"use strict"; function _typeof(o) { "@babel/helpers - typeof"; return _typeof = "function" == typeof Symbol && "symbol" == typeof Symbol.iterator ? function (o) { return typeof o; } : function (o) { return o && "function" == typeof Symbol && o.constructor === Symbol && o !== Symbol.prototype ? "symbol" : typeof o; }, _typeof(o); } Object.defineProperty(exports, "__esModule", { value: true }); exports.add = add; exports.ceil = ceil; exports.clone = clone; exports.copy = copy; exports.create = create; exports.cross = cross; exports.dist = void 0; exports.distance = distance; exports.div = void 0; exports.divide = divide; exports.dot = dot; exports.equals = equals; exports.exactEquals = exactEquals; exports.floor = floor; exports.forEach = void 0; exports.fromValues = fromValues; exports.inverse = inverse; exports.len = void 0; exports.length = length; exports.lerp = lerp; exports.max = max; exports.min = min; exports.mul = void 0; exports.multiply = multiply; exports.negate = negate; exports.normalize = normalize; exports.random = random; exports.round = round; exports.scale = scale; exports.scaleAndAdd = scaleAndAdd; exports.set = set; exports.sqrLen = exports.sqrDist = void 0; exports.squaredDistance = squaredDistance; exports.squaredLength = squaredLength; exports.str = str; exports.sub = void 0; exports.subtract = subtract; exports.transformMat4 = transformMat4; exports.transformQuat = transformQuat; exports.zero = zero; var glMatrix = _interopRequireWildcard(require("./common.js")); function _interopRequireWildcard(e, t) { if ("function" == typeof WeakMap) var r = new WeakMap(), n = new WeakMap(); return (_interopRequireWildcard = function _interopRequireWildcard(e, t) { if (!t && e && e.__esModule) return e; var o, i, f = { __proto__: null, "default": e }; if (null === e || "object" != _typeof(e) && "function" != typeof e) return f; if (o = t ? n : r) { if (o.has(e)) return o.get(e); o.set(e, f); } for (var _t in e) "default" !== _t && {}.hasOwnProperty.call(e, _t) && ((i = (o = Object.defineProperty) && Object.getOwnPropertyDescriptor(e, _t)) && (i.get || i.set) ? o(f, _t, i) : f[_t] = e[_t]); return f; })(e, t); } /** * 4 Dimensional Vector * @module vec4 */ /** * Creates a new, empty vec4 * * @returns {vec4} a new 4D vector */ function create() { var out = new glMatrix.ARRAY_TYPE(4); if (glMatrix.ARRAY_TYPE != Float32Array) { out[0] = 0; out[1] = 0; out[2] = 0; out[3] = 0; } return out; } /** * Creates a new vec4 initialized with values from an existing vector * * @param {ReadonlyVec4} a vector to clone * @returns {vec4} a new 4D vector */ function clone(a) { var out = new glMatrix.ARRAY_TYPE(4); out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; return out; } /** * Creates a new vec4 initialized with the given values * * @param {Number} x X component * @param {Number} y Y component * @param {Number} z Z component * @param {Number} w W component * @returns {vec4} a new 4D vector */ function fromValues(x, y, z, w) { var out = new glMatrix.ARRAY_TYPE(4); out[0] = x; out[1] = y; out[2] = z; out[3] = w; return out; } /** * Copy the values from one vec4 to another * * @param {vec4} out the receiving vector * @param {ReadonlyVec4} a the source vector * @returns {vec4} out */ function copy(out, a) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; return out; } /** * Set the components of a vec4 to the given values * * @param {vec4} out the receiving vector * @param {Number} x X component * @param {Number} y Y component * @param {Number} z Z component * @param {Number} w W component * @returns {vec4} out */ function set(out, x, y, z, w) { out[0] = x; out[1] = y; out[2] = z; out[3] = w; return out; } /** * Adds two vec4's * * @param {vec4} out the receiving vector * @param {ReadonlyVec4} a the first operand * @param {ReadonlyVec4} b the second operand * @returns {vec4} out */ function add(out, a, b) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; out[2] = a[2] + b[2]; out[3] = a[3] + b[3]; return out; } /** * Subtracts vector b from vector a * * @param {vec4} out the