osrm-backend/include/engine/datafacade/internal_datafacade.hpp
2016-04-05 22:58:32 +02:00

521 lines
19 KiB
C++

#ifndef INTERNAL_DATAFACADE_HPP
#define INTERNAL_DATAFACADE_HPP
// implements all data storage when shared memory is _NOT_ used
#include "engine/datafacade/datafacade_base.hpp"
#include "engine/geospatial_query.hpp"
#include "extractor/original_edge_data.hpp"
#include "extractor/query_node.hpp"
#include "contractor/query_edge.hpp"
#include "util/shared_memory_vector_wrapper.hpp"
#include "util/static_graph.hpp"
#include "util/static_rtree.hpp"
#include "util/range_table.hpp"
#include "util/graph_loader.hpp"
#include "util/simple_logger.hpp"
#include "util/rectangle.hpp"
#include "extractor/compressed_edge_container.hpp"
#include "osrm/coordinate.hpp"
#include <cstddef>
#include <cstdlib>
#include <algorithm>
#include <fstream>
#include <ios>
#include <limits>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include <boost/assert.hpp>
#include <boost/filesystem/fstream.hpp>
#include <boost/filesystem/operations.hpp>
#include <boost/filesystem/path.hpp>
#include <boost/thread/tss.hpp>
namespace osrm
{
namespace engine
{
namespace datafacade
{
class InternalDataFacade final : public BaseDataFacade
{
private:
using super = BaseDataFacade;
using QueryGraph = util::StaticGraph<typename super::EdgeData>;
using InputEdge = typename QueryGraph::InputEdge;
using RTreeLeaf = typename super::RTreeLeaf;
using InternalRTree =
util::StaticRTree<RTreeLeaf, util::ShM<util::FixedPointCoordinate, false>::vector, false>;
using InternalGeospatialQuery = GeospatialQuery<InternalRTree, BaseDataFacade>;
InternalDataFacade() {}
unsigned m_check_sum;
unsigned m_number_of_nodes;
std::unique_ptr<QueryGraph> m_query_graph;
std::string m_timestamp;
std::shared_ptr<util::ShM<util::FixedPointCoordinate, false>::vector> m_coordinate_list;
util::ShM<NodeID, false>::vector m_via_node_list;
util::ShM<unsigned, false>::vector m_name_ID_list;
util::ShM<extractor::TurnInstruction, false>::vector m_turn_instruction_list;
util::ShM<extractor::TravelMode, false>::vector m_travel_mode_list;
util::ShM<char, false>::vector m_names_char_list;
util::ShM<unsigned, false>::vector m_geometry_indices;
util::ShM<extractor::CompressedEdgeContainer::CompressedEdge, false>::vector m_geometry_list;
util::ShM<bool, false>::vector m_is_core_node;
util::ShM<unsigned, false>::vector m_segment_weights;
boost::thread_specific_ptr<InternalRTree> m_static_rtree;
boost::thread_specific_ptr<InternalGeospatialQuery> m_geospatial_query;
boost::filesystem::path ram_index_path;
boost::filesystem::path file_index_path;
util::RangeTable<16, false> m_name_table;
void LoadTimestamp(const boost::filesystem::path &timestamp_path)
{
if (boost::filesystem::exists(timestamp_path))
{
util::SimpleLogger().Write() << "Loading Timestamp";
boost::filesystem::ifstream timestamp_stream(timestamp_path);
if (!timestamp_stream)
{
util::SimpleLogger().Write(logWARNING) << timestamp_path << " not found";
}
getline(timestamp_stream, m_timestamp);
}
if (m_timestamp.empty())
{
m_timestamp = "n/a";
}
if (25 < m_timestamp.length())
{
m_timestamp.resize(25);
}
}
void LoadGraph(const boost::filesystem::path &hsgr_path)
{
typename util::ShM<typename QueryGraph::NodeArrayEntry, false>::vector node_list;
typename util::ShM<typename QueryGraph::EdgeArrayEntry, false>::vector edge_list;
util::SimpleLogger().Write() << "loading graph from " << hsgr_path.string();
m_number_of_nodes = readHSGRFromStream(hsgr_path, node_list, edge_list, &m_check_sum);
BOOST_ASSERT_MSG(0 != node_list.size(), "node list empty");
// BOOST_ASSERT_MSG(0 != edge_list.size(), "edge list empty");
util::SimpleLogger().Write() << "loaded " << node_list.size() << " nodes and "
<< edge_list.size() << " edges";
m_query_graph = std::unique_ptr<QueryGraph>(new QueryGraph(node_list, edge_list));
BOOST_ASSERT_MSG(0 == node_list.size(), "node list not flushed");
BOOST_ASSERT_MSG(0 == edge_list.size(), "edge list not flushed");
