osrm-backend/include/engine/routing_algorithms/routing_base_ch.hpp
Kajari Ghosh fbba23e66d set up for computing durations while unpacking them
copy dummy cache over

implement retrievePackedPathFromSearchSpace

calculate packed_path_from_source_to_middle

debugging the retrievePackedPathFromSearchSpace function implementation

adding in packed_path_from_source_to_middle

cache is partway working

unpack path and get duration that way

the computeDurationForEdge method

comment out cache

clean up the code

move vector creation and allocation to outside of loop

hack to not return vectors on facade.GetUncompressedForwardDurations and facade.GetUncompressedReverseDurations

clean up hack

add exclude_index to cache key

clearing cache with timestamp

rebase against vectors->range pr

swapped out unordered_map cache with a boost_lru implementation

calculation for cache size

cleaned up comment about cache size calculations

unit tests

cache uses unsigned char for exclude index

clean up cache and unit tests

pass in a hashed key to the threadlocal cache

500 mb threadlocal 2 t

fixes and a rebase

correct calculation
2018-05-04 11:31:38 -04:00

624 lines
25 KiB
C++

#ifndef OSRM_ENGINE_ROUTING_BASE_CH_HPP
#define OSRM_ENGINE_ROUTING_BASE_CH_HPP
#include "engine/algorithm.hpp"
#include "engine/datafacade.hpp"
#include "engine/routing_algorithms/routing_base.hpp"
#include "engine/search_engine_data.hpp"
#include "engine/unpacking_cache.hpp"
#include "util/typedefs.hpp"
#include <boost/assert.hpp>
namespace osrm
{
namespace engine
{
namespace routing_algorithms
{
namespace ch
{
// Stalling
template <bool DIRECTION, typename HeapT>
bool stallAtNode(const DataFacade<Algorithm> &facade,
const NodeID node,
const EdgeWeight weight,
const HeapT &query_heap)
{
for (auto edge : facade.GetAdjacentEdgeRange(node))
{
const auto &data = facade.GetEdgeData(edge);
if (DIRECTION == REVERSE_DIRECTION ? data.forward : data.backward)
{
const NodeID to = facade.GetTarget(edge);
const EdgeWeight edge_weight = data.weight;
BOOST_ASSERT_MSG(edge_weight > 0, "edge_weight invalid");
if (query_heap.WasInserted(to))
{
if (query_heap.GetKey(to) + edge_weight < weight)
{
return true;
}
}
}
}
return false;
}
template <bool DIRECTION>
void relaxOutgoingEdges(const DataFacade<Algorithm> &facade,
const NodeID node,
const EdgeWeight weight,
SearchEngineData<Algorithm>::QueryHeap &heap)
{
for (const auto edge : facade.GetAdjacentEdgeRange(node))
{
const auto &data = facade.GetEdgeData(edge);
if (DIRECTION == FORWARD_DIRECTION ? data.forward : data.backward)
{
const NodeID to = facade.GetTarget(edge);
const EdgeWeight edge_weight = data.weight;
BOOST_ASSERT_MSG(edge_weight > 0, "edge_weight invalid");
const EdgeWeight to_weight = weight + edge_weight;
// New Node discovered -> Add to Heap + Node Info Storage
if (!heap.WasInserted(to))
{
heap.Insert(to, to_weight, node);
}
// Found a shorter Path -> Update weight
else if (to_weight < heap.GetKey(to))
{
// new parent
heap.GetData(to).parent = node;
heap.DecreaseKey(to, to_weight);
}
}
}
}
/*
min_edge_offset is needed in case we use multiple
nodes as start/target nodes with different (even negative) offsets.
In that case the termination criterion is not correct
anymore.
Example:
forward heap: a(-100), b(0),
reverse heap: c(0), d(100)
a --- d
\ /
/ \
b --- c
This is equivalent to running a bi-directional Dijkstra on the following graph:
a --- d
/ \ / \
y x z
\ / \ /
b --- c
The graph is constructed by inserting nodes y and z that are connected to the initial nodes
using edges (y, a) with weight -100, (y, b) with weight 0 and,
(d, z) with weight 100, (c, z) with weight 0 corresponding.
Since we are dealing with a graph that contains _negative_ edges,
we need to add an offset to the termination criterion.
*/
static constexpr bool ENABLE_STALLING = true;
static constexpr bool DISABLE_STALLING = false;
template <bool DIRECTION, bool STALLING = ENABLE_STALLING>
void routingStep(const DataFacade<Algorithm> &facade,
SearchEngineData<Algorithm>::QueryHeap &forward_heap,
SearchEngineData<Algorithm>::QueryHeap &reverse_heap,
NodeID &middle_node_id,
EdgeWeight &upper_bound,
