osrm-backend/Contractor/EdgeBasedGraphFactory.cpp
2012-02-10 17:35:59 +01:00

343 lines
17 KiB
C++

/*
open source routing machine
Copyright (C) Dennis Luxen, others 2010
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU AFFERO General Public License as published by
the Free Software Foundation; either version 3 of the License, or
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
or see http://www.gnu.org/licenses/agpl.txt.
*/
#ifdef _GLIBCXX_PARALLEL
#include <parallel/algorithm>
#else
#include <algorithm>
#endif
#include <boost/foreach.hpp>
#include "../Util/OpenMPReplacement.h"
#include "EdgeBasedGraphFactory.h"
template<>
EdgeBasedGraphFactory::EdgeBasedGraphFactory(int nodes, std::vector<NodeBasedEdge> & inputEdges, std::vector<NodeID> & bn, std::vector<NodeID> & tl, std::vector<_Restriction> & irs, std::vector<NodeInfo> & nI, std::string & srtm)
: inputRestrictions(irs), inputNodeInfoList(nI)/*, srtmLookup(srtm) */{
#ifdef _GLIBCXX_PARALLEL
__gnu_parallel::sort(inputRestrictions.begin(), inputRestrictions.end(), CmpRestrictionByFrom);
#else
std::sort(inputRestrictions.begin(), inputRestrictions.end(), CmpRestrictionByFrom);
BOOST_FOREACH(NodeID id, bn) {
_bollardNodes.Add(id, true);
}
BOOST_FOREACH(NodeID id, tl) {
_trafficLights.Add(id, true);
}
INFO("bollards: " << _bollardNodes.Size());
INFO("signals: " << _trafficLights.Size());
#endif
std::vector< _NodeBasedEdge > edges;
edges.reserve( 2 * inputEdges.size() );
for ( std::vector< NodeBasedEdge >::const_iterator i = inputEdges.begin(), e = inputEdges.end(); i != e; ++i ) {
_NodeBasedEdge edge;
edge.source = i->source();
edge.target = i->target();
if(edge.source == edge.target)
continue;
edge.data.distance = (std::max)((int)i->weight(), 1 );
assert( edge.data.distance > 0 );
edge.data.shortcut = false;
edge.data.roundabout = i->isRoundabout();
edge.data.ignoreInGrid = i->ignoreInGrid();
edge.data.nameID = i->name();
edge.data.type = i->type();
edge.data.forward = i->isForward();
edge.data.backward = i->isBackward();
edge.data.edgeBasedNodeID = edges.size();
edges.push_back( edge );
if( edge.data.backward ) {
std::swap( edge.source, edge.target );
edge.data.forward = i->isBackward();
edge.data.backward = i->isForward();
edge.data.edgeBasedNodeID = edges.size();
edges.push_back( edge );
}
}
#ifdef _GLIBCXX_PARALLEL
__gnu_parallel::sort( edges.begin(), edges.end() );
#else
sort( edges.begin(), edges.end() );
#endif
_nodeBasedGraph.reset(new _NodeBasedDynamicGraph( nodes, edges ));
INFO("Converted " << inputEdges.size() << " node-based edges into " << _nodeBasedGraph->GetNumberOfEdges() << " edge-based nodes.");
}
template<>
void EdgeBasedGraphFactory::GetEdgeBasedEdges( std::vector< EdgeBasedEdge >& outputEdgeList ) {
GUARANTEE(0 == outputEdgeList.size(), "Vector passed to EdgeBasedGraphFactory::GetEdgeBasedEdges(..) is not empty");
GUARANTEE(0 != edgeBasedEdges.size(), "No edges in edge based graph");
edgeBasedEdges.swap(outputEdgeList);
}
void EdgeBasedGraphFactory::GetEdgeBasedNodes( std::vector< EdgeBasedNode> & nodes) {
BOOST_FOREACH(EdgeBasedNode & node, edgeBasedNodes){
assert(node.lat1 != INT_MAX);
assert(node.lat2 != INT_MAX);
assert(node.lon1 != INT_MAX);
assert(node.lon2 != INT_MAX);
nodes.push_back(node);
}
}
void EdgeBasedGraphFactory::Run() {
INFO("Generating Edge based representation of input data");
std::vector<_Restriction>::iterator restrictionIterator = inputRestrictions.begin();
Percent p(_nodeBasedGraph->GetNumberOfNodes());
int numberOfSkippedTurns(0);
int nodeBasedEdgeCounter(0);
NodeID onlyToNode(0);
//Loop over all nodes u. Three nested loop look super-linear, but we are dealing with a number linear in the turns only.
