225 lines
11 KiB
C++
225 lines
11 KiB
C++
/*
|
|
open source routing machine
|
|
Copyright (C) Dennis Luxen, others 2010
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU AFFERO General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Affero General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
or see http://www.gnu.org/licenses/agpl.txt.
|
|
*/
|
|
|
|
|
|
|
|
#ifndef BASICROUTINGINTERFACE_H_
|
|
#define BASICROUTINGINTERFACE_H_
|
|
|
|
#include <cassert>
|
|
#include <climits>
|
|
|
|
#include "../Plugins/RawRouteData.h"
|
|
|
|
template<class QueryDataT>
|
|
class BasicRoutingInterface {
|
|
protected:
|
|
QueryDataT & _queryData;
|
|
public:
|
|
BasicRoutingInterface(QueryDataT & qd) : _queryData(qd) { }
|
|
virtual ~BasicRoutingInterface(){ };
|
|
|
|
inline void RoutingStep(typename QueryDataT::HeapPtr & _forwardHeap, typename QueryDataT::HeapPtr & _backwardHeap, NodeID *middle, int *_upperbound, const int edgeBasedOffset, const bool forwardDirection) const {
|
|
const NodeID node = _forwardHeap->DeleteMin();
|
|
const int distance = _forwardHeap->GetKey(node);
|
|
// INFO((forwardDirection ? "[forw]" : "[back]") << " settled node " << node << " at distance " << distance);
|
|
if(_backwardHeap->WasInserted(node) ){
|
|
// INFO((forwardDirection ? "[forw]" : "[back]") << " scanned node " << node << " in both directions, upper bound: " << *_upperbound);
|
|
const int newDistance = _backwardHeap->GetKey(node) + distance;
|
|
if(newDistance < *_upperbound ){
|
|
if(newDistance>=0 ) {
|
|
// INFO((forwardDirection ? "[forw]" : "[back]") << " -> node " << node << " is new middle at total distance " << newDistance);
|
|
*middle = node;
|
|
*_upperbound = newDistance;
|
|
} else {
|
|
// INFO((forwardDirection ? "[forw]" : "[back]") << " -> ignored " << node << " as new middle at total distance " << newDistance);
|
|
}
|
|
}
|
|
}
|
|
|
|
if(distance-edgeBasedOffset > *_upperbound){
|
|
_forwardHeap->DeleteAll();
|
|
return;
|
|
}
|
|
|
|
for ( typename QueryDataT::Graph::EdgeIterator edge = _queryData.graph->BeginEdges( node ); edge < _queryData.graph->EndEdges(node); edge++ ) {
|
|
const typename QueryDataT::Graph::EdgeData & data = _queryData.graph->GetEdgeData(edge);
|
|
bool backwardDirectionFlag = (!forwardDirection) ? data.forward : data.backward;
|
|
if(backwardDirectionFlag) {
|
|
const NodeID to = _queryData.graph->GetTarget(edge);
|
|
const int edgeWeight = data.distance;
|
|
|
|
assert( edgeWeight > 0 );
|
|
|
|
//Stalling
|
|
if(_forwardHeap->WasInserted( to )) {
|
|
if(_forwardHeap->GetKey( to ) + edgeWeight < distance) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for ( typename QueryDataT::Graph::EdgeIterator edge = _queryData.graph->BeginEdges( node ); edge < _queryData.graph->EndEdges(node); edge++ ) {
|
|
const typename QueryDataT::Graph::EdgeData & data = _queryData.graph->GetEdgeData(edge);
|
|
bool forwardDirectionFlag = (forwardDirection ? data.forward : data.backward );
|
|
if(forwardDirectionFlag) {
|
|
|
|
const NodeID to = _queryData.graph->GetTarget(edge);
|
|
