788 lines
35 KiB
C++
788 lines
35 KiB
C++
/*
|
|
|
|
Copyright (c) 2013, Project OSRM, Dennis Luxen, others
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without modification,
|
|
are permitted provided that the following conditions are met:
|
|
|
|
Redistributions of source code must retain the above copyright notice, this list
|
|
of conditions and the following disclaimer.
|
|
Redistributions in binary form must reproduce the above copyright notice, this
|
|
list of conditions and the following disclaimer in the documentation and/or
|
|
other materials provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
|
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
#ifndef CONTRACTOR_H_INCLUDED
|
|
#define CONTRACTOR_H_INCLUDED
|
|
|
|
#include "TemporaryStorage.h"
|
|
#include "../DataStructures/BinaryHeap.h"
|
|
#include "../DataStructures/DeallocatingVector.h"
|
|
#include "../DataStructures/DynamicGraph.h"
|
|
#include "../DataStructures/Percent.h"
|
|
#include "../DataStructures/XORFastHash.h"
|
|
#include "../DataStructures/XORFastHashStorage.h"
|
|
#include "../Util/OpenMPWrapper.h"
|
|
#include "../Util/SimpleLogger.h"
|
|
#include "../Util/StringUtil.h"
|
|
|
|
#include <boost/assert.hpp>
|
|
#include <boost/foreach.hpp>
|
|
#include <boost/lambda/lambda.hpp>
|
|
#include <boost/make_shared.hpp>
|
|
#include <boost/shared_ptr.hpp>
|
|
|
|
#include <ctime>
|
|
|
|
#include <algorithm>
|
|
#include <limits>
|
|
#include <vector>
|
|
|
|
class Contractor {
|
|
|
|
private:
|
|
struct ContractorEdgeData {
|
|
ContractorEdgeData() :
|
|
distance(0), id(0), originalEdges(0), shortcut(0), forward(0), backward(0), originalViaNodeID(false) {}
|
|
ContractorEdgeData( unsigned _distance, unsigned _originalEdges, unsigned _id, bool _shortcut, bool _forward, bool _backward) :
|
|
distance(_distance), id(_id), originalEdges(std::min((unsigned)1<<28, _originalEdges) ), shortcut(_shortcut), forward(_forward), backward(_backward), originalViaNodeID(false) {}
|
|
unsigned distance;
|
|
unsigned id;
|
|
unsigned originalEdges:28;
|
|
bool shortcut:1;
|
|
bool forward:1;
|
|
bool backward:1;
|
|
bool originalViaNodeID:1;
|
|
} data;
|
|
|
|
struct _HeapData {
|
|
short hop;
|
|
bool target;
|
|
_HeapData() : hop(0), target(false) {}
|
|
_HeapData( short h, bool t ) : hop(h), target(t) {}
|
|
};
|
|
|
|
typedef DynamicGraph< ContractorEdgeData > _DynamicGraph;
|
|
// typedef BinaryHeap< NodeID, NodeID, int, _HeapData, ArrayStorage<NodeID, NodeID> > _Heap;
|
|
typedef BinaryHeap< NodeID, NodeID, int, _HeapData, XORFastHashStorage<NodeID, NodeID> > _Heap;
|
|
typedef _DynamicGraph::InputEdge _ContractorEdge;
|
|
|
|
struct _ThreadData {
|
|
_Heap heap;
|
|
std::vector< _ContractorEdge > insertedEdges;
|
|
std::vector< NodeID > neighbours;
|
|
_ThreadData( NodeID nodes ): heap( nodes ) { }
|
|
};
|
|
|
|
struct _PriorityData {
|
|
int depth;
|
|
_PriorityData() : depth(0) { }
|
|
};
|
|
|
|
struct _ContractionInformation {
|
|
int edgesDeleted;
|
|
int edgesAdded;
|
|
int originalEdgesDeleted;
|
|
int originalEdgesAdded;
|
|
_ContractionInformation() : edgesDeleted(0), edgesAdded(0), originalEdgesDeleted(0), originalEdgesAdded(0) {}
|
|
};
|
|
|
|
struct _RemainingNodeData {
|
|
_RemainingNodeData() : id (0), isIndependent(false) {}
|
|
NodeID id:31;
|
|
bool isIndependent:1;
|
|
};
|
|
|
|
struct _NodePartitionor {
|
|
inline bool operator()(_RemainingNodeData & nodeData ) const {
|
|
return !nodeData.isIndependent;
|
|
}
|
|
};
|
|
|
|
public:
|
|
|
|
template<class ContainerT >
|
|
Contractor( int nodes, ContainerT& inputEdges) {
|
|
std::vector< _ContractorEdge > edges;
|
|
edges.reserve(inputEdges.size()*2);
|
|
temp_edge_counter = 0;
|
|
|
|
typename ContainerT::deallocation_iterator diter = inputEdges.dbegin();
|
|
