osrm-backend/src/engine/guidance/post_processing.cpp
2017-07-18 11:23:46 +02:00

646 lines
30 KiB
C++

#include "engine/guidance/post_processing.hpp"
#include "extractor/guidance/constants.hpp"
#include "extractor/guidance/turn_instruction.hpp"
#include "engine/guidance/assemble_steps.hpp"
#include "engine/guidance/lane_processing.hpp"
#include "engine/guidance/collapsing_utility.hpp"
#include "util/bearing.hpp"
#include "util/guidance/name_announcements.hpp"
#include "util/guidance/turn_lanes.hpp"
#include <boost/assert.hpp>
#include <boost/numeric/conversion/cast.hpp>
#include <boost/range/iterator_range.hpp>
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <limits>
#include <utility>
using osrm::util::angularDeviation;
using osrm::extractor::guidance::getTurnDirection;
using osrm::extractor::guidance::hasRampType;
using osrm::extractor::guidance::mirrorDirectionModifier;
using osrm::extractor::guidance::bearingToDirectionModifier;
namespace osrm
{
namespace engine
{
namespace guidance
{
namespace
{
void fixFinalRoundabout(std::vector<RouteStep> &steps)
{
for (std::size_t propagation_index = steps.size() - 1; propagation_index > 0;
--propagation_index)
{
auto &propagation_step = steps[propagation_index];
propagation_step.maneuver.exit = 0;
if (entersRoundabout(propagation_step.maneuver.instruction))
{
// remember the current name as rotary name in tha case we end in a rotary
if (propagation_step.maneuver.instruction.type == TurnType::EnterRotary ||
propagation_step.maneuver.instruction.type == TurnType::EnterRotaryAtExit)
{
propagation_step.rotary_name = propagation_step.name;
propagation_step.rotary_pronunciation = propagation_step.pronunciation;
}
else if (propagation_step.maneuver.instruction.type ==
TurnType::EnterRoundaboutIntersection ||
propagation_step.maneuver.instruction.type ==
TurnType::EnterRoundaboutIntersectionAtExit)
{
propagation_step.maneuver.instruction.type = TurnType::EnterRoundabout;
}
return;
}
// accumulate turn data into the enter instructions
else if (propagation_step.maneuver.instruction.type == TurnType::StayOnRoundabout)
{
// TODO this operates on the data that is in the instructions.
// We are missing out on the final segment after the last stay-on-roundabout
// instruction though. it is not contained somewhere until now
steps[propagation_index - 1].ElongateBy(propagation_step);
steps[propagation_index - 1].maneuver.exit = propagation_step.maneuver.exit;
propagation_step.Invalidate();
}
}
}
bool setUpRoundabout(RouteStep &step)
{
// basic entry into a roundabout
// Special case handling, if an entry is directly tied to an exit
const auto instruction = step.maneuver.instruction;
if (instruction.type == TurnType::EnterRotaryAtExit ||
instruction.type == TurnType::EnterRoundaboutAtExit ||
instruction.type == TurnType::EnterRoundaboutIntersectionAtExit)
{
// Here we consider an actual entry, not an exit. We simply have to count the additional
// exit
step.maneuver.exit = 1;
// prevent futher special case handling of these two.
if (instruction.type == TurnType::EnterRotaryAtExit)
step.maneuver.instruction.type = TurnType::EnterRotary;
else if (instruction.type == TurnType::EnterRoundaboutAtExit)
step.maneuver.instruction.type = TurnType::EnterRoundabout;
else
step.maneuver.instruction.type = TurnType::EnterRoundaboutIntersection;
}
if (leavesRoundabout(instruction))
{
// This set-up, even though it looks the same, is actually looking at entering AND exiting
step.maneuver.exit = 1; // count the otherwise missing exit
// prevent futher special case handling of these two.
if (instruction.type == TurnType::EnterAndExitRotary)
step.maneuver.instruction.type = TurnType::EnterRotary;
else if (instruction.type == TurnType::EnterAndExitRoundabout)
step.maneuver.instruction.type = TurnType::EnterRoundabout;
else
step.maneuver.instruction.type = TurnType::EnterRoundaboutIntersection;
return false;
}
else
{
return true;
}
}
void closeOffRoundabout(const bool on_roundabout,
std::vector<RouteStep> &steps,
std::size_t step_index)
{
auto &step = steps[step_index];
step.maneuver.exit += 1;
if (!on_roundabout)
{
BOOST_ASSERT(steps.size() >= 2);
// We reached a special case that requires the addition of a special route step in the
// beginning. We started in a roundabout, so to announce the exit, we move use the exit
// instruction and move it right to the beginning to make sure to immediately announce the
// exit.