util::SimpleLogger().Write() << "Data checksum is " << m_check_sum;
}
void LoadNodeAndEdgeInformation(const boost::filesystem::path &nodes_file,
const boost::filesystem::path &edges_file)
{
boost::filesystem::ifstream nodes_input_stream(nodes_file, std::ios::binary);
extractor::QueryNode current_node;
unsigned number_of_coordinates = 0;
nodes_input_stream.read((char *)&number_of_coordinates, sizeof(unsigned));
m_coordinate_list =
std::make_shared<std::vector<util::FixedPointCoordinate>>(number_of_coordinates);
for (unsigned i = 0; i < number_of_coordinates; ++i)
{
nodes_input_stream.read((char *)&current_node, sizeof(extractor::QueryNode));
m_coordinate_list->at(i) =
util::FixedPointCoordinate(current_node.lat, current_node.lon);
BOOST_ASSERT((std::abs(m_coordinate_list->at(i).lat) >> 30) == 0);
BOOST_ASSERT((std::abs(m_coordinate_list->at(i).lon) >> 30) == 0);
}
boost::filesystem::ifstream edges_input_stream(edges_file, std::ios::binary);
unsigned number_of_edges = 0;
edges_input_stream.read((char *)&number_of_edges, sizeof(unsigned));
m_via_node_list.resize(number_of_edges);
m_name_ID_list.resize(number_of_edges);
m_turn_instruction_list.resize(number_of_edges);
m_travel_mode_list.resize(number_of_edges);
extractor::OriginalEdgeData current_edge_data;
for (unsigned i = 0; i < number_of_edges; ++i)
{
edges_input_stream.read((char *)&(current_edge_data),
sizeof(extractor::OriginalEdgeData));
m_via_node_list[i] = current_edge_data.via_node;
m_name_ID_list[i] = current_edge_data.name_id;
m_turn_instruction_list[i] = current_edge_data.turn_instruction;
m_travel_mode_list[i] = current_edge_data.travel_mode;
}
}
void LoadCoreInformation(const boost::filesystem::path &core_data_file)
{
std::ifstream core_stream(core_data_file.string().c_str(), std::ios::binary);
unsigned number_of_markers;
core_stream.read((char *)&number_of_markers, sizeof(unsigned));
std::vector<char> unpacked_core_markers(number_of_markers);
core_stream.read((char *)unpacked_core_markers.data(), sizeof(char) * number_of_markers);
// in this case we have nothing to do
if (number_of_markers <= 0)
{
return;
}
m_is_core_node.resize(number_of_markers);
for (auto i = 0u; i < number_of_markers; ++i)
{
BOOST_ASSERT(unpacked_core_markers[i] == 0 || unpacked_core_markers[i] == 1);
m_is_core_node[i] = unpacked_core_markers[i] == 1;
}
}
void LoadGeometries(const boost::filesystem::path &geometry_file)
{
std::ifstream geometry_stream(geometry_file.string().c_str(), std::ios::binary);
unsigned number_of_indices = 0;
unsigned number_of_compressed_geometries = 0;
geometry_stream.read((char *)&number_of_indices, sizeof(unsigned));
m_geometry_indices.resize(number_of_indices);
if (number_of_indices > 0)
{
geometry_stream.read((char *)&(m_geometry_indices[0]),
number_of_indices * sizeof(unsigned));
}
geometry_stream.read((char *)&number_of_compressed_geometries, sizeof(unsigned));
BOOST_ASSERT(m_geometry_indices.back() == number_of_compressed_geometries);
m_geometry_list.resize(number_of_compressed_geometries);
if (number_of_compressed_geometries > 0)
{
geometry_stream.read((char *)&(m_geometry_list[0]),
number_of_compressed_geometries * sizeof(extractor::CompressedEdgeContainer::CompressedEdge));
}
}
void LoadRTree()
{
BOOST_ASSERT_MSG(!m_coordinate_list->empty(), "coordinates must be loaded before r-tree");
m_static_rtree.reset(new InternalRTree(ram_index_path, file_index_path, m_coordinate_list));
m_geospatial_query.reset(new InternalGeospatialQuery(*m_static_rtree, m_coordinate_list, *this));
}
void LoadStreetNames(const boost::filesystem::path &names_file)
{
boost::filesystem::ifstream name_stream(names_file, std::ios::binary);
name_stream >> m_name_table;
unsigned number_of_chars = 0;
name_stream.read((char *)&number_of_chars, sizeof(unsigned));
BOOST_ASSERT_MSG(0 != number_of_chars, "name file broken");
m_names_char_list.resize(number_of_chars + 1); //+1 gives sentinel element
name_stream.read((char *)&m_names_char_list[0], number_of_chars * sizeof(char));