for(_NodeBasedDynamicGraph::NodeIterator u = 0; u < _nodeBasedGraph->GetNumberOfNodes(); ++u ) {
//loop over all adjacent edge (u,v)
while(inputRestrictions.end() != restrictionIterator && restrictionIterator->fromNode < u) {
++restrictionIterator;
}
for(_NodeBasedDynamicGraph::EdgeIterator e1 = _nodeBasedGraph->BeginEdges(u); e1 < _nodeBasedGraph->EndEdges(u); ++e1) {
++nodeBasedEdgeCounter;
_NodeBasedDynamicGraph::NodeIterator v = _nodeBasedGraph->GetTarget(e1);
//loop over all reachable edges (v,w)
bool isOnlyAllowed(false);
//Check every turn restriction originating from this edge if it is an 'only_*'-turn.
if(restrictionIterator != inputRestrictions.end() && u == restrictionIterator->fromNode) {
//copying iterator, so we can loop over restrictions without forgetting currect position.
std::vector<_Restriction>::iterator secondRestrictionIterator = restrictionIterator;
do {
if(v == secondRestrictionIterator->viaNode) {
if(secondRestrictionIterator->flags.isOnly) {
isOnlyAllowed = true;
onlyToNode = secondRestrictionIterator->toNode;
}
}
++secondRestrictionIterator;
} while(secondRestrictionIterator != inputRestrictions.end() && u == secondRestrictionIterator->fromNode);
}
if(_nodeBasedGraph->EndEdges(v) == _nodeBasedGraph->BeginEdges(v) + 1 && _nodeBasedGraph->GetEdgeData(e1).type != SHRT_MAX) {
EdgeBasedNode currentNode;
currentNode.nameID = _nodeBasedGraph->GetEdgeData(e1).nameID;
currentNode.lat1 = inputNodeInfoList[u].lat;
currentNode.lon1 = inputNodeInfoList[u].lon;
currentNode.lat2 = inputNodeInfoList[v].lat;
currentNode.lon2 = inputNodeInfoList[v].lon;
currentNode.id = _nodeBasedGraph->GetEdgeData(e1).edgeBasedNodeID;
currentNode.ignoreInGrid = _nodeBasedGraph->GetEdgeData(e1).ignoreInGrid;
// short startHeight = srtmLookup.height(currentNode.lon1/100000.,currentNode.lat1/100000. );
// short targetHeight = srtmLookup.height(currentNode.lon2/100000.,currentNode.lat2/100000. );
// short heightDiff = startHeight - targetHeight;
// double increase = (heightDiff/ApproximateDistance(currentNode.lat1, currentNode.lon1, currentNode.lat2, currentNode.lon2));
// if(heightDiff != 0)
// INFO("Increase at dead-end street: " << heightDiff << ", edge length: " << ApproximateDistance(currentNode.lat1, currentNode.lon1, currentNode.lat2, currentNode.lon2) << ", percentage: " << increase );
//incorporate height diff;
//todo: get some exponential function to converge to one for n->\infty
currentNode.weight = _nodeBasedGraph->GetEdgeData(e1).distance;
// if(increase > 0)
// currentNode.weight *= (1.+increase);
edgeBasedNodes.push_back(currentNode);
}
if(_bollardNodes.Find(v) == true) {
numberOfSkippedTurns += _nodeBasedGraph->EndEdges(v) - _nodeBasedGraph->BeginEdges(v);
continue;
}
for(_NodeBasedDynamicGraph::EdgeIterator e2 = _nodeBasedGraph->BeginEdges(v); e2 < _nodeBasedGraph->EndEdges(v); ++e2) {
_NodeBasedDynamicGraph::NodeIterator w = _nodeBasedGraph->GetTarget(e2);
//if (u,v,w) is a forbidden turn, continue
if(isOnlyAllowed && w != onlyToNode) {
//We are at an only_-restriction but not at the right turn.