receiving vector * @param {ReadonlyVec4} a the first operand * @param {ReadonlyVec4} b the second operand * @returns {vec4} out */ function subtract(out, a, b) { out[0] = a[0] - b[0]; out[1] = a[1] - b[1]; out[2] = a[2] - b[2]; out[3] = a[3] - b[3]; return out; } /** * Multiplies two vec4's * * @param {vec4} out the receiving vector * @param {ReadonlyVec4} a the first operand * @param {ReadonlyVec4} b the second operand * @returns {vec4} out */ function multiply(out, a, b) { out[0] = a[0] * b[0]; out[1] = a[1] * b[1]; out[2] = a[2] * b[2]; out[3] = a[3] * b[3]; return out; } /** * Divides two vec4's * * @param {vec4} out the receiving vector * @param {ReadonlyVec4} a the first operand * @param {ReadonlyVec4} b the second operand * @returns {vec4} out */ function divide(out, a, b) { out[0] = a[0] / b[0]; out[1] = a[1] / b[1]; out[2] = a[2] / b[2]; out[3] = a[3] / b[3]; return out; } /** * Math.ceil the components of a vec4 * * @param {vec4} out the receiving vector * @param {ReadonlyVec4} a vector to ceil * @returns {vec4} out */ function ceil(out, a) { out[0] = Math.ceil(a[0]); out[1] = Math.ceil(a[1]); out[2] = Math.ceil(a[2]); out[3] = Math.ceil(a[3]); return out; } /** * Math.floor the components of a vec4 * * @param {vec4} out the receiving vector * @param {ReadonlyVec4} a vector to floor * @returns {vec4} out */ function floor(out, a) { out[0] = Math.floor(a[0]); out[1] = Math.floor(a[1]); out[2] = Math.floor(a[2]); out[3] = Math.floor(a[3]); return out; } /** * Returns the minimum of two vec4's * * @param {vec4} out the receiving vector * @param {ReadonlyVec4} a the first operand * @param {ReadonlyVec4} b the second operand * @returns {vec4} out */ function min(out, a, b) { out[0] = Math.min(a[0], b[0]); out[1] = Math.min(a[1], b[1]); out[2] = Math.min(a[2], b[2]); out[3] = Math.min(a[3], b[3]); return out; } /** * Returns the maximum of two vec4's * * @param {vec4} out the receiving vector * @param {ReadonlyVec4} a the first operand * @param {ReadonlyVec4} b the second operand * @returns {vec4} out */ function max(out, a, b) { out[0] = Math.max(a[0], b[0]); out[1] = Math.max(a[1], b[1]); out[2] = Math.max(a[2], b[2]); out[3] = Math.max(a[3], b[3]); return out; } /** * symmetric round the components of a vec4 * * @param {vec4} out the receiving vector * @param {ReadonlyVec4} a vector to round * @returns {vec4} out */ function round(out, a) { out[0] = glMatrix.round(a[0]); out[1] = glMatrix.round(a[1]); out[2] = glMatrix.round(a[2]); out[3] = glMatrix.round(a[3]); return out; } /** * Scales a vec4 by a scalar number * * @param {vec4} out the receiving vector * @param {ReadonlyVec4} a the vector to scale * @param {Number} b amount to scale the vector by * @returns {vec4} out */ function scale(out, a, b) { out[0] = a[0] * b; out[1] = a[1] * b; out[2] = a[2] * b; out[3] = a[3] * b; return out; } /** * Adds two vec4's after scaling the second operand by a scalar value * * @param {vec4} out the receiving vector * @param {ReadonlyVec4} a the first operand * @param {ReadonlyVec4} b the second operand * @param {Number} scale the amount to scale b by before adding * @returns {vec4} out */ function scaleAndAdd(out, a, b, scale) { out[0] = a[0] + b[0] * scale; out[1] = a[1] + b[1] * scale; out[2] = a[2] + b[2] * scale; out[3] = a[3] + b[3] * scale; return out; } /** * Calculates the euclidian distance between two vec4's * * @param {ReadonlyVec4} a the first operand * @param {ReadonlyVec4} b the second operand * @returns {Number} distance between a and b */ function distance(a, b) { var x = b[0] - a[0]; var y = b[1] - a[1]; var z = b[2] - a[2]; var w = b[3] - a[3]; return Math.sqrt(x * x + y * y + z * z + w * w); } /** * Calculates the squared euclidian distance between two vec4's * * @param {ReadonlyVec4} a the first operand * @param {ReadonlyVec4} b the second operand * @returns {Number} squared distance between a and b */ function squaredDistance(a, b) { var x = b[0] - a[0]; var y = b[1] - a[1]; var z = b[2] - a[2]; var w = b[3] - a[3]; return x * x + y * y + z * z + w * w; } /** * Calculates the