typename ContainerT::deallocation_iterator dend = inputEdges.dend();
|
|
|
|
_ContractorEdge newEdge;
|
|
while(diter!=dend) {
|
|
newEdge.source = diter->source();
|
|
newEdge.target = diter->target();
|
|
newEdge.data = ContractorEdgeData( (std::max)((int)diter->weight(), 1 ), 1, diter->id(), false, diter->isForward(), diter->isBackward());
|
|
|
|
BOOST_ASSERT_MSG( newEdge.data.distance > 0, "edge distance < 1" );
|
|
#ifndef NDEBUG
|
|
if ( newEdge.data.distance > 24 * 60 * 60 * 10 ) {
|
|
SimpleLogger().Write(logWARNING) <<
|
|
"Edge weight large -> " << newEdge.data.distance;
|
|
}
|
|
#endif
|
|
edges.push_back( newEdge );
|
|
std::swap( newEdge.source, newEdge.target );
|
|
newEdge.data.forward = diter->isBackward();
|
|
newEdge.data.backward = diter->isForward();
|
|
edges.push_back( newEdge );
|
|
++diter;
|
|
}
|
|
//clear input vector and trim the current set of edges with the well-known swap trick
|
|
inputEdges.clear();
|
|
sort( edges.begin(), edges.end() );
|
|
NodeID edge = 0;
|
|
for ( NodeID i = 0; i < edges.size(); ) {
|
|
const NodeID source = edges[i].source;
|
|
const NodeID target = edges[i].target;
|
|
const NodeID id = edges[i].data.id;
|
|
//remove eigenloops
|
|
if ( source == target ) {
|
|
i++;
|
|
continue;
|
|
}
|
|
_ContractorEdge forwardEdge;
|
|
_ContractorEdge backwardEdge;
|
|
forwardEdge.source = backwardEdge.source = source;
|
|
forwardEdge.target = backwardEdge.target = target;
|
|
forwardEdge.data.forward = backwardEdge.data.backward = true;
|
|
forwardEdge.data.backward = backwardEdge.data.forward = false;
|
|
forwardEdge.data.shortcut = backwardEdge.data.shortcut = false;
|
|
forwardEdge.data.id = backwardEdge.data.id = id;
|
|
forwardEdge.data.originalEdges = backwardEdge.data.originalEdges = 1;
|
|
forwardEdge.data.distance = backwardEdge.data.distance = std::numeric_limits< int >::max();
|
|
//remove parallel edges
|
|
while ( i < edges.size() && edges[i].source == source && edges[i].target == target ) {
|
|
if ( edges[i].data.forward) {
|
|
forwardEdge.data.distance = std::min( edges[i].data.distance, forwardEdge.data.distance );
|
|
}
|
|
if ( edges[i].data.backward) {
|
|
backwardEdge.data.distance = std::min( edges[i].data.distance, backwardEdge.data.distance );
|
|
}
|
|
++i;
|
|
}
|
|
//merge edges (s,t) and (t,s) into bidirectional edge
|
|
if ( forwardEdge.data.distance == backwardEdge.data.distance ) {
|
|
if ( (int)forwardEdge.data.distance != std::numeric_limits< int >::max() ) {
|
|
forwardEdge.data.backward = true;
|
|
edges[edge++] = forwardEdge;
|
|
}
|
|
} else { //insert seperate edges
|
|
if ( ((int)forwardEdge.data.distance) != std::numeric_limits< int >::max() ) {
|
|
edges[edge++] = forwardEdge;
|
|
}
|
|
if ( (int)backwardEdge.data.distance != std::numeric_limits< int >::max() ) {
|
|
edges[edge++] = backwardEdge;
|
|
}
|
|
}
|
|
}
|
|
std::cout << "merged " << edges.size() - edge << " edges out of " << edges.size() << std::endl;
|
|
edges.resize( edge );
|
|
_graph = boost::make_shared<_DynamicGraph>( nodes, edges );
|
|
edges.clear();
|
|
std::vector<_ContractorEdge>().swap(edges);
|
|
BOOST_ASSERT( 0 == edges.capacity() );
|
|
// unsigned maxdegree = 0;
|
|
// NodeID highestNode = 0;
|
|
//
|
|
// for(unsigned i = 0; i < _graph->GetNumberOfNodes(); ++i) {
|
|
// unsigned degree = _graph->EndEdges(i) - _graph->BeginEdges(i);
|
|
// if(degree > maxdegree) {
|
|
// maxdegree = degree;
|
|
// highestNode = i;
|
|
// }
|
|
// }
|
|
//
|
|
// SimpleLogger().Write() << "edges at node with id " << highestNode << " has degree " << maxdegree;
|
|
// for(unsigned i = _graph->BeginEdges(highestNode); i < _graph->EndEdges(highestNode); ++i) {
|
|
// SimpleLogger().Write() << " ->(" << highestNode << "," << _graph->GetTarget(i) << "); via: " << _graph->GetEdgeData(i).via;
|
|
// }
|
|
|
|