EdgeWeight min_edge_offset,
const bool force_loop_forward,
const bool force_loop_reverse)
{
const NodeID node = forward_heap.DeleteMin();
const EdgeWeight weight = forward_heap.GetKey(node);
if (reverse_heap.WasInserted(node))
{
const EdgeWeight new_weight = reverse_heap.GetKey(node) + weight;
if (new_weight < upper_bound)
{
// if loops are forced, they are so at the source
if ((force_loop_forward && forward_heap.GetData(node).parent == node) ||
(force_loop_reverse && reverse_heap.GetData(node).parent == node) ||
// in this case we are looking at a bi-directional way where the source
// and target phantom are on the same edge based node
new_weight < 0)
{
// check whether there is a loop present at the node
for (const auto edge : facade.GetAdjacentEdgeRange(node))
{
const auto &data = facade.GetEdgeData(edge);
if (DIRECTION == FORWARD_DIRECTION ? data.forward : data.backward)
{
const NodeID to = facade.GetTarget(edge);
if (to == node)
{
const EdgeWeight edge_weight = data.weight;
const EdgeWeight loop_weight = new_weight + edge_weight;
if (loop_weight >= 0 && loop_weight < upper_bound)
{
middle_node_id = node;
upper_bound = loop_weight;
}
}
}
}
}
else
{
BOOST_ASSERT(new_weight >= 0);
middle_node_id = node;
upper_bound = new_weight;
}
}
}
// make sure we don't terminate too early if we initialize the weight
// for the nodes in the forward heap with the forward/reverse offset
BOOST_ASSERT(min_edge_offset <= 0);
if (weight + min_edge_offset > upper_bound)
{
forward_heap.DeleteAll();
return;
}
// Stalling
if (STALLING && stallAtNode<DIRECTION>(facade, node, weight, forward_heap))
{
return;
}
relaxOutgoingEdges<DIRECTION>(facade, node, weight, forward_heap);
}
template <bool UseDuration>
EdgeWeight getLoopWeight(const DataFacade<Algorithm> &facade, NodeID node)
{
EdgeWeight loop_weight = UseDuration ? MAXIMAL_EDGE_DURATION : INVALID_EDGE_WEIGHT;
for (auto edge : facade.GetAdjacentEdgeRange(node))
{
const auto &data = facade.GetEdgeData(edge);
if (data.forward)
{
const NodeID to = facade.GetTarget(edge);
if (to == node)
{
const auto value = UseDuration ? data.duration : data.weight;
loop_weight = std::min(loop_weight, value);
}
}
}
return loop_weight;
}
/**
* Given a sequence of connected `NodeID`s in the CH graph, performs a depth-first unpacking of
* the shortcut
* edges. For every "original" edge found, it calls the `callback` with the two NodeIDs for the
* edge, and the EdgeData
* for that edge.
*
* The primary purpose of this unpacking is to expand a path through the CH into the original
* route through the
* pre-contracted graph.
*
* Because of the depth-first-search, the `callback` will effectively be called in sequence for
* the original route
* from beginning to end.
*
* @param packed_path_begin iterator pointing to the start of the NodeID list
* @param packed_path_end iterator pointing to the end of the NodeID list
* @param callback void(const std::pair<NodeID, NodeID>, const EdgeID &) called for each
* original edge found.
*/
template <typename BidirectionalIterator, typename Callback>
void unpackPath(const DataFacade<Algorithm> &facade,
BidirectionalIterator packed_path_begin,
BidirectionalIterator packed_path_end,
Callback &&callback)
{
// make sure we have at least something to unpack
if (packed_path_begin == packed_path_end)
return;
std::stack<std::pair<NodeID, NodeID>> recursion_stack;
// We have to push the path in reverse order onto the stack because it's LIFO.
for (auto current = std::prev(packed_path_end); current != packed_path_begin;
current = std::prev(current))
{
recursion_stack.emplace(*std::prev(current), *current);
}
std::pair<NodeID, NodeID> edge;
while (!recursion_stack.empty())
{
edge = recursion_stack.top();
recursion_stack.pop();
// Look for an edge on the forward CH graph (.forward)
EdgeID smaller_edge_id = facade.FindSmallestEdge(
edge.first, edge.second, [](const auto &data) { return data.forward; });
// If we didn't find one there, the we might be looking at a part of the path that
// was found using the backward search. Here, we flip the node order (.second, .first)
// and only consider edges with the `.backward` flag.
if (SPECIAL_EDGEID == smaller_edge_id)