BOOST_ASSERT(leavesRoundabout(steps[1].maneuver.instruction) ||
steps[1].maneuver.instruction.type == TurnType::StayOnRoundabout ||
steps[1].maneuver.instruction.type == TurnType::Suppressed ||
steps[1].maneuver.instruction.type == TurnType::NoTurn);
steps[0].geometry_end = 1;
steps[1].geometry_begin = 0;
steps[1].AddInFront(steps[0]);
steps[1].intersections.erase(steps[1].intersections.begin()); // otherwise we copy the
// source
if (leavesRoundabout(steps[1].maneuver.instruction))
steps[1].maneuver.exit = 1;
steps[0].duration = 0;
steps[0].distance = 0;
const auto exitToEnter = [](const TurnType::Enum type) {
if (TurnType::ExitRotary == type)
return TurnType::EnterRotary;
// if we do not enter the roundabout Intersection, we cannot treat the full traversal as
// a turn. So we switch it up to the roundabout type
else if (type == TurnType::ExitRoundaboutIntersection)
return TurnType::EnterRoundabout;
else
return TurnType::EnterRoundabout;
};
steps[1].maneuver.instruction.type = exitToEnter(step.maneuver.instruction.type);
if (steps[1].maneuver.instruction.type == TurnType::EnterRotary)
{
steps[1].rotary_name = steps[0].name;
steps[1].rotary_pronunciation = steps[0].pronunciation;
}
}
if (step_index > 1)
{
auto &exit_step = steps[step_index];
auto &prev_step = steps[step_index - 1];
// In case the step with the roundabout exit instruction cannot be merged with the
// previous step we change the instruction to a normal turn
if (!guidance::haveSameMode(exit_step, prev_step))
{
BOOST_ASSERT(leavesRoundabout(exit_step.maneuver.instruction));
if (!entersRoundabout(prev_step.maneuver.instruction))
{
prev_step.maneuver.instruction = exit_step.maneuver.instruction;
}
prev_step.maneuver.exit = exit_step.maneuver.exit;
exit_step.maneuver.instruction.type = TurnType::Notification;
step_index--;
}
}
// Normal exit from the roundabout, or exit from a previously fixed roundabout. Propagate the
// index back to the entering location and prepare the current silent set of instructions for
// removal.
std::vector<std::size_t> intermediate_steps;
BOOST_ASSERT(!steps[step_index].intersections.empty());
// the very first intersection in the steps represents the location of the turn. Following
// intersections are locations passed along the way
const auto exit_intersection = steps[step_index].intersections.front();
const auto exit_bearing = exit_intersection.bearings[exit_intersection.out];
const auto destination_copy = step;
if (step_index > 1)
{
// The very first route-step is head, so we cannot iterate past that one
for (std::size_t propagation_index = step_index - 1; propagation_index > 0;
--propagation_index)
{
auto &propagation_step = steps[propagation_index];
auto &next_step = steps[propagation_index + 1];
if (guidance::haveSameMode(propagation_step, next_step))
{
propagation_step.ElongateBy(next_step);
propagation_step.maneuver.exit = next_step.maneuver.exit;
next_step.Invalidate();
}
if (entersRoundabout(propagation_step.maneuver.instruction))
{
const auto entry_intersection = propagation_step.intersections.front();
// remember rotary name
if (propagation_step.maneuver.instruction.type == TurnType::EnterRotary ||
propagation_step.maneuver.instruction.type == TurnType::EnterRotaryAtExit)
{
propagation_step.rotary_name = propagation_step.name;
propagation_step.rotary_pronunciation = propagation_step.pronunciation;
}
else if (propagation_step.maneuver.instruction.type ==
TurnType::EnterRoundaboutIntersection ||
propagation_step.maneuver.instruction.type ==
TurnType::EnterRoundaboutIntersectionAtExit)
{
BOOST_ASSERT(!propagation_step.intersections.empty());
const double angle = util::bearing::angleBetween(
util::bearing::reverse(entry_intersection.bearings[entry_intersection.in]),
exit_bearing);
auto bearings = propagation_step.intersections.front().bearings;
propagation_step.maneuver.instruction.direction_modifier =
getTurnDirection(angle);
}
propagation_step.AdaptStepSignage(destination_copy);
break;
}
}
// remove exit
}
}
} // namespace
// Every Step Maneuver consists of the information until the turn.
