osrm-backend/src/engine/plugins/tile.cpp

453 lines
19 KiB
C++
Raw Normal View History

#include "engine/plugins/plugin_base.hpp"
#include "engine/plugins/tile.hpp"
2016-03-16 16:54:29 -04:00
#include "util/coordinate_calculation.hpp"
#include <boost/geometry.hpp>
#include <boost/geometry/geometries/point_xy.hpp>
#include <boost/geometry/geometries/geometries.hpp>
#include <protozero/varint.hpp>
#include <protozero/pbf_writer.hpp>
#include <string>
#include <vector>
#include <utility>
#include <cmath>
#include <cstdint>
namespace osrm
{
namespace engine
{
namespace plugins
{
2016-03-16 16:54:29 -04:00
namespace detail
{
2016-03-16 16:54:29 -04:00
// Vector tiles are 4096 virtual pixels on each side
const constexpr double VECTOR_TILE_EXTENT = 4096.0;
const constexpr double VECTOR_TILE_BUFFER = 128.0;
2016-03-16 16:54:29 -04:00
// Simple container class for WSG84 coordinates
template <typename T> struct Point final
{
2016-03-16 16:54:29 -04:00
Point(T _x, T _y) : x(_x), y(_y) {}
2016-03-16 16:54:29 -04:00
const T x;
const T y;
};
2016-03-16 16:54:29 -04:00
// from mapnik-vector-tile
namespace pbf
{
2016-03-16 16:54:29 -04:00
inline unsigned encode_length(const unsigned len) { return (len << 3u) | 2u; }
}
2016-03-16 16:54:29 -04:00
struct BBox final
{
2016-03-16 16:54:29 -04:00
BBox(const double _minx, const double _miny, const double _maxx, const double _maxy)
: minx(_minx), miny(_miny), maxx(_maxx), maxy(_maxy)
{
}
double width() const { return maxx - minx; }
double height() const { return maxy - miny; }
const double minx;
const double miny;
const double maxx;
const double maxy;
};
// Simple container for integer coordinates (i.e. pixel coords)
struct point_type_i final
{
point_type_i(std::int64_t _x, std::int64_t _y) : x(_x), y(_y) {}
const std::int64_t x;
const std::int64_t y;
};
2016-03-16 16:54:29 -04:00
using FixedLine = std::vector<detail::Point<std::int32_t>>;
using FloatLine = std::vector<detail::Point<double>>;
typedef boost::geometry::model::point<double, 2, boost::geometry::cs::cartesian> point_t;
typedef boost::geometry::model::linestring<point_t> linestring_t;
typedef boost::geometry::model::box<point_t> box_t;
typedef boost::geometry::model::multi_linestring<linestring_t> multi_linestring_t;
const static box_t clip_box({-detail::VECTOR_TILE_BUFFER, -detail::VECTOR_TILE_BUFFER},
{detail::VECTOR_TILE_EXTENT + detail::VECTOR_TILE_BUFFER,
detail::VECTOR_TILE_EXTENT + detail::VECTOR_TILE_BUFFER});
// from mapnik-vector-tile
// Encodes a linestring using protobuf zigzag encoding
2016-03-18 16:57:36 -04:00
inline bool encodeLinestring(const FixedLine &line,
2016-03-16 16:54:29 -04:00
protozero::packed_field_uint32 &geometry,
std::int32_t &start_x,
std::int32_t &start_y)
{
const std::size_t line_size = line.size();
if (line_size < 2)
{
return false;
}
const unsigned line_to_length = static_cast<const unsigned>(line_size) - 1;
auto pt = line.begin();
geometry.add_element(9); // move_to | (1 << 3)
geometry.add_element(protozero::encode_zigzag32(pt->x - start_x));
geometry.add_element(protozero::encode_zigzag32(pt->y - start_y));
start_x = pt->x;
start_y = pt->y;
2016-03-16 16:54:29 -04:00
geometry.add_element(detail::pbf::encode_length(line_to_length));
for (++pt; pt != line.end(); ++pt)
{
const std::int32_t dx = pt->x - start_x;
const std::int32_t dy = pt->y - start_y;
geometry.add_element(protozero::encode_zigzag32(dx));
geometry.add_element(protozero::encode_zigzag32(dy));
start_x = pt->x;
start_y = pt->y;
}
return true;
}
2016-03-16 16:54:29 -04:00
FixedLine coordinatesToTileLine(const util::Coordinate start,
const util::Coordinate target,
const detail::BBox &tile_bbox)
{
2016-03-16 16:54:29 -04:00
using namespace util::coordinate_calculation;
FloatLine geo_line;
geo_line.emplace_back(static_cast<double>(util::toFloating(start.lon)),
static_cast<double>(util::toFloating(start.lat)));
geo_line.emplace_back(static_cast<double>(util::toFloating(target.lon)),
static_cast<double>(util::toFloating(target.lat)));
linestring_t unclipped_line;
2016-03-16 16:54:29 -04:00
for (auto const &pt : geo_line)
{
double px_merc = pt.x * mercator::DEGREE_TO_PX;
double py_merc = mercator::latToY(util::FloatLatitude(pt.y)) * mercator::DEGREE_TO_PX;
// convert lon/lat to tile coordinates