if (0 == m_names_char_list.size())
{
util::SimpleLogger().Write(logWARNING) << "list of street names is empty";
}
}
public:
virtual ~InternalDataFacade()
{
m_static_rtree.reset();
m_geospatial_query.reset();
}
explicit InternalDataFacade(
const std::unordered_map<std::string, boost::filesystem::path> &server_paths)
{
// cache end iterator to quickly check .find against
const auto end_it = end(server_paths);
const auto file_for = [&server_paths, &end_it](const std::string &path)
{
const auto it = server_paths.find(path);
if (it == end_it || !boost::filesystem::is_regular_file(it->second))
throw util::exception("no valid " + path + " file given in ini file");
return it->second;
};
ram_index_path = file_for("ramindex");
file_index_path = file_for("fileindex");
util::SimpleLogger().Write() << "loading graph data";
LoadGraph(file_for("hsgrdata"));
util::SimpleLogger().Write() << "loading edge information";
LoadNodeAndEdgeInformation(file_for("nodesdata"), file_for("edgesdata"));
util::SimpleLogger().Write() << "loading core information";
LoadCoreInformation(file_for("coredata"));
util::SimpleLogger().Write() << "loading geometries";
LoadGeometries(file_for("geometries"));
util::SimpleLogger().Write() << "loading timestamp";
LoadTimestamp(file_for("timestamp"));
util::SimpleLogger().Write() << "loading street names";
LoadStreetNames(file_for("namesdata"));
}
// search graph access
unsigned GetNumberOfNodes() const override final { return m_query_graph->GetNumberOfNodes(); }
unsigned GetNumberOfEdges() const override final { return m_query_graph->GetNumberOfEdges(); }
unsigned GetOutDegree(const NodeID n) const override final
{
return m_query_graph->GetOutDegree(n);
}
NodeID GetTarget(const EdgeID e) const override final { return m_query_graph->GetTarget(e); }
EdgeData &GetEdgeData(const EdgeID e) const override final
{
return m_query_graph->GetEdgeData(e);
}
EdgeID BeginEdges(const NodeID n) const override final { return m_query_graph->BeginEdges(n); }
EdgeID EndEdges(const NodeID n) const override final { return m_query_graph->EndEdges(n); }
EdgeRange GetAdjacentEdgeRange(const NodeID node) const override final
{
return m_query_graph->GetAdjacentEdgeRange(node);
}
// searches for a specific edge
EdgeID FindEdge(const NodeID from, const NodeID to) const override final
{
return m_query_graph->FindEdge(from, to);
}
EdgeID FindEdgeInEitherDirection(const NodeID from, const NodeID to) const override final
{
return m_query_graph->FindEdgeInEitherDirection(from, to);
}
EdgeID
FindEdgeIndicateIfReverse(const NodeID from, const NodeID to, bool &result) const override final
{
return m_query_graph->FindEdgeIndicateIfReverse(from, to, result);
}
// node and edge information access
util::FixedPointCoordinate GetCoordinateOfNode(const unsigned id) const override final
{
return m_coordinate_list->at(id);
}
extractor::TurnInstruction GetTurnInstructionForEdgeID(const unsigned id) const override final
{
return m_turn_instruction_list.at(id);
}
extractor::TravelMode GetTravelModeForEdgeID(const unsigned id) const override final
{
return m_travel_mode_list.at(id);
}
std::vector<RTreeLeaf>
GetEdgesInBox(const util::FixedPointCoordinate &south_west,
const util::FixedPointCoordinate &north_east) override final
{
if (!m_static_rtree.get())
{
LoadRTree();
BOOST_ASSERT(m_geospatial_query.get());
}
const util::RectangleInt2D bbox{
south_west.lon, north_east.lon, south_west.lat, north_east.lat};
return m_geospatial_query->Search(bbox);
}
std::vector<PhantomNodeWithDistance>
NearestPhantomNodesInRange(const util::FixedPointCoordinate input_coordinate,
const float max_distance,
const int bearing = 0,
const int bearing_range = 180) override final
{
if (!m_static_rtree.get())
{
LoadRTree();
BOOST_ASSERT(m_geospatial_query.get());
}
return m_geospatial_query->NearestPhantomNodesInRange(input_coordinate, max_distance,
bearing, bearing_range);
}
std::vector<PhantomNodeWithDistance>