{
smaller_edge_id = facade.FindSmallestEdge(
edge.second, edge.first, [](const auto &data) { return data.backward; });
}
// If we didn't find anything *still*, then something is broken and someone has
// called this function with bad values.
BOOST_ASSERT_MSG(smaller_edge_id != SPECIAL_EDGEID, "Invalid smaller edge ID");
const auto &data = facade.GetEdgeData(smaller_edge_id);
BOOST_ASSERT_MSG(data.weight != std::numeric_limits<EdgeWeight>::max(),
"edge weight invalid");
// If the edge is a shortcut, we need to add the two halfs to the stack.
if (data.shortcut)
{ // unpack
const NodeID middle_node_id = data.turn_id;
// Note the order here - we're adding these to a stack, so we
// want the first->middle to get visited before middle->second
recursion_stack.emplace(middle_node_id, edge.second);
recursion_stack.emplace(edge.first, middle_node_id);
}
else
{
// We found an original edge, call our callback.
std::forward<Callback>(callback)(edge, smaller_edge_id);
}
}
}
template <typename BidirectionalIterator>
EdgeDistance calculateEBGNodeDuration(const DataFacade<Algorithm> &facade,
BidirectionalIterator packed_path_begin,
BidirectionalIterator packed_path_end,
UnpackingCache &unpacking_cache)
{
// Make sure we have at least something to unpack
if (packed_path_begin == packed_path_end ||
std::distance(packed_path_begin, packed_path_end) <= 1)
return 0;
std::stack<std::tuple<NodeID, NodeID, bool>> recursion_stack;
std::stack<EdgeDuration> duration_stack;
// We have to push the path in reverse order onto the stack because it's LIFO.
for (auto current = std::prev(packed_path_end); current != packed_path_begin;
current = std::prev(current))
{
recursion_stack.emplace(*std::prev(current), *current, false);
}
std::tuple<NodeID, NodeID, bool> edge;
while (!recursion_stack.empty())
{
edge = recursion_stack.top();
recursion_stack.pop();
// Have we processed the edge before? tells us if we have values in the durations stack that
// we can add up
if (!std::get<2>(edge))
{ // haven't processed edge before, so process it in the body!
std::get<2>(edge) = true; // mark that this edge will now be processed
if (unpacking_cache.IsEdgeInCache(std::make_tuple(
std::get<0>(edge), std::get<1>(edge), facade.GetExcludeIndex())))
{
EdgeDuration duration = unpacking_cache.GetDuration(std::make_tuple(
std::get<0>(edge), std::get<1>(edge), facade.GetExcludeIndex()));
duration_stack.emplace(duration);
}
else
{
// Look for an edge on the forward CH graph (.forward)
EdgeID smaller_edge_id =
facade.FindSmallestEdge(std::get<0>(edge),
std::get<1>(edge),
[](const auto &data) { return data.forward; });
// If we didn't find one there, the we might be looking at a part of the path that
// was found using the backward search. Here, we flip the node order (.second,
// .first) and only consider edges with the `.backward` flag.
if (SPECIAL_EDGEID == smaller_edge_id)
{
smaller_edge_id =
facade.FindSmallestEdge(std::get<1>(edge),
std::get<0>(edge),
[](const auto &data) { return data.backward; });
}
// If we didn't find anything *still*, then something is broken and someone has
// called this function with bad values.
BOOST_ASSERT_MSG(smaller_edge_id != SPECIAL_EDGEID, "Invalid smaller edge ID");
const auto &data = facade.GetEdgeData(smaller_edge_id);
BOOST_ASSERT_MSG(data.weight != std::numeric_limits<EdgeWeight>::max(),
"edge weight invalid");
// If the edge is a shortcut, we need to add the two halfs to the stack.
if (data.shortcut)
{ // unpack
const NodeID middle_node_id = data.turn_id;
// Note the order here - we're adding these to a stack, so we
// want the first->middle to get visited before middle->second
recursion_stack.emplace(edge);
recursion_stack.emplace(middle_node_id, std::get<1>(edge), false);
recursion_stack.emplace(std::get<0>(edge), middle_node_id, false);
}
else
{
auto temp = std::make_tuple(
std::get<0>(edge), std::get<1>(edge), facade.GetExcludeIndex());
// compute the duration here and put it onto the duration stack using method
// similar to annotatePath but smaller
EdgeDuration duration =
computeEdgeDuration(facade, std::get<0>(edge), data.turn_id);
duration_stack.emplace(duration);