//Create temporary file
|
|
|
|
// GetTemporaryFileName(temporaryEdgeStorageFilename);
|
|
edge_storage_slot = TemporaryStorage::GetInstance().AllocateSlot();
|
|
std::cout << "contractor finished initalization" << std::endl;
|
|
}
|
|
|
|
~Contractor() {
|
|
//Delete temporary file
|
|
// remove(temporaryEdgeStorageFilename.c_str());
|
|
TemporaryStorage::GetInstance().DeallocateSlot(edge_storage_slot);
|
|
}
|
|
|
|
void Run() {
|
|
const NodeID numberOfNodes = _graph->GetNumberOfNodes();
|
|
Percent p (numberOfNodes);
|
|
|
|
const unsigned maxThreads = omp_get_max_threads();
|
|
std::vector < _ThreadData* > threadData;
|
|
for ( unsigned threadNum = 0; threadNum < maxThreads; ++threadNum ) {
|
|
threadData.push_back( new _ThreadData( numberOfNodes ) );
|
|
}
|
|
std::cout << "Contractor is using " << maxThreads << " threads" << std::endl;
|
|
|
|
NodeID numberOfContractedNodes = 0;
|
|
std::vector< _RemainingNodeData > remainingNodes( numberOfNodes );
|
|
std::vector< float > nodePriority( numberOfNodes );
|
|
std::vector< _PriorityData > nodeData( numberOfNodes );
|
|
|
|
//initialize the variables
|
|
#pragma omp parallel for schedule ( guided )
|
|
for ( int x = 0; x < ( int ) numberOfNodes; ++x ) {
|
|
remainingNodes[x].id = x;
|
|
}
|
|
|
|
std::cout << "initializing elimination PQ ..." << std::flush;
|
|
#pragma omp parallel
|
|
{
|
|
_ThreadData* data = threadData[omp_get_thread_num()];
|
|
#pragma omp parallel for schedule ( guided )
|
|
for ( int x = 0; x < ( int ) numberOfNodes; ++x ) {
|
|
nodePriority[x] = _Evaluate( data, &nodeData[x], x );
|
|
}
|
|
}
|
|
std::cout << "ok" << std::endl << "preprocessing " << numberOfNodes << " nodes ..." << std::flush;
|
|
|
|
bool flushedContractor = false;
|
|
while ( numberOfNodes > 2 && numberOfContractedNodes < numberOfNodes ) {
|
|
if(!flushedContractor && (numberOfContractedNodes > (numberOfNodes*0.65) ) ){
|
|
DeallocatingVector<_ContractorEdge> newSetOfEdges; //this one is not explicitely cleared since it goes out of scope anywa
|
|
std::cout << " [flush " << numberOfContractedNodes << " nodes] " << std::flush;
|
|
|
|
//Delete old heap data to free memory that we need for the coming operations
|
|
BOOST_FOREACH(_ThreadData * data, threadData) {
|
|
delete data;
|
|
}
|
|
threadData.clear();
|
|
|
|
//Create new priority array
|
|
std::vector<float> newNodePriority(remainingNodes.size());
|
|
//this map gives the old IDs from the new ones, necessary to get a consistent graph at the end of contraction
|
|
oldNodeIDFromNewNodeIDMap.resize(remainingNodes.size());
|
|
//this map gives the new IDs from the old ones, necessary to remap targets from the remaining graph
|
|
std::vector<NodeID> newNodeIDFromOldNodeIDMap(numberOfNodes, UINT_MAX);
|
|
|
|
//build forward and backward renumbering map and remap ids in remainingNodes and Priorities.
|
|
for(unsigned newNodeID = 0; newNodeID < remainingNodes.size(); ++newNodeID) {
|
|
//create renumbering maps in both directions
|
|
oldNodeIDFromNewNodeIDMap[newNodeID] = remainingNodes[newNodeID].id;
|
|
newNodeIDFromOldNodeIDMap[remainingNodes[newNodeID].id] = newNodeID;
|
|
newNodePriority[newNodeID] = nodePriority[remainingNodes[newNodeID].id];
|
|
remainingNodes[newNodeID].id = newNodeID;
|
|
}
|
|
TemporaryStorage & tempStorage = TemporaryStorage::GetInstance();
|
|
//walk over all nodes
|
|
for(unsigned i = 0; i < _graph->GetNumberOfNodes(); ++i) {
|
|
const NodeID start = i;
|
|
for(_DynamicGraph::EdgeIterator currentEdge = _graph->BeginEdges(start); currentEdge < _graph->EndEdges(start); ++currentEdge) {
|
|
_DynamicGraph::EdgeData & data = _graph->GetEdgeData(currentEdge);
|
|
const NodeID target = _graph->GetTarget(currentEdge);
|
|
if(UINT_MAX == newNodeIDFromOldNodeIDMap[i] ){
|
|
//Save edges of this node w/o renumbering.
