidates[1].angle, STRAIGHT_ANGLE) < NARROW_TURN_ANGLE)
|
||||
{
|
||||
if (node_based_graph->GetEdgeData(turn_candidates[1].eid).name_id ==
|
||||
node_based_graph->GetEdgeData(via_eid).name_id)
|
||||
{
|
||||
turn_candidates[1].instruction = TurnInstruction::NO_TURN();
|
||||
}
|
||||
else
|
||||
{
|
||||
turn_candidates[1].instruction.type = TurnType::NewName;
|
||||
}
|
||||
return turn_candidates;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
BOOST_ASSERT_MSG(std::is_sorted(turn_candidates.begin(), turn_candidates.end(),
|
||||
[](const TurnCandidate &left, const TurnCandidate &right)
|
||||
{
|
||||
return left.angle < right.angle;
|
||||
}),
|
||||
"Turn Candidates not sorted by angle.");
|
||||
|
||||
const auto getLeft = [&turn_candidates](std::size_t index)
|
||||
{
|
||||
return (index + 1) % turn_candidates.size();
|
||||
};
|
||||
const auto getRight = [&turn_candidates](std::size_t index)
|
||||
{
|
||||
return (index + turn_candidates.size() - 1) % turn_candidates.size();
|
||||
};
|
||||
|
||||
const EdgeData &in_data = node_based_graph->GetEdgeData(via_eid);
|
||||
|
||||
bool has_obvious_with_same_name = false;
|
||||
double obvious_with_same_name_angle = 0;
|
||||
for (std::size_t turn_index = 0; turn_index < turn_candidates.size(); ++turn_index)
|
||||
{
|
||||
if (node_based_graph->GetEdgeData(turn_candidates[turn_index].eid).name_id ==
|
||||
in_data.name_id &&
|
||||
isObviousChoice(via_eid, turn_index, turn_candidates, node_based_graph))
|
||||
{
|
||||
has_obvious_with_same_name = true;
|
||||
obvious_with_same_name_angle = turn_candidates[turn_index].angle;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
for (std::size_t turn_index = 0; turn_index < turn_candidates.size(); ++turn_index)
|
||||
{
|
||||
auto &candidate = turn_candidates[turn_index];
|
||||
if (!isBasic(candidate.instruction.type))
|
||||
continue;
|
||||
|
||||
const EdgeData &out_data = node_based_graph->GetEdgeData(candidate.eid);
|
||||
if (out_data.name_id == in_data.name_id && in_data.name_id != 0 &&
|
||||
candidate.instruction.direction_modifier != DirectionModifier::UTurn &&
|
||||
!has_obvious_with_same_name)
|
||||
{
|
||||
candidate.instruction.type = TurnType::Continue;
|
||||
}
|
||||
if (candidate.valid && !isUturn(candidate.instruction))
|
||||
{
|
||||
// TODO road category would be useful to indicate obviousness of turn
|
||||
// check if turn can be omitted or at least changed
|
||||
const auto &left = turn_candidates[getLeft(turn_index)];
|
||||
const auto &right = turn_candidates[getRight(turn_index)];
|
||||
|
||||
// make very slight instructions straight, if they are the only valid choice going
|
||||
// with
|
||||
// at most a slight turn
|
||||
if ((!isSlightModifier(getTurnDirection(left.angle)) || !left.valid) &&
|
||||
(!isSlightModifier(getTurnDirection(right.angle)) || !right.valid) &&
|
||||
angularDeviation(candidate.angle, STRAIGHT_ANGLE) < FUZZY_STRAIGHT_ANGLE)
|
||||
candidate.instruction.direction_modifier = DirectionModifier::Straight;
|
||||
|
||||
// TODO this smaller comparison for turns is DANGEROUS, has to be revised if turn
|
||||
// instructions change
|
||||
if (in_data.travel_mode ==
|
||||
out_data.travel_mode) // make sure to always announce mode changes
|
||||
{
|
||||
if (isObviousChoice(via_eid, turn_index, turn_candidates, node_based_graph))
|
||||
{
|
||||
|
||||
if (in_data.name_id == out_data.name_id) // same road
|
||||
{
|
||||
candidate.instruction.type = TurnType::Suppressed;
|
||||
}
|
||||
|
||||
else if (!has_obvious_with_same_name)
|
||||
{
|
||||
// TODO discuss, we might want to keep the current name of the turn. But
|
||||
// this would mean emitting a turn when you just keep on a road
|
||||
if (isRampClass(in_data.road_classification.road_class) &&
