ngx-open-map-wrapper/node_modules/@mapbox/point-geometry/index.d.ts

215 lines
6.7 KiB
TypeScript

/**
* A standalone point geometry with useful accessor, comparison, and
* modification methods.
*
* @class
* @param {number} x the x-coordinate. This could be longitude or screen pixels, or any other sort of unit.
* @param {number} y the y-coordinate. This could be latitude or screen pixels, or any other sort of unit.
*
* @example
* const point = new Point(-77, 38);
*/
declare function Point(x: number, y: number): void;
declare class Point {
/**
* A standalone point geometry with useful accessor, comparison, and
* modification methods.
*
* @class
* @param {number} x the x-coordinate. This could be longitude or screen pixels, or any other sort of unit.
* @param {number} y the y-coordinate. This could be latitude or screen pixels, or any other sort of unit.
*
* @example
* const point = new Point(-77, 38);
*/
constructor(x: number, y: number);
x: number;
y: number;
/**
* Clone this point, returning a new point that can be modified
* without affecting the old one.
* @return {Point} the clone
*/
clone(): Point;
/**
* Add this point's x & y coordinates to another point,
* yielding a new point.
* @param {Point} p the other point
* @return {Point} output point
*/
add(p: Point): Point;
/**
* Subtract this point's x & y coordinates to from point,
* yielding a new point.
* @param {Point} p the other point
* @return {Point} output point
*/
sub(p: Point): Point;
/**
* Multiply this point's x & y coordinates by point,
* yielding a new point.
* @param {Point} p the other point
* @return {Point} output point
*/
multByPoint(p: Point): Point;
/**
* Divide this point's x & y coordinates by point,
* yielding a new point.
* @param {Point} p the other point
* @return {Point} output point
*/
divByPoint(p: Point): Point;
/**
* Multiply this point's x & y coordinates by a factor,
* yielding a new point.
* @param {number} k factor
* @return {Point} output point
*/
mult(k: number): Point;
/**
* Divide this point's x & y coordinates by a factor,
* yielding a new point.
* @param {number} k factor
* @return {Point} output point
*/
div(k: number): Point;
/**
* Rotate this point around the 0, 0 origin by an angle a,
* given in radians
* @param {number} a angle to rotate around, in radians
* @return {Point} output point
*/
rotate(a: number): Point;
/**
* Rotate this point around p point by an angle a,
* given in radians
* @param {number} a angle to rotate around, in radians
* @param {Point} p Point to rotate around
* @return {Point} output point
*/
rotateAround(a: number, p: Point): Point;
/**
* Multiply this point by a 4x1 transformation matrix
* @param {[number, number, number, number]} m transformation matrix
* @return {Point} output point
*/
matMult(m: [number, number, number, number]): Point;
/**
* Calculate this point but as a unit vector from 0, 0, meaning
* that the distance from the resulting point to the 0, 0
* coordinate will be equal to 1 and the angle from the resulting
* point to the 0, 0 coordinate will be the same as before.
* @return {Point} unit vector point
*/
unit(): Point;
/**
* Compute a perpendicular point, where the new y coordinate
* is the old x coordinate and the new x coordinate is the old y
* coordinate multiplied by -1
* @return {Point} perpendicular point
*/
perp(): Point;
/**
* Return a version of this point with the x & y coordinates
* rounded to integers.
* @return {Point} rounded point
*/
round(): Point;
/**
* Return the magnitude of this point: this is the Euclidean
* distance from the 0, 0 coordinate to this point's x and y
* coordinates.
* @return {number} magnitude
*/
mag(): number;
/**
* Judge whether this point is equal to another point, returning
* true or false.
* @param {Point} other the other point
* @return {boolean} whether the points are equal
*/
equals(other: Point): boolean;
/**
* Calculate the distance from this point to another point
* @param {Point} p the other point
* @return {number} distance
*/
dist(p: Point): number;
/**
* Calculate the distance from this point to another point,
* without the square root step. Useful if you're comparing
* relative distances.
* @param {Point} p the other point
* @return {number} distance
*/
distSqr(p: Point): number;
/**
* Get the angle from the 0, 0 coordinate to this point, in radians
* coordinates.
* @return {number} angle
*/
angle(): number;
/**
* Get the angle from this point to another point, in radians
* @param {Point} b the other point
* @return {number} angle
*/
angleTo(b: Point): number;
/**
* Get the angle between this point and another point, in radians
* @param {Point} b the other point
* @return {number} angle
*/
angleWith(b: Point): number;
/**
* Find the angle of the two vectors, solving the formula for
* the cross product a x b = |a||b|sin(θ) for θ.
* @param {number} x the x-coordinate
* @param {number} y the y-coordinate
* @return {number} the angle in radians
*/
angleWithSep(x: number, y: number): number;
/** @param {[number, number, number, number]} m */
_matMult(m: [number, number, number, number]): this;
/** @param {Point} p */
_add(p: Point): this;
/** @param {Point} p */
_sub(p: Point): this;
/** @param {number} k */
_mult(k: number): this;
/** @param {number} k */
_div(k: number): this;
/** @param {Point} p */
_multByPoint(p: Point): this;
/** @param {Point} p */
_divByPoint(p: Point): this;
_unit(): this;
_perp(): this;
/** @param {number} angle */
_rotate(angle: number): this;
/**
* @param {number} angle
* @param {Point} p
*/
_rotateAround(angle: number, p: Point): this;
_round(): this;
}
declare namespace Point {
/**
* Construct a point from an array if necessary, otherwise if the input
* is already a Point, return it unchanged.
* @param {Point | [number, number] | {x: number, y: number}} p input value
* @return {Point} constructed point.
* @example
* // this
* var point = Point.convert([0, 1]);
* // is equivalent to
* var point = new Point(0, 1);
*/
function convert(p: Point | [number, number] | {
x: number;
y: number;
}): Point;
}
export default Point;