|
|
tempStorage.WriteToSlot(edge_storage_slot, (char*)&start, sizeof(NodeID));
|
|
tempStorage.WriteToSlot(edge_storage_slot, (char*)&target, sizeof(NodeID));
|
|
tempStorage.WriteToSlot(edge_storage_slot, (char*)&data, sizeof(_DynamicGraph::EdgeData));
|
|
++temp_edge_counter;
|
|
} else {
|
|
//node is not yet contracted.
|
|
//add (renumbered) outgoing edges to new DynamicGraph.
|
|
_ContractorEdge newEdge;
|
|
newEdge.source = newNodeIDFromOldNodeIDMap[start];
|
|
newEdge.target = newNodeIDFromOldNodeIDMap[target];
|
|
newEdge.data = data;
|
|
newEdge.data.originalViaNodeID = true;
|
|
BOOST_ASSERT_MSG(
|
|
UINT_MAX != newNodeIDFromOldNodeIDMap[start],
|
|
"new start id not resolveable"
|
|
);
|
|
BOOST_ASSERT_MSG(
|
|
UINT_MAX != newNodeIDFromOldNodeIDMap[target],
|
|
"new target id not resolveable"
|
|
);
|
|
newSetOfEdges.push_back(newEdge);
|
|
}
|
|
}
|
|
}
|
|
|
|
//Delete map from old NodeIDs to new ones.
|
|
std::vector<NodeID>().swap(newNodeIDFromOldNodeIDMap);
|
|
|
|
//Replace old priorities array by new one
|
|
nodePriority.swap(newNodePriority);
|
|
//Delete old nodePriority vector
|
|
std::vector<float>().swap(newNodePriority);
|
|
//old Graph is removed
|
|
_graph.reset();
|
|
|
|
//create new graph
|
|
std::sort(newSetOfEdges.begin(), newSetOfEdges.end());
|
|
_graph = boost::make_shared<_DynamicGraph>(remainingNodes.size(), newSetOfEdges);
|
|
|
|
newSetOfEdges.clear();
|
|
flushedContractor = true;
|
|
|
|
//INFO: MAKE SURE THIS IS THE LAST OPERATION OF THE FLUSH!
|
|
//reinitialize heaps and ThreadData objects with appropriate size
|
|
for ( unsigned threadNum = 0; threadNum < maxThreads; ++threadNum ) {
|
|
threadData.push_back( new _ThreadData( _graph->GetNumberOfNodes() ) );
|
|
}
|
|
}
|
|
|
|
const int last = ( int ) remainingNodes.size();
|
|
#pragma omp parallel
|
|
{
|
|
//determine independent node set
|
|
_ThreadData* const data = threadData[omp_get_thread_num()];
|
|
#pragma omp for schedule ( guided )
|
|
for ( int i = 0; i < last; ++i ) {
|
|
const NodeID node = remainingNodes[i].id;
|
|
remainingNodes[i].isIndependent = _IsIndependent( nodePriority/*, nodeData*/, data, node );
|
|
}
|
|
}
|
|
_NodePartitionor functor;
|
|
const std::vector < _RemainingNodeData >::const_iterator first = stable_partition( remainingNodes.begin(), remainingNodes.end(), functor );
|
|
const int firstIndependent = first - remainingNodes.begin();
|
|
//contract independent nodes
|
|
#pragma omp parallel
|
|
{
|
|
_ThreadData* data = threadData[omp_get_thread_num()];
|
|
#pragma omp for schedule ( guided ) nowait
|
|
for ( int position = firstIndependent ; position < last; ++position ) {
|
|
NodeID x = remainingNodes[position].id;
|
|
_Contract< false > ( data, x );
|
|
//nodePriority[x] = -1;
|
|
}
|
|
|
|
std::sort( data->insertedEdges.begin(), data->insertedEdges.end() );
|
|
}
|
|
#pragma omp parallel
|
|
{
|
|
_ThreadData* data = threadData[omp_get_thread_num()];
|
|
#pragma omp for schedule ( guided ) nowait
|
|
for ( int position = firstIndependent ; position < last; ++position ) {
|
|
NodeID x = remainingNodes[position].id;
|
|
_DeleteIncomingEdges( data, x );
|
|
}
|
|
}
|
|
//insert new edges
|
|
for ( unsigned threadNum = 0; threadNum < maxThreads; ++threadNum ) {
|
|
_ThreadData& data = *threadData[threadNum];
|
|
BOOST_FOREACH(const _ContractorEdge& edge, data.insertedEdges) {
|
|
_DynamicGraph::EdgeIterator currentEdgeID = _graph->FindEdge(edge.source, edge.target);
|
|
if(currentEdgeID < _graph->EndEdges(edge.source) ) {
|
|
_DynamicGraph::EdgeData & currentEdgeData = _graph->GetEdgeData(currentEdgeID);
|
|
if( currentEdgeData.shortcut
|
|
&& edge.data.forward == currentEdgeData.forward
|
|