const auto px = std::round(
((px_merc - tile_bbox.minx) * mercator::TILE_SIZE / tile_bbox.width()) *
detail::VECTOR_TILE_EXTENT / util::coordinate_calculation::mercator::TILE_SIZE);
const auto py = std::round(
((tile_bbox.maxy - py_merc) * mercator::TILE_SIZE / tile_bbox.height()) *
detail::VECTOR_TILE_EXTENT / util::coordinate_calculation::mercator::TILE_SIZE);
boost::geometry::append(unclipped_line, point_t(px, py));
2016-03-16 16:54:29 -04:00
}
multi_linestring_t clipped_line;
boost::geometry::intersection(clip_box, unclipped_line, clipped_line);
FixedLine tile_line;
// b::g::intersection might return a line with one point if the
// original line was very short and coords were dupes
if (!clipped_line.empty() && clipped_line[0].size() == 2)
{
if (clipped_line[0].size() == 2)
{
for (const auto &p : clipped_line[0])
{
tile_line.emplace_back(p.get<0>(), p.get<1>());
}
}
}
2016-03-16 16:54:29 -04:00
return tile_line;
}
}
2016-03-16 16:54:29 -04:00
Status TilePlugin::HandleRequest(const api::TileParameters &parameters, std::string &pbf_buffer)
{
using namespace util::coordinate_calculation;
double min_lon, min_lat, max_lon, max_lat;
// Convert the z,x,y mercator tile coordinates into WSG84 lon/lat values
2016-03-16 16:54:29 -04:00
mercator::xyzToWSG84(parameters.x, parameters.y, parameters.z, min_lon, min_lat, max_lon,
max_lat);
util::Coordinate southwest{util::FloatLongitude(min_lon), util::FloatLatitude(min_lat)};
util::Coordinate northeast{util::FloatLongitude(max_lon), util::FloatLatitude(max_lat)};
// Fetch all the segments that are in our bounding box.
// This hits the OSRM StaticRTree
const auto edges = facade.GetEdgesInBox(southwest, northeast);
2016-03-18 16:57:36 -04:00
std::vector<int> used_weights;
std::unordered_map<int, std::size_t> weight_offsets;
uint8_t max_datasource_id = 0;
// Loop over all edges once to tally up all the attributes we'll need.
// We need to do this so that we know the attribute offsets to use
// when we encode each feature in the tile.
for (const auto &edge : edges)
{
int forward_weight = 0, reverse_weight = 0;
uint8_t forward_datasource = 0;
uint8_t reverse_datasource = 0;
if (edge.forward_packed_geometry_id != SPECIAL_EDGEID)
{
std::vector<EdgeWeight> forward_weight_vector;
facade.GetUncompressedWeights(edge.forward_packed_geometry_id, forward_weight_vector);
forward_weight = forward_weight_vector[edge.fwd_segment_position];
std::vector<uint8_t> forward_datasource_vector;
facade.GetUncompressedDatasources(edge.forward_packed_geometry_id,
forward_datasource_vector);
forward_datasource = forward_datasource_vector[edge.fwd_segment_position];
if (weight_offsets.find(forward_weight) == weight_offsets.end())
{
used_weights.push_back(forward_weight);
weight_offsets[forward_weight] = used_weights.size() - 1;
}
}
if (edge.reverse_packed_geometry_id != SPECIAL_EDGEID)
{
std::vector<EdgeWeight> reverse_weight_vector;
facade.GetUncompressedWeights(edge.reverse_packed_geometry_id, reverse_weight_vector);
BOOST_ASSERT(edge.fwd_segment_position < reverse_weight_vector.size());
reverse_weight =
reverse_weight_vector[reverse_weight_vector.size() - edge.fwd_segment_position - 1];
if (weight_offsets.find(reverse_weight) == weight_offsets.end())
{
used_weights.push_back(reverse_weight);
weight_offsets[reverse_weight] = used_weights.size() - 1;
}
std::vector<uint8_t> reverse_datasource_vector;
facade.GetUncompressedDatasources(edge.reverse_packed_geometry_id,
reverse_datasource_vector);
reverse_datasource = reverse_datasource_vector[reverse_datasource_vector.size() -
edge.fwd_segment_position - 1];
}
// Keep track of the highest datasource seen so that we don't write unnecessary
// data to the layer attribute values
max_datasource_id = std::max(max_datasource_id, forward_datasource);
max_datasource_id = std::max(max_datasource_id, reverse_datasource);
}
// TODO: extract speed values for compressed and uncompressed geometries
// Convert tile coordinates into mercator coordinates
2016-03-16 16:54:29 -04:00
mercator::xyzToMercator(parameters.x, parameters.y, parameters.z, min_lon, min_lat, max_lon,
max_lat);
const detail::BBox tile_bbox{min_lon, min_lat, max_lon, max_lat};
// Protobuf serialized blocks when objects go out of scope, hence
// the extra scoping below.