unpacking_cache.AddEdge(temp, duration);
}
}
}
else
{ // the edge has already been processed. this means that there are enough values in the
// durations stack
BOOST_ASSERT_MSG(duration_stack.size() >= 2,
"There are not enough (at least 2) values on the duration stack");
EdgeDuration edge1 = duration_stack.top();
duration_stack.pop();
EdgeDuration edge2 = duration_stack.top();
duration_stack.pop();
EdgeDuration duration = edge1 + edge2;
duration_stack.emplace(duration);
unpacking_cache.AddEdge(
std::make_tuple(std::get<0>(edge), std::get<1>(edge), facade.GetExcludeIndex()),
duration);
}
}
EdgeDuration total_duration = 0;
while (!duration_stack.empty())
{
total_duration += duration_stack.top();
duration_stack.pop();
}
return total_duration;
}
template <typename BidirectionalIterator>
EdgeDistance calculateEBGNodeDistance(const DataFacade<Algorithm> &facade,
BidirectionalIterator packed_path_begin,
BidirectionalIterator packed_path_end,
UnpackingCache &unpacking_cache)
{
// Make sure we have at least something to unpack
if (packed_path_begin == packed_path_end ||
std::distance(packed_path_begin, packed_path_end) <= 1)
return 0;
std::stack<std::tuple<NodeID, NodeID, bool>> recursion_stack;
std::stack<EdgeDistance> distance_stack;
// We have to push the path in reverse order onto the stack because it's LIFO.
for (auto current = std::prev(packed_path_end); current > packed_path_begin;
current = std::prev(current))
{
recursion_stack.emplace(*std::prev(current), *current, false);
}
std::tuple<NodeID, NodeID, bool> edge;
while (!recursion_stack.empty())
{
edge = recursion_stack.top();
recursion_stack.pop();
// Have we processed the edge before? tells us if we have values in the durations stack that
// we can add up
if (!std::get<2>(edge))
{ // haven't processed edge before, so process it in the body!
std::get<2>(edge) = true; // mark that this edge will now be processed
if (unpacking_cache.IsEdgeInCache(std::make_tuple(
std::get<0>(edge), std::get<1>(edge), facade.GetExcludeIndex())))
{
EdgeDuration distance = unpacking_cache.GetDistance(std::make_tuple(
std::get<0>(edge), std::get<1>(edge), facade.GetExcludeIndex()));
distance_stack.emplace(distance);
}
else
{
// Look for an edge on the forward CH graph (.forward)
EdgeID smaller_edge_id =
facade.FindSmallestEdge(std::get<0>(edge),
std::get<1>(edge),
[](const auto &data) { return data.forward; });
// If we didn't find one there, the we might be looking at a part of the path that
// was found using the backward search. Here, we flip the node order (.second,
// .first) and only consider edges with the `.backward` flag.
if (SPECIAL_EDGEID == smaller_edge_id)
{
smaller_edge_id =
facade.FindSmallestEdge(std::get<1>(edge),
std::get<0>(edge),
[](const auto &data) { return data.backward; });
}
// If we didn't find anything *still*, then something is broken and someone has
// called this function with bad values.
BOOST_ASSERT_MSG(smaller_edge_id != SPECIAL_EDGEID, "Invalid smaller edge ID");
const auto &data = facade.GetEdgeData(smaller_edge_id);
BOOST_ASSERT_MSG(data.weight != std::numeric_limits<EdgeWeight>::max(),
"edge weight invalid");
// If the edge is a shortcut, we need to add the two halfs to the stack.
if (data.shortcut)
{ // unpack
const NodeID middle_node_id = data.turn_id;
// Note the order here - we're adding these to a stack, so we
// want the first->middle to get visited before middle->second
recursion_stack.emplace(edge);
recursion_stack.emplace(middle_node_id, std::get<1>(edge), false);
recursion_stack.emplace(std::get<0>(edge), middle_node_id, false);
}
else
{
auto temp = std::make_tuple(
std::get<0>(edge), std::get<1>(edge), facade.GetExcludeIndex());
// compute the distance here and put it onto the distance stack using method
// similar to annotatePath but smaller
EdgeDistance distance = computeEdgeDistance(facade, std::get<0>(edge));
distance_stack.emplace(distance);
unpacking_cache.AddEdge(temp, distance);
}
}
}
else
{
// the edge has already been processed. this means that there are enough values in the
// distances stack
BOOST_ASSERT_MSG(distance_stack.size() >= 2,
"There are not enough (at least 2) values on the distance stack");