&& edge.data.backward == currentEdgeData.backward ) {
|
|
currentEdgeData.distance = std::min(currentEdgeData.distance, edge.data.distance);
|
|
continue;
|
|
}
|
|
}
|
|
_graph->InsertEdge( edge.source, edge.target, edge.data );
|
|
}
|
|
data.insertedEdges.clear();
|
|
}
|
|
//update priorities
|
|
#pragma omp parallel
|
|
{
|
|
_ThreadData* data = threadData[omp_get_thread_num()];
|
|
#pragma omp for schedule ( guided ) nowait
|
|
for ( int position = firstIndependent ; position < last; ++position ) {
|
|
NodeID x = remainingNodes[position].id;
|
|
_UpdateNeighbours( nodePriority, nodeData, data, x );
|
|
}
|
|
}
|
|
//remove contracted nodes from the pool
|
|
numberOfContractedNodes += last - firstIndependent;
|
|
remainingNodes.resize( firstIndependent );
|
|
std::vector< _RemainingNodeData>( remainingNodes ).swap( remainingNodes );
|
|
// unsigned maxdegree = 0;
|
|
// unsigned avgdegree = 0;
|
|
// unsigned mindegree = UINT_MAX;
|
|
// unsigned quaddegree = 0;
|
|
//
|
|
// for(unsigned i = 0; i < remainingNodes.size(); ++i) {
|
|
// unsigned degree = _graph->EndEdges(remainingNodes[i].first) - _graph->BeginEdges(remainingNodes[i].first);
|
|
// if(degree > maxdegree)
|
|
// maxdegree = degree;
|
|
// if(degree < mindegree)
|
|
// mindegree = degree;
|
|
//
|
|
// avgdegree += degree;
|
|
// quaddegree += (degree*degree);
|
|
// }
|
|
//
|
|
// avgdegree /= std::max((unsigned)1,(unsigned)remainingNodes.size() );
|
|
// quaddegree /= std::max((unsigned)1,(unsigned)remainingNodes.size() );
|
|
//
|
|
// SimpleLogger().Write() << "rest: " << remainingNodes.size() << ", max: " << maxdegree << ", min: " << mindegree << ", avg: " << avgdegree << ", quad: " << quaddegree;
|
|
|
|
p.printStatus(numberOfContractedNodes);
|
|
}
|
|
BOOST_FOREACH(_ThreadData * data, threadData) {
|
|
delete data;
|
|
}
|
|
threadData.clear();
|
|
}
|
|
|
|
template< class Edge >
|
|
inline void GetEdges( DeallocatingVector< Edge >& edges ) {
|
|
Percent p (_graph->GetNumberOfNodes());
|
|
SimpleLogger().Write() << "Getting edges of minimized graph";
|
|
NodeID numberOfNodes = _graph->GetNumberOfNodes();
|
|
if(_graph->GetNumberOfNodes()) {
|
|
Edge newEdge;
|
|
for ( NodeID node = 0; node < numberOfNodes; ++node ) {
|
|
p.printStatus(node);
|
|
for ( _DynamicGraph::EdgeIterator edge = _graph->BeginEdges( node ), endEdges = _graph->EndEdges( node ); edge < endEdges; ++edge ) {
|
|
const NodeID target = _graph->GetTarget( edge );
|
|
const _DynamicGraph::EdgeData& data = _graph->GetEdgeData( edge );
|
|
if( !oldNodeIDFromNewNodeIDMap.empty() ) {
|
|
newEdge.source = oldNodeIDFromNewNodeIDMap[node];
|
|
newEdge.target = oldNodeIDFromNewNodeIDMap[target];
|
|
} else {
|
|
newEdge.source = node;
|
|
newEdge.target = target;
|
|
}
|
|
BOOST_ASSERT_MSG(
|
|
UINT_MAX != newEdge.source,
|
|
"Source id invalid"
|
|
);
|
|
BOOST_ASSERT_MSG(
|
|
UINT_MAX != newEdge.target,
|
|
"Target id invalid"
|
|
);
|
|
newEdge.data.distance = data.distance;
|
|
newEdge.data.shortcut = data.shortcut;
|
|
if(
|
|
!data.originalViaNodeID &&
|
|
!oldNodeIDFromNewNodeIDMap.empty()
|
|
) {
|
|
newEdge.data.id = oldNodeIDFromNewNodeIDMap[data.id];
|
|
} else {
|
|
newEdge.data.id = data.id;
|
|
}
|
|
BOOST_ASSERT_MSG(
|
|
newEdge.data.id != INT_MAX, //2^31
|
|
"edge id invalid"
|
|
);
|
|
newEdge.data.forward = data.forward;
|
|
newEdge.data.backward = data.backward;
|
|
edges.push_back( newEdge );
|
|
}
|
|
}
|
|
}
|
|
_graph.reset();
|
|
std::vector<NodeID>().swap(oldNodeIDFromNewNodeIDMap);
|
|
BOOST_ASSERT( 0 == oldNodeIDFromNewNodeIDMap.capacity() );
|
|
|
|
TemporaryStorage & tempStorage = TemporaryStorage::GetInstance();
|
|
//loads edges of graph before renumbering, no need for further numbering action.