++numberOfSkippedTurns;
continue;
}
bool isTurnRestricted(false);
if( u != w || 1 == _nodeBasedGraph->GetOutDegree(v)) { //only add an edge if turn is not a U-turn except it is the end of dead-end street.
if(restrictionIterator != inputRestrictions.end() && u == restrictionIterator->fromNode) {
std::vector<_Restriction>::iterator secondRestrictionIterator = restrictionIterator;
do {
if(v == secondRestrictionIterator->viaNode) {
if(w == secondRestrictionIterator->toNode) {
isTurnRestricted = true;
}
}
++secondRestrictionIterator;
} while(secondRestrictionIterator != inputRestrictions.end() && u == secondRestrictionIterator->fromNode);
}
if( !isTurnRestricted || (isOnlyAllowed && w == onlyToNode) ) { //only add an edge if turn is not prohibited
if(isOnlyAllowed && w == onlyToNode) {
// INFO("Adding 'only_*'-turn <" << u << "," << v << "," << w << ">");
} else if(isOnlyAllowed && w != onlyToNode) {
assert(false);
}
//new costs for edge based edge (e1, e2) = cost (e1) + tc(e1,e2)
const _NodeBasedDynamicGraph::NodeIterator edgeBasedSource = _nodeBasedGraph->GetEdgeData(e1).edgeBasedNodeID;
if(edgeBasedSource > _nodeBasedGraph->GetNumberOfEdges()) {
ERR("edgeBasedTarget" << edgeBasedSource << ">" << _nodeBasedGraph->GetNumberOfEdges());
}
const _NodeBasedDynamicGraph::NodeIterator edgeBasedTarget = _nodeBasedGraph->GetEdgeData(e2).edgeBasedNodeID;
if(edgeBasedTarget > _nodeBasedGraph->GetNumberOfEdges()) {
ERR("edgeBasedTarget" << edgeBasedTarget << ">" << _nodeBasedGraph->GetNumberOfEdges());
}
//incorporate turn costs, this is just a simple model and can (read: must) be extended
// double angle = GetAngleBetweenTwoEdges(inputNodeInfoList[u], inputNodeInfoList[v], inputNodeInfoList[w]);
unsigned distance = _nodeBasedGraph->GetEdgeData(e1).distance;//(int)( _nodeBasedGraph->GetEdgeData(e1).distance *(1+std::abs((angle-180.)/180.)));
unsigned nameID = _nodeBasedGraph->GetEdgeData(e2).nameID;
short turnInstruction = AnalyzeTurn(u, v, w);
//create edge-based graph edge
EdgeBasedEdge newEdge(edgeBasedSource, edgeBasedTarget, v, nameID, distance, true, false, turnInstruction);
edgeBasedEdges.push_back(newEdge);
if(_bollardNodes.Find(w) == true){
// INFO("[" << w << "] loc: " << inputNodeInfoList[w].lat << "," << inputNodeInfoList[w].lon << ", tgt: " << edgeBasedTarget);
//if node v is a bollard, then we need to add e2 as target node to the new set of edgebased nodes.
//Otherwise it will not be possible to route to route to this node
EdgeBasedNode currentNode;
currentNode.nameID = _nodeBasedGraph->GetEdgeData(e1).nameID;
currentNode.lat1 = inputNodeInfoList[v].lat;
currentNode.lon1 = inputNodeInfoList[v].lon;
currentNode.lat2 = inputNodeInfoList[w].lat;
currentNode.lon2 = inputNodeInfoList[w].lon;
currentNode.id = edgeBasedTarget;
currentNode.ignoreInGrid = _nodeBasedGraph->GetEdgeData(e2).ignoreInGrid;
edgeBasedNodes.push_back(currentNode);
}
if(_nodeBasedGraph->GetEdgeData(e1).type != SHRT_MAX ) {
EdgeBasedNode currentNode;
currentNode.nameID = _nodeBasedGraph->GetEdgeData(e1).nameID;
currentNode.lat1 = inputNodeInfoList[u].lat;
currentNode.lon1 = inputNodeInfoList[u].lon;
currentNode.lat2 = inputNodeInfoList[v].lat;
currentNode.lon2 = inputNodeInfoList[v].lon;
currentNode.id = edgeBasedSource;
currentNode.ignoreInGrid = _nodeBasedGraph->GetEdgeData(e1).ignoreInGrid;
// short startHeight = srtmLookup.height(currentNode.lon1/100000.,currentNode.lat1/100000. );