protozero::pbf_writer tile_writer{pbf_buffer};
{
// Add a layer object to the PBF stream. 3=='layer' from the vector tile spec (2.1)
protozero::pbf_writer layer_writer(tile_writer, 3);
// TODO: don't write a layer if there are no features
layer_writer.add_uint32(15, 2); // version
// Field 1 is the "layer name" field, it's a string
layer_writer.add_string(1, "speeds"); // name
// Field 5 is the tile extent. It's a uint32 and should be set to 4096
// for normal vector tiles.
layer_writer.add_uint32(5, 4096); // extent
// Begin the layer features block
{
// Each feature gets a unique id, starting at 1
unsigned id = 1;
for (const auto &edge : edges)
{
// Get coordinates for start/end nodes of segmet (NodeIDs u and v)
const auto a = facade.GetCoordinateOfNode(edge.u);
const auto b = facade.GetCoordinateOfNode(edge.v);
// Calculate the length in meters
const double length = osrm::util::coordinate_calculation::haversineDistance(a, b);
int forward_weight = 0;
int reverse_weight = 0;
uint8_t forward_datasource = 0;
uint8_t reverse_datasource = 0;
if (edge.forward_packed_geometry_id != SPECIAL_EDGEID)
{
std::vector<EdgeWeight> forward_weight_vector;
facade.GetUncompressedWeights(edge.forward_packed_geometry_id,
forward_weight_vector);
forward_weight = forward_weight_vector[edge.fwd_segment_position];
std::vector<uint8_t> forward_datasource_vector;
facade.GetUncompressedDatasources(edge.forward_packed_geometry_id,
forward_datasource_vector);
forward_datasource = forward_datasource_vector[edge.fwd_segment_position];
}
if (edge.reverse_packed_geometry_id != SPECIAL_EDGEID)
{
std::vector<EdgeWeight> reverse_weight_vector;
facade.GetUncompressedWeights(edge.reverse_packed_geometry_id,
reverse_weight_vector);
BOOST_ASSERT(edge.fwd_segment_position < reverse_weight_vector.size());
reverse_weight = reverse_weight_vector[reverse_weight_vector.size() -
edge.fwd_segment_position - 1];
std::vector<uint8_t> reverse_datasource_vector;
facade.GetUncompressedDatasources(edge.reverse_packed_geometry_id,
reverse_datasource_vector);
reverse_datasource =
reverse_datasource_vector[reverse_datasource_vector.size() -
edge.fwd_segment_position - 1];
}
// Keep track of the highest datasource seen so that we don't write unnecessary
// data to the layer attribute values
max_datasource_id = std::max(max_datasource_id, forward_datasource);
max_datasource_id = std::max(max_datasource_id, reverse_datasource);
2016-03-18 16:57:36 -04:00
const auto encode_tile_line = [&layer_writer, &edge, &id, &max_datasource_id](
const detail::FixedLine &tile_line, const std::uint32_t speed_kmh,
const std::size_t duration, const std::uint8_t datasource,
2016-03-16 16:54:29 -04:00
std::int32_t &start_x, std::int32_t &start_y)
{
// Here, we save the two attributes for our feature: the speed and the
// is_small
// boolean. We onl serve up speeds from 0-139, so all we do is save the
// first
protozero::pbf_writer feature_writer(layer_writer, 2);
// Field 3 is the "geometry type" field. Value 2 is "line"
feature_writer.add_enum(3, 2); // geometry type
// Field 1 for the feature is the "id" field.