NearestPhantomNodes(const util::FixedPointCoordinate input_coordinate,
const unsigned max_results,
const int bearing = 0,
const int bearing_range = 180) override final
{
if (!m_static_rtree.get())
{
LoadRTree();
BOOST_ASSERT(m_geospatial_query.get());
}
return m_geospatial_query->NearestPhantomNodes(input_coordinate, max_results, bearing,
bearing_range);
}
std::pair<PhantomNode, PhantomNode> NearestPhantomNodeWithAlternativeFromBigComponent(
const util::FixedPointCoordinate input_coordinate, const double max_distance) override final
{
if (!m_static_rtree.get())
{
LoadRTree();
BOOST_ASSERT(m_geospatial_query.get());
}
return m_geospatial_query->NearestPhantomNodeWithAlternativeFromBigComponent(
input_coordinate, max_distance);
}
std::pair<PhantomNode, PhantomNode> NearestPhantomNodeWithAlternativeFromBigComponent(
const util::FixedPointCoordinate input_coordinate) override final
{
if (!m_static_rtree.get())
{
LoadRTree();
BOOST_ASSERT(m_geospatial_query.get());
}
return m_geospatial_query->NearestPhantomNodeWithAlternativeFromBigComponent(
input_coordinate);
}
std::pair<PhantomNode, PhantomNode> NearestPhantomNodeWithAlternativeFromBigComponent(
const util::FixedPointCoordinate input_coordinate,
const double max_distance,
const int bearing,
const int bearing_range) override final
{
if (!m_static_rtree.get())
{
LoadRTree();
BOOST_ASSERT(m_geospatial_query.get());
}
return m_geospatial_query->NearestPhantomNodeWithAlternativeFromBigComponent(
input_coordinate, max_distance, bearing, bearing_range);
}
std::pair<PhantomNode, PhantomNode> NearestPhantomNodeWithAlternativeFromBigComponent(
const util::FixedPointCoordinate input_coordinate,
const int bearing,
const int bearing_range) override final
{
if (!m_static_rtree.get())
{
LoadRTree();
BOOST_ASSERT(m_geospatial_query.get());
}
return m_geospatial_query->NearestPhantomNodeWithAlternativeFromBigComponent(
input_coordinate, bearing, bearing_range);
}
unsigned GetCheckSum() const override final { return m_check_sum; }
unsigned GetNameIndexFromEdgeID(const unsigned id) const override final
{
return m_name_ID_list.at(id);
}
std::string get_name_for_id(const unsigned name_id) const override final
{
if (std::numeric_limits<unsigned>::max() == name_id)
{
return "";
}
auto range = m_name_table.GetRange(name_id);
std::string result;
result.reserve(range.size());
if (range.begin() != range.end())
{
result.resize(range.back() - range.front() + 1);
std::copy(m_names_char_list.begin() + range.front(),
m_names_char_list.begin() + range.back() + 1, result.begin());
}
return result;
}
virtual unsigned GetGeometryIndexForEdgeID(const unsigned id) const override final
{
return m_via_node_list.at(id);
}
virtual std::size_t GetCoreSize() const override final { return m_is_core_node.size(); }
virtual bool IsCoreNode(const NodeID id) const override final
{
if (m_is_core_node.size() > 0)
{
return m_is_core_node[id];
}
else
{
return false;
}
}
virtual void GetUncompressedGeometry(const EdgeID id,
std::vector<NodeID> &result_nodes) const override final
{
const unsigned begin = m_geometry_indices.at(id);
const unsigned end = m_geometry_indices.at(id + 1);
result_nodes.clear();
result_nodes.reserve(end - begin);
std::for_each(m_geometry_list.begin() + begin, m_geometry_list.begin() + end, [&](const osrm::extractor::CompressedEdgeContainer::CompressedEdge &edge){ result_nodes.emplace_back(edge.node_id); });
}
virtual void GetUncompressedWeights(const EdgeID id,
std::vector<EdgeWeight> &result_weights) const override final
{
const unsigned begin = m_geometry_indices.at(id);
const unsigned end = m_geometry_indices.at(id + 1);
result_weights.clear();
result_weights.reserve(end - begin);
std::for_each(m_geometry_list.begin() + begin, m_geometry_list.begin() + end, [&](const osrm::extractor::CompressedEdgeContainer::CompressedEdge &edge){ result_weights.emplace_back(edge.weight); });
}
std::string GetTimestamp() const override final { return m_timestamp; }
};
}
}
}
#endif // INTERNAL_DATAFACADE_HPP