|
|
NodeID start;
|
|
NodeID target;
|
|
_DynamicGraph::EdgeData data;
|
|
|
|
Edge restored_edge;
|
|
for(unsigned i = 0; i < temp_edge_counter; ++i) {
|
|
tempStorage.ReadFromSlot(edge_storage_slot, (char*)&start, sizeof(NodeID));
|
|
tempStorage.ReadFromSlot(edge_storage_slot, (char*)&target, sizeof(NodeID));
|
|
tempStorage.ReadFromSlot(edge_storage_slot, (char*)&data, sizeof(_DynamicGraph::EdgeData));
|
|
restored_edge.source = start;
|
|
restored_edge.target = target;
|
|
restored_edge.data.distance = data.distance;
|
|
restored_edge.data.shortcut = data.shortcut;
|
|
restored_edge.data.id = data.id;
|
|
restored_edge.data.forward = data.forward;
|
|
restored_edge.data.backward = data.backward;
|
|
edges.push_back( restored_edge );
|
|
}
|
|
tempStorage.DeallocateSlot(edge_storage_slot);
|
|
}
|
|
|
|
private:
|
|
inline void _Dijkstra( const int maxDistance, const unsigned numTargets, const int maxNodes, _ThreadData* const data, const NodeID middleNode ){
|
|
|
|
_Heap& heap = data->heap;
|
|
|
|
int nodes = 0;
|
|
unsigned targetsFound = 0;
|
|
while ( heap.Size() > 0 ) {
|
|
const NodeID node = heap.DeleteMin();
|
|
const int distance = heap.GetKey( node );
|
|
const short currentHop = heap.GetData( node ).hop+1;
|
|
|
|
if ( ++nodes > maxNodes )
|
|
return;
|
|
//Destination settled?
|
|
if ( distance > maxDistance )
|
|
return;
|
|
|
|
if ( heap.GetData( node ).target ) {
|
|
++targetsFound;
|
|
if ( targetsFound >= numTargets ) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
//iterate over all edges of node
|
|
for ( _DynamicGraph::EdgeIterator edge = _graph->BeginEdges( node ), endEdges = _graph->EndEdges( node ); edge != endEdges; ++edge ) {
|
|
const ContractorEdgeData& data = _graph->GetEdgeData( edge );
|
|
if ( !data.forward ){
|
|
continue;
|
|
}
|
|
const NodeID to = _graph->GetTarget( edge );
|
|
if(middleNode == to) {
|
|
continue;
|
|
}
|
|
const int toDistance = distance + data.distance;
|
|
|
|
//New Node discovered -> Add to Heap + Node Info Storage
|
|
if ( !heap.WasInserted( to ) ) {
|
|
heap.Insert( to, toDistance, _HeapData(currentHop, false) );
|
|
}
|
|
//Found a shorter Path -> Update distance
|
|
else if ( toDistance < heap.GetKey( to ) ) {
|
|
heap.DecreaseKey( to, toDistance );
|
|
heap.GetData( to ).hop = currentHop;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
inline float _Evaluate( _ThreadData* const data, _PriorityData* const nodeData, const NodeID node){
|
|
_ContractionInformation stats;
|
|
|
|
//perform simulated contraction
|
|
_Contract< true> ( data, node, &stats );
|
|
|
|
// Result will contain the priority
|
|
float result;
|
|
if ( 0 == (stats.edgesDeleted*stats.originalEdgesDeleted) )
|
|
result = 1 * nodeData->depth;
|
|
else
|
|
result = 2 * ((( float ) stats.edgesAdded ) / stats.edgesDeleted ) + 4 * ((( float ) stats.originalEdgesAdded ) / stats.originalEdgesDeleted ) + 1 * nodeData->depth;
|
|
assert( result >= 0 );
|
|
return result;
|
|
}
|
|
|
|
template< bool Simulate >
|
|
inline bool _Contract( _ThreadData* data, NodeID node, _ContractionInformation* stats = NULL ) {
|
|
_Heap& heap = data->heap;
|
|
int insertedEdgesSize = data->insertedEdges.size();
|
|
std::vector< _ContractorEdge >& insertedEdges = data->insertedEdges;
|
|
|
|
for ( _DynamicGraph::EdgeIterator inEdge = _graph->BeginEdges( node ), endInEdges = _graph->EndEdges( node ); inEdge != endInEdges; ++inEdge ) {
|
|
const ContractorEdgeData& inData = _graph->GetEdgeData( inEdge );
|
|
const NodeID source = _graph->GetTarget( inEdge );
|
|
if ( Simulate ) {
|
|
assert( stats != NULL );