// This list contains a set of instructions, called silent, which should
// not be part of the final output.
// They are required for maintenance purposes. We can calculate the number
// of exits to pass in a roundabout and the number of intersections
// that we come across.
std::vector<RouteStep> postProcess(std::vector<RouteStep> steps)
{
// the steps should always include the first/last step in form of a location
BOOST_ASSERT(steps.size() >= 2);
if (steps.size() == 2)
return steps;
// Count Street Exits forward
bool on_roundabout = false;
bool has_entered_roundabout = false;
// count the exits forward. if enter/exit roundabout happen both, no further treatment is
// required. We might end up with only one of them (e.g. starting within a roundabout)
// or having a via-point in the roundabout.
// In this case, exits are numbered from the start of the leg.
for (std::size_t step_index = 0; step_index < steps.size(); ++step_index)
{
const auto next_step_index = step_index + 1;
auto &step = steps[step_index];
const auto instruction = step.maneuver.instruction;
if (entersRoundabout(instruction))
{
has_entered_roundabout = setUpRoundabout(step);
if (has_entered_roundabout && next_step_index < steps.size())
steps[next_step_index].maneuver.exit = step.maneuver.exit;
}
else if (instruction.type == TurnType::StayOnRoundabout)
{
on_roundabout = true;
// increase the exit number we require passing the exit
step.maneuver.exit += 1;
if (next_step_index < steps.size())
steps[next_step_index].maneuver.exit = step.maneuver.exit;
}
else if (leavesRoundabout(instruction))
{
// if (!has_entered_roundabout)
// in case the we are not on a roundabout, the very first instruction
// after the depart will be transformed into a roundabout and become
// the first valid instruction
closeOffRoundabout(has_entered_roundabout, steps, step_index);
has_entered_roundabout = false;
on_roundabout = false;
}
else if (on_roundabout && next_step_index < steps.size())
{
steps[next_step_index].maneuver.exit = step.maneuver.exit;
}
}
// unterminated roundabout
// Move backwards through the instructions until the start and remove the exit number
// A roundabout without exit translates to enter-roundabout
if (has_entered_roundabout || on_roundabout)
{
fixFinalRoundabout(steps);
}
BOOST_ASSERT(steps.front().intersections.size() >= 1);
BOOST_ASSERT(steps.front().intersections.front().bearings.size() == 1);
BOOST_ASSERT(steps.front().intersections.front().entry.size() == 1);
BOOST_ASSERT(steps.front().maneuver.waypoint_type == WaypointType::Depart);
BOOST_ASSERT(steps.back().intersections.size() == 1);
BOOST_ASSERT(steps.back().intersections.front().bearings.size() == 1);
BOOST_ASSERT(steps.back().intersections.front().entry.size() == 1);
BOOST_ASSERT(steps.back().maneuver.waypoint_type == WaypointType::Arrive);
return removeNoTurnInstructions(std::move(steps));
}
// Doing this step in post-processing provides a few challenges we cannot overcome.
// The removal of an initial step imposes some copy overhead in the steps, moving all later
// steps to the front. In addition, we cannot reduce the travel time that is accumulated at a
// different location.
// As a direct implication, we have to keep the time of the initial/final turns (which adds a
// few seconds of inaccuracy at both ends. This is acceptable, however, since the turn should
// usually not be as relevant.
void trimShortSegments(std::vector<RouteStep> &steps, LegGeometry &geometry)
{
if (steps.size() < 2 || geometry.locations.size() <= 2)
return;
// if phantom node is located at the connection of two segments, either one can be selected
// as
// turn
//
// a --- b
// |
// c
//
// If a route from b to c is requested, both a--b and b--c could be selected as start
// segment.
// In case of a--b, we end up with an unwanted turn saying turn-right onto b-c.
// These cases start off with an initial segment which is of zero length.
// We have to be careful though, since routing that starts in a roundabout has a valid.