EdgeDistance distance1 = distance_stack.top();
distance_stack.pop();
EdgeDistance distance2 = distance_stack.top();
distance_stack.pop();
EdgeDistance distance = distance1 + distance2;
distance_stack.emplace(distance);
unpacking_cache.AddEdge(
std::make_tuple(std::get<0>(edge), std::get<1>(edge), facade.GetExcludeIndex()),
distance);
}
}
EdgeDistance total_distance = 0;
while (!distance_stack.empty())
{
total_distance += distance_stack.top();
distance_stack.pop();
}
return total_distance;
}
template <typename RandomIter, typename FacadeT>
void unpackPath(const FacadeT &facade,
RandomIter packed_path_begin,
RandomIter packed_path_end,
const PhantomNodes &phantom_nodes,
std::vector<PathData> &unpacked_path)
{
const auto nodes_number = std::distance(packed_path_begin, packed_path_end);
BOOST_ASSERT(nodes_number > 0);
std::vector<NodeID> unpacked_nodes;
std::vector<EdgeID> unpacked_edges;
unpacked_nodes.reserve(nodes_number);
unpacked_edges.reserve(nodes_number);
unpacked_nodes.push_back(*packed_path_begin);
if (nodes_number > 1)
{
unpackPath(facade,
packed_path_begin,
packed_path_end,
[&](std::pair<NodeID, NodeID> &edge, const auto &edge_id) {
BOOST_ASSERT(edge.first == unpacked_nodes.back());
unpacked_nodes.push_back(edge.second);
unpacked_edges.push_back(edge_id);
});
}
annotatePath(facade, phantom_nodes, unpacked_nodes, unpacked_edges, unpacked_path);
}
/**
* Unpacks a single edge (NodeID->NodeID) from the CH graph down to it's original non-shortcut
* route.
* @param from the node the CH edge starts at
* @param to the node the CH edge finishes at
* @param unpacked_path the sequence of original NodeIDs that make up the expanded CH edge
*/
void unpackEdge(const DataFacade<Algorithm> &facade,
const NodeID from,
const NodeID to,
std::vector<NodeID> &unpacked_path);
void retrievePackedPathFromHeap(const SearchEngineData<Algorithm>::QueryHeap &forward_heap,
const SearchEngineData<Algorithm>::QueryHeap &reverse_heap,
const NodeID middle_node_id,
std::vector<NodeID> &packed_path);
void retrievePackedPathFromSingleHeap(const SearchEngineData<Algorithm>::QueryHeap &search_heap,
const NodeID middle_node_id,
std::vector<NodeID> &packed_path);
void retrievePackedPathFromSingleManyToManyHeap(
const SearchEngineData<Algorithm>::ManyToManyQueryHeap &search_heap,
const NodeID middle_node_id,
std::vector<NodeID> &packed_path);
// assumes that heaps are already setup correctly.
// ATTENTION: This only works if no additional offset is supplied next to the Phantom Node
// Offsets.
// In case additional offsets are supplied, you might have to force a loop first.
// A forced loop might be necessary, if source and target are on the same segment.
// If this is the case and the offsets of the respective direction are larger for the source
// than the target
// then a force loop is required (e.g. source_phantom.forward_segment_id ==
// target_phantom.forward_segment_id
// && source_phantom.GetForwardWeightPlusOffset() > target_phantom.GetForwardWeightPlusOffset())
// requires
// a force loop, if the heaps have been initialized with positive offsets.
void search(SearchEngineData<Algorithm> &engine_working_data,
const DataFacade<Algorithm> &facade,
SearchEngineData<Algorithm>::QueryHeap &forward_heap,
SearchEngineData<Algorithm>::QueryHeap &reverse_heap,
std::int32_t &weight,
std::vector<NodeID> &packed_leg,
const bool force_loop_forward,
const bool force_loop_reverse,
const PhantomNodes &phantom_nodes,
const int duration_upper_bound = INVALID_EDGE_WEIGHT);
// Requires the heaps for be empty
// If heaps should be adjusted to be initialized outside of this function,
// the addition of force_loop parameters might be required
double getNetworkDistance(SearchEngineData<Algorithm> &engine_working_data,
const DataFacade<ch::Algorithm> &facade,
SearchEngineData<Algorithm>::QueryHeap &forward_heap,
SearchEngineData<Algorithm>::QueryHeap &reverse_heap,
const PhantomNode &source_phantom,
const PhantomNode &target_phantom,
int duration_upper_bound = INVALID_EDGE_WEIGHT);
} // namespace ch
} // namespace routing_algorithms
} // namespace engine
} // namespace osrm
#endif // OSRM_ENGINE_ROUTING_BASE_CH_HPP