|
|
++stats->edgesDeleted;
|
|
stats->originalEdgesDeleted += inData.originalEdges;
|
|
}
|
|
if ( !inData.backward )
|
|
continue;
|
|
|
|
heap.Clear();
|
|
heap.Insert( source, 0, _HeapData() );
|
|
int maxDistance = 0;
|
|
unsigned numTargets = 0;
|
|
|
|
for ( _DynamicGraph::EdgeIterator outEdge = _graph->BeginEdges( node ), endOutEdges = _graph->EndEdges( node ); outEdge != endOutEdges; ++outEdge ) {
|
|
const ContractorEdgeData& outData = _graph->GetEdgeData( outEdge );
|
|
if ( !outData.forward ) {
|
|
continue;
|
|
}
|
|
const NodeID target = _graph->GetTarget( outEdge );
|
|
const int pathDistance = inData.distance + outData.distance;
|
|
maxDistance = std::max( maxDistance, pathDistance );
|
|
if ( !heap.WasInserted( target ) ) {
|
|
heap.Insert( target, INT_MAX, _HeapData( 0, true ) );
|
|
++numTargets;
|
|
}
|
|
}
|
|
|
|
if( Simulate ) {
|
|
_Dijkstra( maxDistance, numTargets, 1000, data, node );
|
|
} else {
|
|
_Dijkstra( maxDistance, numTargets, 2000, data, node );
|
|
}
|
|
for ( _DynamicGraph::EdgeIterator outEdge = _graph->BeginEdges( node ), endOutEdges = _graph->EndEdges( node ); outEdge != endOutEdges; ++outEdge ) {
|
|
const ContractorEdgeData& outData = _graph->GetEdgeData( outEdge );
|
|
if ( !outData.forward ) {
|
|
continue;
|
|
}
|
|
const NodeID target = _graph->GetTarget( outEdge );
|
|
const int pathDistance = inData.distance + outData.distance;
|
|
const int distance = heap.GetKey( target );
|
|
if ( pathDistance < distance ) {
|
|
if ( Simulate ) {
|
|
assert( stats != NULL );
|
|
stats->edgesAdded+=2;
|
|
stats->originalEdgesAdded += 2* ( outData.originalEdges + inData.originalEdges );
|
|
} else {
|
|
_ContractorEdge newEdge;
|
|
newEdge.source = source;
|
|
newEdge.target = target;
|
|
newEdge.data = ContractorEdgeData( pathDistance, outData.originalEdges + inData.originalEdges, node/*, 0, inData.turnInstruction*/, true, true, false);;
|
|
insertedEdges.push_back( newEdge );
|
|
std::swap( newEdge.source, newEdge.target );
|
|
newEdge.data.forward = false;
|
|
newEdge.data.backward = true;
|
|
insertedEdges.push_back( newEdge );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if ( !Simulate ) {
|
|
for ( int i = insertedEdgesSize, iend = insertedEdges.size(); i < iend; ++i ) {
|
|
bool found = false;
|
|
for ( int other = i + 1 ; other < iend ; ++other ) {
|
|
if ( insertedEdges[other].source != insertedEdges[i].source )
|
|
continue;
|
|
if ( insertedEdges[other].target != insertedEdges[i].target )
|
|
continue;
|
|
if ( insertedEdges[other].data.distance != insertedEdges[i].data.distance )
|
|
continue;
|
|
if ( insertedEdges[other].data.shortcut != insertedEdges[i].data.shortcut )
|
|
continue;
|
|
insertedEdges[other].data.forward |= insertedEdges[i].data.forward;
|
|
insertedEdges[other].data.backward |= insertedEdges[i].data.backward;
|
|
found = true;
|
|
break;
|
|
}
|
|
if ( !found ) {
|
|
insertedEdges[insertedEdgesSize++] = insertedEdges[i];
|
|
}
|
|
}
|
|
insertedEdges.resize( insertedEdgesSize );
|
|
}
|
|
return true;
|
|
}
|
|
|
|
inline void _DeleteIncomingEdges( _ThreadData* data, const NodeID node ) {
|
|
std::vector< NodeID >& neighbours = data->neighbours;
|
|
neighbours.clear();
|
|
|
|
//find all neighbours
|
|
for ( _DynamicGraph::EdgeIterator e = _graph->BeginEdges( node ) ; e < _graph->EndEdges( node ) ; ++e ) {
|
|
const NodeID u = _graph->GetTarget( e );
|
|
if ( u != node )
|
|
neighbours.push_back( u );
|
|
}
|
|
//eliminate duplicate entries ( forward + backward edges )
|
|
std::sort( neighbours.begin(), neighbours.end() );
|
|