const int edgeWeight = data.distance;
|
|
|
|
assert( edgeWeight > 0 );
|
|
const int toDistance = distance + edgeWeight;
|
|
|
|
//New Node discovered -> Add to Heap + Node Info Storage
|
|
if ( !_forwardHeap->WasInserted( to ) ) {
|
|
// INFO((forwardDirection ? "[forw]" : "[back]") << " scanning edge (" << node << "," << to << ") with distance " << toDistance << ", edge length: " << data.distance);
|
|
_forwardHeap->Insert( to, toDistance, node );
|
|
}
|
|
//Found a shorter Path -> Update distance
|
|
else if ( toDistance < _forwardHeap->GetKey( to ) ) {
|
|
// INFO((forwardDirection ? "[forw]" : "[back]") << " decrease and scanning edge (" << node << "," << to << ") from " << _forwardHeap->GetKey(to) << "to " << toDistance << ", edge length: " << data.distance);
|
|
_forwardHeap->GetData( to ).parent = node;
|
|
_forwardHeap->DecreaseKey( to, toDistance );
|
|
//new parent
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void UnpackPath(std::deque<NodeID> & packedPath, std::vector<_PathData> & unpackedPath) const {
|
|
|
|
const unsigned sizeOfPackedPath = packedPath.size();
|
|
std::stack<std::pair<NodeID, NodeID> > recursionStack;
|
|
|
|
//We have to push the path in reverse order onto the stack because it's LIFO.
|
|
for(unsigned i = sizeOfPackedPath-1; i > 0; --i){
|
|
recursionStack.push(std::make_pair(packedPath[i-1], packedPath[i]));
|
|
}
|
|
|
|
std::pair<NodeID, NodeID> edge;
|
|
while(!recursionStack.empty()) {
|
|
edge = recursionStack.top();
|
|
recursionStack.pop();
|
|
// INFO("Unpacking edge (" << edge.first << "," << edge.second << ")");
|
|
|
|
typename QueryDataT::Graph::EdgeIterator smallestEdge = SPECIAL_EDGEID;
|
|
int smallestWeight = INT_MAX;
|
|
for(typename QueryDataT::Graph::EdgeIterator eit = _queryData.graph->BeginEdges(edge.first);eit < _queryData.graph->EndEdges(edge.first);++eit){
|
|
const int weight = _queryData.graph->GetEdgeData(eit).distance;
|
|
// INFO("Checking edge (" << edge.first << "/" << _queryData.graph->GetTarget(eit) << ")");
|
|
if(_queryData.graph->GetTarget(eit) == edge.second && weight < smallestWeight && _queryData.graph->GetEdgeData(eit).forward){
|
|
// INFO("1smallest " << eit << ", " << weight);
|
|
smallestEdge = eit;
|
|
smallestWeight = weight;
|
|
}
|
|
}
|
|
|
|
if(smallestEdge == SPECIAL_EDGEID){
|
|
for(typename QueryDataT::Graph::EdgeIterator eit = _queryData.graph->BeginEdges(edge.second);eit < _queryData.graph->EndEdges(edge.second);++eit){
|
|
const int weight = _queryData.graph->GetEdgeData(eit).distance;
|
|
// INFO("Checking edge (" << edge.first << "/" << _queryData.graph->GetTarget(eit) << ")");
|
|
if(_queryData.graph->GetTarget(eit) == edge.first && weight < smallestWeight && _queryData.graph->GetEdgeData(eit).backward){
|
|
// INFO("2smallest " << eit << ", " << weight);
|
|
smallestEdge = eit;
|
|
smallestWeight = weight;
|
|
}
|
|
}
|
|
}
|
|
assert(smallestWeight != INT_MAX);
|
|
|
|
const typename QueryDataT::Graph::EdgeData& ed = _queryData.graph->GetEdgeData(smallestEdge);
|
|
if(ed.shortcut) {//unpack
|
|
const NodeID middle = ed.id;