// To catch these cases correctly, we have to perform trimming prior to the post-processing
BOOST_ASSERT(geometry.locations.size() >= steps.size());
// Look for distances under 1m
const bool zero_length_step = steps.front().distance <= 1 && steps.size() > 2;
const bool duplicated_coordinate = util::coordinate_calculation::haversineDistance(
geometry.locations[0], geometry.locations[1]) <= 1;
if (zero_length_step || duplicated_coordinate)
{
// remove the initial distance value
geometry.segment_distances.erase(geometry.segment_distances.begin());
const auto offset = zero_length_step ? geometry.segment_offsets[1] : 1;
if (offset > 0)
{
// fixup the coordinates/annotations/ids
geometry.locations.erase(geometry.locations.begin(),
geometry.locations.begin() + offset);
geometry.annotations.erase(geometry.annotations.begin(),
geometry.annotations.begin() + offset);
geometry.osm_node_ids.erase(geometry.osm_node_ids.begin(),
geometry.osm_node_ids.begin() + offset);
}
// We have to adjust the first step both for its name and the bearings
if (zero_length_step)
{
// since we are not only checking for epsilon but for a full meter, we can have multiple
// coordinates here. Move all offsets to the front and reduce by one. (This is an
// inplace forward one and reduce by one)
std::transform(geometry.segment_offsets.begin() + 1,
geometry.segment_offsets.end(),
geometry.segment_offsets.begin(),
[offset](const std::size_t val) { return val - offset; });
geometry.segment_offsets.pop_back();
const auto &current_depart = steps.front();
auto &designated_depart = *(steps.begin() + 1);
// FIXME this is required to be consistent with the route durations. The initial
// turn is not actually part of the route, though
designated_depart.duration += current_depart.duration;
// update initial turn direction/bearings. Due to the duplicated first coordinate,
// the initial bearing is invalid
designated_depart.maneuver.waypoint_type = WaypointType::Depart;
designated_depart.maneuver.bearing_before = 0;
designated_depart.maneuver.instruction = TurnInstruction::NO_TURN();
// we need to make this conform with the intersection format for the first intersection
auto &first_intersection = designated_depart.intersections.front();
designated_depart.intersections.front().lanes = util::guidance::LaneTuple();
designated_depart.intersections.front().lane_description.clear();
first_intersection.bearings = {first_intersection.bearings[first_intersection.out]};
first_intersection.entry = {true};
first_intersection.in = IntermediateIntersection::NO_INDEX;
first_intersection.out = 0;
// finally remove the initial (now duplicated move)
steps.erase(steps.begin());
}
else
{
// we need to make this at least 1 because we will substract 1
// from all offsets at the end of the loop.
steps.front().geometry_begin = 1;
// reduce all offsets by one (inplace)
std::transform(geometry.segment_offsets.begin(),
geometry.segment_offsets.end(),
geometry.segment_offsets.begin(),
[](const std::size_t val) { return val - 1; });
}
// and update the leg geometry indices for the removed entry
std::for_each(steps.begin(), steps.end(), [offset](RouteStep &step) {
step.geometry_begin -= offset;
step.geometry_end -= offset;
});
auto &first_step = steps.front();
// we changed the geometry, we need to recalculate the bearing
auto bearing = std::round(util::coordinate_calculation::bearing(
geometry.locations[first_step.geometry_begin],
geometry.locations[first_step.geometry_begin + 1]));
first_step.maneuver.bearing_after = bearing;
first_step.intersections.front().bearings.front() = bearing;
}
BOOST_ASSERT(steps.front().intersections.size() >= 1);
BOOST_ASSERT(steps.front().intersections.front().bearings.size() == 1);
BOOST_ASSERT(steps.front().intersections.front().entry.size() == 1);
BOOST_ASSERT(steps.front().maneuver.waypoint_type == WaypointType::Depart);
BOOST_ASSERT(steps.back().intersections.size() == 1);
BOOST_ASSERT(steps.back().intersections.front().bearings.size() == 1);
BOOST_ASSERT(steps.back().intersections.front().entry.size() == 1);
BOOST_ASSERT(steps.back().maneuver.waypoint_type == WaypointType::Arrive);
// make sure we still have enough segments
if (steps.size() < 2 || geometry.locations.size() == 2)
return;
BOOST_ASSERT(geometry.locations.size() >= steps.size());