neighbours.resize( std::unique( neighbours.begin(), neighbours.end() ) - neighbours.begin() );
|
|
|
|
for ( int i = 0, e = ( int ) neighbours.size(); i < e; ++i ) {
|
|
_graph->DeleteEdgesTo( neighbours[i], node );
|
|
}
|
|
}
|
|
|
|
inline bool _UpdateNeighbours( std::vector< float > & priorities, std::vector< _PriorityData > & nodeData, _ThreadData* const data, const NodeID node) {
|
|
std::vector< NodeID >& neighbours = data->neighbours;
|
|
neighbours.clear();
|
|
|
|
//find all neighbours
|
|
for ( _DynamicGraph::EdgeIterator e = _graph->BeginEdges( node ), endEdges = _graph->EndEdges( node ) ; e < endEdges ; ++e ) {
|
|
const NodeID u = _graph->GetTarget( e );
|
|
if ( u == node )
|
|
continue;
|
|
neighbours.push_back( u );
|
|
nodeData[u].depth = (std::max)(nodeData[node].depth + 1, nodeData[u].depth );
|
|
}
|
|
//eliminate duplicate entries ( forward + backward edges )
|
|
std::sort( neighbours.begin(), neighbours.end() );
|
|
neighbours.resize( std::unique( neighbours.begin(), neighbours.end() ) - neighbours.begin() );
|
|
|
|
BOOST_FOREACH(const NodeID u, neighbours) {
|
|
priorities[u] = _Evaluate( data, &( nodeData )[u], u );
|
|
}
|
|
return true;
|
|
}
|
|
|
|
inline bool _IsIndependent( const std::vector< float >& priorities/*, const std::vector< _PriorityData >& nodeData*/, _ThreadData* const data, NodeID node ) const {
|
|
const double priority = priorities[node];
|
|
|
|
std::vector< NodeID >& neighbours = data->neighbours;
|
|
neighbours.clear();
|
|
|
|
for ( _DynamicGraph::EdgeIterator e = _graph->BeginEdges( node ) ; e < _graph->EndEdges( node ) ; ++e ) {
|
|
const NodeID target = _graph->GetTarget( e );
|
|
if(node==target)
|
|
continue;
|
|
const double targetPriority = priorities[target];
|
|
assert( targetPriority >= 0 );
|
|
//found a neighbour with lower priority?
|
|
if ( priority > targetPriority )
|
|
return false;
|
|
//tie breaking
|
|
if ( fabs(priority - targetPriority) < std::numeric_limits<double>::epsilon() && bias(node, target) ) {
|
|
return false;
|
|
}
|
|
neighbours.push_back( target );
|
|
}
|
|
|
|
std::sort( neighbours.begin(), neighbours.end() );
|
|
neighbours.resize( std::unique( neighbours.begin(), neighbours.end() ) - neighbours.begin() );
|
|
|
|
//examine all neighbours that are at most 2 hops away
|
|
BOOST_FOREACH(const NodeID u, neighbours) {
|
|
for ( _DynamicGraph::EdgeIterator e = _graph->BeginEdges( u ) ; e < _graph->EndEdges( u ) ; ++e ) {
|
|
const NodeID target = _graph->GetTarget( e );
|
|
if(node==target)
|
|
continue;
|
|
|
|
const double targetPriority = priorities[target];
|
|
assert( targetPriority >= 0 );
|
|
//found a neighbour with lower priority?
|
|
if ( priority > targetPriority)
|
|
return false;
|
|
//tie breaking
|
|
if ( fabs(priority - targetPriority) < std::numeric_limits<double>::epsilon() && bias(node, target) ) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/**
|
|
* This bias function takes up 22 assembly instructions in total on X86
|
|
*/
|
|
inline bool bias(const NodeID a, const NodeID b) const {
|
|
unsigned short hasha = fastHash(a);
|
|
unsigned short hashb = fastHash(b);
|
|
|
|
//The compiler optimizes that to conditional register flags but without branching statements!
|
|
if(hasha != hashb)
|
|
return hasha < hashb;
|
|
return a < b;
|
|
}
|
|
|
|
boost::shared_ptr<_DynamicGraph> _graph;
|
|
std::vector<_DynamicGraph::InputEdge> contractedEdges;
|
|
unsigned edge_storage_slot;
|
|
uint64_t temp_edge_counter;
|
|
std::vector<NodeID> oldNodeIDFromNewNodeIDMap;
|
|
XORFastHash fastHash;
|
|
};
|
|
|
|
#endif // CONTRACTOR_H_INCLUDED
|