|
||||
!isRampClass(out_data.road_classification.road_class))
|
||||
{
|
||||
candidate.instruction.type = TurnType::Merge;
|
||||
candidate.instruction.direction_modifier =
|
||||
mirrorDirectionModifier(candidate.instruction.direction_modifier);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (engine::guidance::canBeSuppressed(candidate.instruction.type))
|
||||
candidate.instruction.type = TurnType::NewName;
|
||||
}
|
||||
}
|
||||
else if (candidate.angle < obvious_with_same_name_angle)
|
||||
candidate.instruction.direction_modifier = DirectionModifier::SlightRight;
|
||||
else
|
||||
candidate.instruction.direction_modifier = DirectionModifier::SlightLeft;
|
||||
}
|
||||
else if (candidate.instruction.direction_modifier == DirectionModifier::Straight &&
|
||||
has_obvious_with_same_name)
|
||||
{
|
||||
if (candidate.angle < obvious_with_same_name_angle)
|
||||
candidate.instruction.direction_modifier = DirectionModifier::SlightRight;
|
||||
else
|
||||
candidate.instruction.direction_modifier = DirectionModifier::SlightLeft;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return turn_candidates;
|
||||
}
|
||||
|
||||
std::vector<TurnCandidate>
|
||||
getTurnCandidates(const NodeID from_node,
|
||||
const EdgeID via_eid,
|
||||
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph,
|
||||
const std::vector<QueryNode> &node_info_list,
|
||||
const std::shared_ptr<RestrictionMap const> restriction_map,
|
||||
const std::unordered_set<NodeID> &barrier_nodes,
|
||||
const CompressedEdgeContainer &compressed_edge_container)
|
||||
{
|
||||
std::vector<TurnCandidate> turn_candidates;
|
||||
const NodeID turn_node = node_based_graph->GetTarget(via_eid);
|
||||
const NodeID only_restriction_to_node =
|
||||
restriction_map->CheckForEmanatingIsOnlyTurn(from_node, turn_node);
|
||||
const bool is_barrier_node = barrier_nodes.find(turn_node) != barrier_nodes.end();
|
||||
|
||||
for (const EdgeID onto_edge : node_based_graph->GetAdjacentEdgeRange(turn_node))
|
||||
{
|
||||
bool turn_is_valid = true;
|
||||
if (node_based_graph->GetEdgeData(onto_edge).reversed)
|
||||
{
|
||||
turn_is_valid = false;
|
||||
}
|
||||
const NodeID to_node = node_based_graph->GetTarget(onto_edge);
|
||||
|
||||
if (turn_is_valid && (only_restriction_to_node != SPECIAL_NODEID) &&
|
||||
(to_node != only_restriction_to_node))
|
||||
{
|
||||
// We are at an only_-restriction but not at the right turn.
|
||||
// ++restricted_turns_counter;
|
||||
turn_is_valid = false;
|
||||
}
|
||||
|
||||
if (turn_is_valid)
|
||||
{
|
||||
if (is_barrier_node)
|
||||
{
|
||||
if (from_node != to_node)
|
||||
{
|
||||
// ++skipped_barrier_turns_counter;
|
||||
turn_is_valid = false;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (from_node == to_node && node_based_graph->GetOutDegree(turn_node) > 1)
|
||||
{
|
||||
auto number_of_emmiting_bidirectional_edges = 0;
|
||||
for (auto edge : node_based_graph->GetAdjacentEdgeRange(turn_node))
|
||||
{
|
||||
auto target = node_based_graph->GetTarget(edge);
|
||||
auto reverse_edge = node_based_graph->FindEdge(target, turn_node);
|
||||
if (!node_based_graph->GetEdgeData(reverse_edge).reversed)
|
||||
{
|
||||
++number_of_emmiting_bidirectional_edges;
|
||||
}
|
||||
}
|
||||
if (number_of_emmiting_bidirectional_edges > 1)
|
||||
{
|
||||
// ++skipped_uturns_counter;
|
||||
turn_is_valid = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// only add an edge if turn is not a U-turn except when it is
|
||||
// at the end of a dead-end street
|
||||
if (restriction_map->CheckIfTurnIsRestricted(from_node, turn_node, to_node) &&
|
||||
(only_restriction_to_node == SPECIAL_NODEID) && (to_node != only_restriction_to_node))
|
||||
{
|
||||
// We are at an only_-restriction but not at the right turn.