length of a vec4 * * @param {ReadonlyVec4} a vector to calculate length of * @returns {Number} length of a */ function length(a) { var x = a[0]; var y = a[1]; var z = a[2]; var w = a[3]; return Math.sqrt(x * x + y * y + z * z + w * w); } /** * Calculates the squared length of a vec4 * * @param {ReadonlyVec4} a vector to calculate squared length of * @returns {Number} squared length of a */ function squaredLength(a) { var x = a[0]; var y = a[1]; var z = a[2]; var w = a[3]; return x * x + y * y + z * z + w * w; } /** * Negates the components of a vec4 * * @param {vec4} out the receiving vector * @param {ReadonlyVec4} a vector to negate * @returns {vec4} out */ function negate(out, a) { out[0] = -a[0]; out[1] = -a[1]; out[2] = -a[2]; out[3] = -a[3]; return out; } /** * Returns the inverse of the components of a vec4 * * @param {vec4} out the receiving vector * @param {ReadonlyVec4} a vector to invert * @returns {vec4} out */ function inverse(out, a) { out[0] = 1.0 / a[0]; out[1] = 1.0 / a[1]; out[2] = 1.0 / a[2]; out[3] = 1.0 / a[3]; return out; } /** * Normalize a vec4 * * @param {vec4} out the receiving vector * @param {ReadonlyVec4} a vector to normalize * @returns {vec4} out */ function normalize(out, a) { var x = a[0]; var y = a[1]; var z = a[2]; var w = a[3]; var len = x * x + y * y + z * z + w * w; if (len > 0) { len = 1 / Math.sqrt(len); } out[0] = x * len; out[1] = y * len; out[2] = z * len; out[3] = w * len; return out; } /** * Calculates the dot product of two vec4's * * @param {ReadonlyVec4} a the first operand * @param {ReadonlyVec4} b the second operand * @returns {Number} dot product of a and b */ function dot(a, b) { return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3]; } /** * Returns the cross-product of three vectors in a 4-dimensional space * * @param {ReadonlyVec4} out the receiving vector * @param {ReadonlyVec4} u the first vector * @param {ReadonlyVec4} v the second vector * @param {ReadonlyVec4} w the third vector * @returns {vec4} result */ function cross(out, u, v, w) { var A = v[0] * w[1] - v[1] * w[0], B = v[0] * w[2] - v[2] * w[0], C = v[0] * w[3] - v[3] * w[0], D = v[1] * w[2] - v[2] * w[1], E = v[1] * w[3] - v[3] * w[1], F = v[2] * w[3] - v[3] * w[2]; var G = u[0]; var H = u[1]; var I = u[2]; var J = u[3]; out[0] = H * F - I * E + J * D; out[1] = -(G * F) + I * C - J * B; out[2] = G * E - H * C + J * A; out[3] = -(G * D) + H * B - I * A; return out; } /** * Performs a linear interpolation between two vec4's * * @param {vec4} out the receiving vector * @param {ReadonlyVec4} a the first operand * @param {ReadonlyVec4} b the second operand * @param {Number} t interpolation amount, in the range [0-1], between the two inputs * @returns {vec4} out */ function lerp(out, a, b, t) { var ax = a[0]; var ay = a[1]; var az = a[2]; var aw = a[3]; out[0] = ax + t * (b[0] - ax); out[1] = ay + t * (b[1] - ay); out[2] = az + t * (b[2] - az); out[3] = aw + t * (b[3] - aw); return out; } /** * Generates a random vector with the given scale * * @param {vec4} out the receiving vector * @param {Number} [scale] Length of the resulting vector. If omitted, a unit vector will be returned * @returns {vec4} out */ function random(out, scale) { scale = scale === undefined ? 1.0 : scale; // Marsaglia, George. Choosing a Point from the Surface of a // Sphere. Ann. Math. Statist. 43 (1972), no. 2, 645--646. // http://projecteuclid.org/euclid.aoms/1177692644; var v1, v2, v3, v4; var s1, s2; var rand; rand = glMatrix.RANDOM(); v1 = rand * 2 - 1; v2 = (4 * glMatrix.RANDOM() - 2) * Math.sqrt(rand * -rand + rand); s1 = v1 * v1 + v2 * v2; rand = glMatrix.RANDOM(); v3 = rand * 2 - 1; v4 = (4 * glMatrix.RANDOM() - 2) * Math.sqrt(rand * -rand + rand); s2 = v3 * v3 + v4 * v4; var d = Math.sqrt((1 - s1) / s2); out[0] = scale * v1; out[1] = scale * v2; out[2] = scale * v3 * d; out[3] = scale * v4 * d; return out; } /** * Transforms the vec4 with a mat4. * * @param {vec4} out the receiving vector * @param {ReadonlyVec4} a the vector to transform * @param {ReadonlyMat4} m matrix to transform with * @returns {vec4} out */ function transformMat4(out, a, m) { var x = a[0], y = a[1], z = a[2], w = a[3]; out[0] = m[0] * x + m[4] * y + m[8] * z + m[12] * w; out[1] = m[1] * x + m[5] * y + m[9] * z + m[13] * w; out[2] = m[2] * x + m[6] * y + m[10] * z + m[14] * w; out[3] = m[3] * x + m[7] * y + m[11] * z + m[15] * w; return out; } /** * Transforms the vec4 with a quat * * @param {vec4} out the receiving vector * @param {ReadonlyVec4} a the vector to transform * @param {ReadonlyQuat} q normalized quaternion to transform with * @returns {vec4} out */ function transformQuat(out, a, q) { // Fast Vector Rotation using Quaternions by Robert Eisele // https://raw.org/proof/vector-rotation-using-quaternions/ var qx = q[0], qy = q[1], qz = q[2], qw = q[3]; var vx = a[0], vy = a[1], vz = a[2]; // t = q x v var tx = qy * vz - qz * vy; var ty = qz * vx - qx * vz; var tz = qx * vy - qy * vx; // t = 2t tx = tx + tx; ty = ty + ty; tz = tz + tz; // v + w t + q x t out[0] = vx + qw * tx + qy * tz - qz * ty; out[1] = vy + qw * ty + qz * tx - qx * tz; out[2] = vz + qw * tz + qx * ty - qy * tx; out[3] = a[3]; return out; } /** * Set the components of a vec4 to zero * * @param {vec4} out the receiving vector * @returns {vec4} out */ function zero(out) { out[0] = 0.0; out[1] = 0.0; out[2] = 0.0; out[3] = 0.0; return out; } /** * Returns a string representation of a vector * * @param {ReadonlyVec4} a vector to represent as a string * @returns {String} string representation of the vector */ function str(a) { return "vec4(" + a[0] + ", " + a[1] + ", " + a[2] + ", " + a[3] + ")"; } /** * Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===) * * @param {ReadonlyVec4} a The first vector. * @param {ReadonlyVec4} b The second vector. * @returns {Boolean} True if the vectors are equal, false otherwise. */ function exactEquals(a, b) { return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3]; } /** * Returns whether or not the vectors have approximately the same elements in the same position. * * @param {ReadonlyVec4} a The first vector. * @param {ReadonlyVec4} b The second vector. * @returns {Boolean} True if the vectors are equal, false otherwise. */ function equals(a, b) { var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3]; var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3]; return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)); } /** * Alias for {@link vec4.subtract} * @function */ var sub = exports.sub = subtract; /** * Alias for {@link vec4.multiply} * @function */ var mul = exports.mul = multiply; /** * Alias for {@link vec4.divide} * @function */ var div = exports.div = divide; /** * Alias for {@link vec4.distance} * @function */ var dist = exports.dist = distance; /** * Alias for {@link vec4.squaredDistance} * @function */ var sqrDist = exports.sqrDist = squaredDistance; /** * Alias for {@link vec4.length} * @function */ var len = exports.len = length; /** * Alias for {@link vec4.squaredLength} * @function */ var sqrLen = exports.sqrLen = squaredLength; /** * Perform some operation over an array of vec4s. * * @param {Array} a the array of vectors to iterate over * @param {Number} stride Number of elements between the start of each vec4. If 0 assumes tightly packed * @param {Number} offset Number of elements to skip at the beginning of the array * @param {Number} count Number of vec4s to iterate over. If 0 iterates over entire array * @param {Function} fn Function to call for each vector in the array * @param {Object} [arg] additional argument to pass to fn * @returns {Array} a * @function */ var forEach = exports.forEach = function () { var vec = create(); return function (a, stride, offset, count, fn, arg) { var i, l; if (!stride) { stride = 4; } if (!offset) { offset = 0; } if (count) { l = Math.min(count * stride + offset, a.length); } else { l = a.length; } for (i = offset; i < l; i += stride) { vec[0] = a[i]; vec[1] = a[i + 1]; vec[2] = a[i + 2]; vec[3] = a[i + 3]; fn(vec, vec, arg); a[i] = vec[0]; a[i + 1] = vec[1]; a[i + 2] = vec[2]; a[i + 3] = vec[3]; } return a; }; }();