feature_writer.add_uint64(1, id++); // id
{
// When adding attributes to a feature, we have to write
// pairs of numbers. The first value is the index in the
// keys array (written later), and the second value is the
// index into the "values" array (also written later). We're
// not writing the actual speed or bool value here, we're saving
// an index into the "values" array. This means many features
// can share the same value data, leading to smaller tiles.
protozero::packed_field_uint32 field(feature_writer, 2);
field.add_element(0); // "speed" tag key offset
field.add_element(
2016-03-16 16:54:29 -04:00
std::min(speed_kmh, 127u)); // save the speed value, capped at 127
2016-03-18 16:57:36 -04:00
field.add_element(1); // "is_small" tag key offset
field.add_element(128 +
(edge.component.is_tiny ? 0 : 1)); // is_small feature
2016-03-18 16:57:36 -04:00
field.add_element(2); // "datasource" tag key offset
2016-03-16 16:54:29 -04:00
field.add_element(130 + datasource); // datasource value offset
2016-03-18 16:57:36 -04:00
field.add_element(3); // "duration" tag key offset
field.add_element(130 + max_datasource_id + 1 +
duration); // duration value offset
}
{
// Encode the geometry for the feature
protozero::packed_field_uint32 geometry(feature_writer, 4);
2016-03-16 16:54:29 -04:00
encodeLinestring(tile_line, geometry, start_x, start_y);
}
2016-03-16 16:54:29 -04:00
};
// If this is a valid forward edge, go ahead and add it to the tile
if (forward_weight != 0 && edge.forward_edge_based_node_id != SPECIAL_NODEID)
{
std::int32_t start_x = 0;
std::int32_t start_y = 0;
// Calculate the speed for this line
std::uint32_t speed_kmh =
static_cast<std::uint32_t>(round(length / forward_weight * 10 * 3.6));
auto tile_line = coordinatesToTileLine(a, b, tile_bbox);
if (!tile_line.empty())
{
encode_tile_line(tile_line, speed_kmh, weight_offsets[forward_weight],
forward_datasource, start_x, start_y);
}
}
// Repeat the above for the coordinates reversed and using the `reverse`
// properties
if (reverse_weight != 0 && edge.reverse_edge_based_node_id != SPECIAL_NODEID)
{
std::int32_t start_x = 0;
std::int32_t start_y = 0;
2016-03-16 16:54:29 -04:00
// Calculate the speed for this line
std::uint32_t speed_kmh =
static_cast<std::uint32_t>(round(length / reverse_weight * 10 * 3.6));
2016-03-16 16:54:29 -04:00
auto tile_line = coordinatesToTileLine(b, a, tile_bbox);
if (!tile_line.empty())
{
encode_tile_line(tile_line, speed_kmh, weight_offsets[reverse_weight],
reverse_datasource, start_x, start_y);
}
}
}
}
// Field id 3 is the "keys" attribute
// We need two "key" fields, these are referred to with 0 and 1 (their array indexes)
// earlier
layer_writer.add_string(3, "speed");
layer_writer.add_string(3, "is_small");
layer_writer.add_string(3, "datasource");
2016-03-18 16:57:36 -04:00
layer_writer.add_string(3, "duration");
// Now, we write out the possible speed value arrays and possible is_tiny
// values. Field type 4 is the "values" field. It's a variable type field,
// so requires a two-step write (create the field, then write its value)
for (std::size_t i = 0; i < 128; i++)
{
2016-03-18 16:57:36 -04:00
// Writing field type 4 == variant type
protozero::pbf_writer values_writer(layer_writer, 4);
// Attribute value 5 == uin64 type
values_writer.add_uint64(5, i);
}
{
protozero::pbf_writer values_writer(layer_writer, 4);
// Attribute value 7 == bool type
values_writer.add_bool(7, true);
}
{
protozero::pbf_writer values_writer(layer_writer, 4);
// Attribute value 7 == bool type
values_writer.add_bool(7, false);
}
for (std::size_t i = 0; i <= max_datasource_id; i++)
{
2016-03-18 16:57:36 -04:00
// Writing field type 4 == variant type
protozero::pbf_writer values_writer(layer_writer, 4);
// Attribute value 1 == string type
values_writer.add_string(1, facade.GetDatasourceName(i));
}
for (auto weight : used_weights)
{
// Writing field type 4 == variant type
protozero::pbf_writer values_writer(layer_writer, 4);
// Attribute value 2 == float type
// Durations come out of OSRM in integer deciseconds, so we convert them
// to seconds with a simple /10 for display
values_writer.add_double(3, weight / 10.);
}
}
return Status::Ok;
}
}
}
}