|
|
//again, we need to this in reversed order
|
|
recursionStack.push(std::make_pair(middle, edge.second));
|
|
recursionStack.push(std::make_pair(edge.first, middle));
|
|
} else {
|
|
assert(!ed.shortcut);
|
|
unpackedPath.push_back(_PathData(ed.id, _queryData.nodeHelpDesk->getNameIndexFromEdgeID(ed.id), _queryData.nodeHelpDesk->getTurnInstructionFromEdgeID(ed.id), ed.distance) );
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void UnpackEdge(const NodeID s, const NodeID t, std::vector<NodeID> & unpackedPath) const {
|
|
|
|
std::stack<std::pair<NodeID, NodeID> > recursionStack;
|
|
recursionStack.push(std::make_pair(s,t));
|
|
|
|
std::pair<NodeID, NodeID> edge;
|
|
while(!recursionStack.empty()) {
|
|
edge = recursionStack.top();
|
|
recursionStack.pop();
|
|
|
|
typename QueryDataT::Graph::EdgeIterator smallestEdge = SPECIAL_EDGEID;
|
|
int smallestWeight = INT_MAX;
|
|
for(typename QueryDataT::Graph::EdgeIterator eit = _queryData.graph->BeginEdges(edge.first);eit < _queryData.graph->EndEdges(edge.first);++eit){
|
|
const int weight = _queryData.graph->GetEdgeData(eit).distance;
|
|
if(_queryData.graph->GetTarget(eit) == edge.second && weight < smallestWeight && _queryData.graph->GetEdgeData(eit).forward){
|
|
smallestEdge = eit;
|
|
smallestWeight = weight;
|
|
}
|
|
}
|
|
|
|
if(smallestEdge == SPECIAL_EDGEID){
|
|
for(typename QueryDataT::Graph::EdgeIterator eit = _queryData.graph->BeginEdges(edge.second);eit < _queryData.graph->EndEdges(edge.second);++eit){
|
|
const int weight = _queryData.graph->GetEdgeData(eit).distance;
|
|
if(_queryData.graph->GetTarget(eit) == edge.first && weight < smallestWeight && _queryData.graph->GetEdgeData(eit).backward){
|
|
smallestEdge = eit;
|
|
smallestWeight = weight;
|
|
}
|
|
}
|
|
}
|
|
assert(smallestWeight != INT_MAX);
|
|
|
|
const typename QueryDataT::Graph::EdgeData& ed = _queryData.graph->GetEdgeData(smallestEdge);
|
|
if(ed.shortcut) {//unpack
|
|
const NodeID middle = ed.id;
|
|
//again, we need to this in reversed order
|
|
// INFO("unpacking (" << middle << "," << edge.second << ") and (" << edge.first << "," << middle << ")");
|
|
recursionStack.push(std::make_pair(middle, edge.second));
|
|
recursionStack.push(std::make_pair(edge.first, middle));
|
|
} else {
|
|
assert(!ed.shortcut);
|
|
unpackedPath.push_back(edge.first );
|
|
}
|
|
}
|
|
unpackedPath.push_back(t);
|
|
}
|
|
|
|
inline void RetrievePackedPathFromHeap(const typename QueryDataT::HeapPtr & _fHeap, const typename QueryDataT::HeapPtr & _bHeap, const NodeID middle, std::deque<NodeID>& packedPath) {
|
|
NodeID pathNode = middle;
|
|
while(pathNode != _fHeap->GetData(pathNode).parent) {
|
|
pathNode = _fHeap->GetData(pathNode).parent;
|
|
packedPath.push_front(pathNode);
|
|
}
|
|
|
|
packedPath.push_back(middle);
|
|
pathNode = middle;
|
|
while (pathNode != _bHeap->GetData(pathNode).parent){
|
|
pathNode = _bHeap->GetData(pathNode).parent;
|
|
packedPath.push_back(pathNode);
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
#endif /* BASICROUTINGINTERFACE_H_ */
|