auto &next_to_last_step = *(steps.end() - 2);
// in the end, the situation with the roundabout cannot occur. As a result, we can remove
// all zero-length instructions
if (next_to_last_step.distance <= 1 && steps.size() > 2)
{
geometry.segment_offsets.pop_back();
// remove all the last coordinates from the geometry
geometry.locations.resize(geometry.segment_offsets.back() + 1);
geometry.annotations.resize(geometry.segment_offsets.back() + 1);
geometry.osm_node_ids.resize(geometry.segment_offsets.back() + 1);
BOOST_ASSERT(geometry.segment_distances.back() <= 1);
geometry.segment_distances.pop_back();
next_to_last_step.maneuver.waypoint_type = WaypointType::Arrive;
next_to_last_step.maneuver.instruction = TurnInstruction::NO_TURN();
next_to_last_step.maneuver.bearing_after = 0;
next_to_last_step.intersections.front().lanes = util::guidance::LaneTuple();
next_to_last_step.intersections.front().lane_description.clear();
next_to_last_step.geometry_end = next_to_last_step.geometry_begin + 1;
BOOST_ASSERT(next_to_last_step.intersections.size() == 1);
auto &last_intersection = next_to_last_step.intersections.back();
last_intersection.bearings = {last_intersection.bearings[last_intersection.in]};
last_intersection.entry = {true};
last_intersection.out = IntermediateIntersection::NO_INDEX;
last_intersection.in = 0;
steps.pop_back();
// Because we eliminated a really short segment, it was probably
// near an intersection. The convention is *not* to make the
// turn, so the `arrive` instruction should be on the same road
// as the segment before it. Thus, we have to copy the names
// and travel modes from the new next_to_last step.
auto &new_next_to_last = *(steps.end() - 2);
next_to_last_step.AdaptStepSignage(new_next_to_last);
next_to_last_step.mode = new_next_to_last.mode;
next_to_last_step.classes = new_next_to_last.classes;
// the geometry indices of the last step are already correct;
}
else if (util::coordinate_calculation::haversineDistance(
geometry.locations[geometry.locations.size() - 2],
geometry.locations[geometry.locations.size() - 1]) <= 1)
{
// correct steps but duplicated coordinate in the end.
// This can happen if the last coordinate snaps to a node in the unpacked geometry
geometry.locations.pop_back();
geometry.annotations.pop_back();
geometry.osm_node_ids.pop_back();
geometry.segment_offsets.back()--;
// since the last geometry includes the location of arrival, the arrival instruction
// geometry overlaps with the previous segment
BOOST_ASSERT(next_to_last_step.geometry_end == steps.back().geometry_begin + 1);
BOOST_ASSERT(next_to_last_step.geometry_begin < next_to_last_step.geometry_end);
next_to_last_step.geometry_end--;
auto &last_step = steps.back();
last_step.geometry_begin--;
last_step.geometry_end--;
BOOST_ASSERT(next_to_last_step.geometry_end == last_step.geometry_begin + 1);
BOOST_ASSERT(last_step.geometry_begin == last_step.geometry_end - 1);
BOOST_ASSERT(next_to_last_step.geometry_end >= 2);
// we changed the geometry, we need to recalculate the bearing
auto bearing = std::round(util::coordinate_calculation::bearing(
geometry.locations[next_to_last_step.geometry_end - 2],
geometry.locations[last_step.geometry_begin]));
last_step.maneuver.bearing_before = bearing;
last_step.intersections.front().bearings.front() = util::bearing::reverse(bearing);
}
BOOST_ASSERT(steps.back().geometry_end == geometry.locations.size());
BOOST_ASSERT(steps.front().intersections.size() >= 1);
BOOST_ASSERT(steps.front().intersections.front().bearings.size() == 1);
BOOST_ASSERT(steps.front().intersections.front().entry.size() == 1);
BOOST_ASSERT(steps.front().maneuver.waypoint_type == WaypointType::Depart);
BOOST_ASSERT(steps.back().intersections.size() == 1);
BOOST_ASSERT(steps.back().intersections.front().bearings.size() == 1);
BOOST_ASSERT(steps.back().intersections.front().entry.size() == 1);
BOOST_ASSERT(steps.back().maneuver.waypoint_type == WaypointType::Arrive);
}
// assign relative locations to depart/arrive instructions
std::vector<RouteStep> assignRelativeLocations(std::vector<RouteStep> steps,
const LegGeometry &leg_geometry,
const PhantomNode &source_node,
const PhantomNode &target_node)
{
// We report the relative position of source/target to the road only within a range that is