// short targetHeight = srtmLookup.height(currentNode.lon2/100000.,currentNode.lat2/100000. );
// short heightDiff = startHeight - targetHeight;
// double increase = (heightDiff/ApproximateDistance(currentNode.lat1, currentNode.lon1, currentNode.lat2, currentNode.lon2));
// if(heightDiff != 0)
// INFO("Increase at turn: " << heightDiff << ", edge length: " << ApproximateDistance(currentNode.lat1, currentNode.lon1, currentNode.lat2, currentNode.lon2) << ", percentage: " << increase ); //incorporate height diff;
currentNode.weight = distance;
edgeBasedNodes.push_back(currentNode);
}
} else {
++numberOfSkippedTurns;
}
}
}
}
p.printIncrement();
}
std::sort(edgeBasedNodes.begin(), edgeBasedNodes.end());
edgeBasedNodes.erase( std::unique(edgeBasedNodes.begin(), edgeBasedNodes.end()), edgeBasedNodes.end() );
INFO("Node-based graph contains " << nodeBasedEdgeCounter << " edges");
INFO("Edge-based graph contains " << edgeBasedEdges.size() << " edges, blowup is " << (double)edgeBasedEdges.size()/(double)nodeBasedEdgeCounter);
INFO("Edge-based graph skipped " << numberOfSkippedTurns << " turns, defined by " << inputRestrictions.size() << " restrictions.");
INFO("Generated " << edgeBasedNodes.size() << " edge based nodes");
}
short EdgeBasedGraphFactory::AnalyzeTurn(const NodeID u, const NodeID v, const NodeID w) const {
if(u == w) {
return TurnInstructions.UTurn;
}
_NodeBasedDynamicGraph::EdgeIterator edge1 = _nodeBasedGraph->FindEdge(u, v);
_NodeBasedDynamicGraph::EdgeIterator edge2 = _nodeBasedGraph->FindEdge(v, w);
_NodeBasedDynamicGraph::EdgeData & data1 = _nodeBasedGraph->GetEdgeData(edge1);
_NodeBasedDynamicGraph::EdgeData & data2 = _nodeBasedGraph->GetEdgeData(edge2);
//roundabouts need to be handled explicitely
if(data1.roundabout && data2.roundabout) {
//Is a turn possible? If yes, we stay on the roundabout!
if( 1 == (_nodeBasedGraph->EndEdges(v) - _nodeBasedGraph->BeginEdges(v)) ) {
//No turn possible.
return TurnInstructions.NoTurn;
} else {
return TurnInstructions.StayOnRoundAbout;
}
}
//Does turn start or end on roundabout?
if(data1.roundabout || data2.roundabout) {
//We are entering the roundabout
if( (!data1.roundabout) && data2.roundabout)
return TurnInstructions.EnterRoundAbout;
//We are leaving the roundabout
if(data1.roundabout && (!data2.roundabout) )
return TurnInstructions.LeaveRoundAbout;
}
//If street names stay the same and if we are certain that it is not a roundabout, we skip it.
if( (data1.nameID == data2.nameID) && (0 != data1.nameID))
return TurnInstructions.NoTurn;
if( (data1.nameID == data2.nameID) && (0 == data1.nameID) && (_nodeBasedGraph->GetOutDegree(v) == 1) )
return TurnInstructions.NoTurn;
double angle = GetAngleBetweenTwoEdges(inputNodeInfoList[u], inputNodeInfoList[v], inputNodeInfoList[w]);
return TurnInstructions.GetTurnDirectionOfInstruction(angle);
}
unsigned EdgeBasedGraphFactory::GetNumberOfNodes() const {
return _nodeBasedGraph->GetNumberOfEdges();
}
EdgeBasedGraphFactory::~EdgeBasedGraphFactory() {
}
/* Get angle of line segment (A,C)->(C,B), atan2 magic, formerly cosine theorem*/
template<class CoordinateT>
double EdgeBasedGraphFactory::GetAngleBetweenTwoEdges(const CoordinateT& A, const CoordinateT& C, const CoordinateT& B) const {
const int v1x = A.lon - C.lon;
const int v1y = A.lat - C.lat;
const int v2x = B.lon - C.lon;
const int v2y = B.lat - C.lat;
double angle = (atan2((double)v2y,v2x) - atan2((double)v1y,v1x) )*180/M_PI;
while(angle < 0)
angle += 360;
return angle;
}