|
||||
// ++restricted_turns_counter;
|
||||
turn_is_valid = false;
|
||||
}
|
||||
|
||||
// unpack first node of second segment if packed
|
||||
|
||||
const auto first_coordinate = getRepresentativeCoordinate(
|
||||
from_node, turn_node, via_eid, INVERT, compressed_edge_container, node_info_list);
|
||||
const auto third_coordinate = getRepresentativeCoordinate(
|
||||
turn_node, to_node, onto_edge, !INVERT, compressed_edge_container, node_info_list);
|
||||
|
||||
const auto angle = util::coordinate_calculation::computeAngle(
|
||||
first_coordinate, node_info_list[turn_node], third_coordinate);
|
||||
|
||||
turn_candidates.push_back(
|
||||
{onto_edge, turn_is_valid, angle, {TurnType::Invalid, DirectionModifier::UTurn}, 0});
|
||||
}
|
||||
|
||||
const auto ByAngle = [](const TurnCandidate &first, const TurnCandidate second)
|
||||
{
|
||||
return first.angle < second.angle;
|
||||
};
|
||||
std::sort(std::begin(turn_candidates), std::end(turn_candidates), ByAngle);
|
||||
|
||||
const auto getLeft = [&](std::size_t index)
|
||||
{
|
||||
return (index + 1) % turn_candidates.size();
|
||||
};
|
||||
|
||||
const auto getRight = [&](std::size_t index)
|
||||
{
|
||||
return (index + turn_candidates.size() - 1) % turn_candidates.size();
|
||||
};
|
||||
|
||||
const auto isInvalidEquivalent = [&](std::size_t this_turn, std::size_t valid_turn)
|
||||
{
|
||||
if (!turn_candidates[valid_turn].valid || turn_candidates[this_turn].valid)
|
||||
return false;
|
||||
|
||||
return angularDeviation(turn_candidates[this_turn].angle,
|
||||
turn_candidates[valid_turn].angle) < NARROW_TURN_ANGLE;
|
||||
};
|
||||
|
||||
for (std::size_t index = 0; index < turn_candidates.size(); ++index)
|
||||
{
|
||||
if (isInvalidEquivalent(index, getRight(index)) ||
|
||||
isInvalidEquivalent(index, getLeft(index)))
|
||||
{
|
||||
turn_candidates.erase(turn_candidates.begin() + index);
|
||||
--index;
|
||||
}
|
||||
}
|
||||
return turn_candidates;
|
||||
}
|
||||
|
||||
// node_u -- (edge_1) --> node_v -- (edge_2) --> node_w
|
||||
TurnInstruction
|
||||
AnalyzeTurn(const NodeID node_u,
|
||||
const EdgeID edge1,
|
||||
const NodeID node_v,
|
||||
const EdgeID edge2,
|
||||
const NodeID node_w,
|
||||
const double angle,
|
||||
const std::shared_ptr<const util::NodeBasedDynamicGraph> node_based_graph)
|
||||
{
|
||||
|
||||
const EdgeData &data1 = node_based_graph->GetEdgeData(edge1);
|
||||
const EdgeData &data2 = node_based_graph->GetEdgeData(edge2);
|
||||
bool from_ramp = isRampClass(data1.road_classification.road_class);
|
||||
bool to_ramp = isRampClass(data2.road_classification.road_class);
|
||||
if (node_u == node_w)
|
||||
{
|
||||
return {TurnType::Turn, DirectionModifier::UTurn};
|
||||
}
|
||||
|
||||
// roundabouts need to be handled explicitely
|
||||
if (data1.roundabout && data2.roundabout)
|
||||
{
|
||||
// Is a turn possible? If yes, we stay on the roundabout!
|
||||
if (1 == node_based_graph->GetDirectedOutDegree(node_v))
|
||||
{
|
||||
// No turn possible.
|
||||
return TurnInstruction::NO_TURN();
|
||||
}
|
||||
return TurnInstruction::REMAIN_ROUNDABOUT(getTurnDirection(angle));
|
||||
}
|
||||
// Does turn start or end on roundabout?
|
||||
if (data1.roundabout || data2.roundabout)
|
||||
{
|
||||
// We are entering the roundabout
|
||||
if ((!data1.roundabout) && data2.roundabout)
|
||||
{
|
||||
return TurnInstruction::ENTER_ROUNDABOUT(getTurnDirection(angle));
|
||||
}
|
||||
// We are leaving the roundabout
|
||||
if (data1.roundabout && (!data2.roundabout))
|
||||
{
|
||||
return TurnInstruction::EXIT_ROUNDABOUT(getTurnDirection(angle));
|
||||
}
|
||||
}
|
||||
|
||||
if (!from_ramp && to_ramp)
|
||||
{
|
||||
return {TurnType::Ramp, getTurnDirection(angle)};
|
||||
}
|
||||
|
||||
// assign a designated turn angle instruction purely based on the angle
|
||||
return {TurnType::Turn, getTurnDirection(angle)};
|
||||
}
|
||||
|
||||
} // namespace turn_analysis
|
||||
} // namespace extractor
|
||||
} // namespace osrm
|
Loading…
Reference in New Issue
Block a user