// sufficiently different but not full of the path
BOOST_ASSERT(steps.size() >= 2);
BOOST_ASSERT(leg_geometry.locations.size() >= 2);
const constexpr double MINIMAL_RELATIVE_DISTANCE = 5., MAXIMAL_RELATIVE_DISTANCE = 300.;
const auto distance_to_start = util::coordinate_calculation::haversineDistance(
source_node.input_location, leg_geometry.locations[0]);
const auto initial_modifier =
distance_to_start >= MINIMAL_RELATIVE_DISTANCE &&
distance_to_start <= MAXIMAL_RELATIVE_DISTANCE
? bearingToDirectionModifier(util::coordinate_calculation::computeAngle(
source_node.input_location, leg_geometry.locations[0], leg_geometry.locations[1]))
: extractor::guidance::DirectionModifier::UTurn;
steps.front().maneuver.instruction.direction_modifier = initial_modifier;
const auto distance_from_end = util::coordinate_calculation::haversineDistance(
target_node.input_location, leg_geometry.locations.back());
const auto final_modifier =
distance_from_end >= MINIMAL_RELATIVE_DISTANCE &&
distance_from_end <= MAXIMAL_RELATIVE_DISTANCE
? bearingToDirectionModifier(util::coordinate_calculation::computeAngle(
leg_geometry.locations[leg_geometry.locations.size() - 2],
leg_geometry.locations[leg_geometry.locations.size() - 1],
target_node.input_location))
: extractor::guidance::DirectionModifier::UTurn;
steps.back().maneuver.instruction.direction_modifier = final_modifier;
BOOST_ASSERT(steps.front().intersections.size() >= 1);
BOOST_ASSERT(steps.front().intersections.front().bearings.size() == 1);
BOOST_ASSERT(steps.front().intersections.front().entry.size() == 1);
BOOST_ASSERT(steps.front().maneuver.waypoint_type == WaypointType::Depart);
BOOST_ASSERT(steps.back().intersections.size() == 1);
BOOST_ASSERT(steps.back().intersections.front().bearings.size() == 1);
BOOST_ASSERT(steps.back().intersections.front().entry.size() == 1);
BOOST_ASSERT(steps.back().maneuver.waypoint_type == WaypointType::Arrive);
return steps;
}
LegGeometry resyncGeometry(LegGeometry leg_geometry, const std::vector<RouteStep> &steps)
{
// The geometry uses an adjacency array-like structure for representation.
// To sync it back up with the steps, we cann add a segment for every step.
leg_geometry.segment_offsets.clear();
leg_geometry.segment_distances.clear();
leg_geometry.segment_offsets.push_back(0);
for (const auto &step : steps)
{
leg_geometry.segment_distances.push_back(step.distance);
// the leg geometry does not follow the begin/end-convetion. So we have to subtract one
// to get the back-index.
leg_geometry.segment_offsets.push_back(step.geometry_end - 1);
}
// remove the data from the reached-target step again
leg_geometry.segment_offsets.pop_back();
leg_geometry.segment_distances.pop_back();
return leg_geometry;
}
std::vector<RouteStep> buildIntersections(std::vector<RouteStep> steps)
{
std::size_t last_valid_instruction = 0;
for (std::size_t step_index = 0; step_index < steps.size(); ++step_index)
{
auto &step = steps[step_index];
const auto instruction = step.maneuver.instruction;
if (instruction.type == TurnType::Suppressed)
{
BOOST_ASSERT(steps[last_valid_instruction].mode == step.mode);
// count intersections. We cannot use exit, since intersections can follow directly
// after a roundabout
steps[last_valid_instruction].ElongateBy(step);
steps[step_index].Invalidate();
}
else if (!isSilent(instruction))
{
// End of road is a turn that helps to identify the location of a turn. If the turn does
// not pass by any oter intersections, the end-of-road characteristic does not improve
// the instructions.
// Here we reduce the verbosity of our output by reducing end-of-road emissions in cases
// where no intersections have been passed in between.
// Since the instruction is located at the beginning of a step, we need to check the
// previous instruction.
if (instruction.type == TurnType::EndOfRoad)
{
BOOST_ASSERT(step_index > 0);
const auto &previous_step = steps[last_valid_instruction];
if (previous_step.intersections.size() < MIN_END_OF_ROAD_INTERSECTIONS)
step.maneuver.instruction.type = TurnType::Turn;
}
// Remember the last non silent instruction
last_valid_instruction = step_index;
}
}
return removeNoTurnInstructions(std::move(steps));
}
} // namespace guidance
} // namespace engine
} // namespace osrm