382 lines
19 KiB
C++
382 lines
19 KiB
C++
/*
|
|
open source routing machine
|
|
Copyright (C) Dennis Luxen, others 2010
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU AFFERO General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Affero General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
or see http://www.gnu.org/licenses/agpl.txt.
|
|
*/
|
|
|
|
#include "EdgeBasedGraphFactory.h"
|
|
|
|
template<>
|
|
EdgeBasedGraphFactory::EdgeBasedGraphFactory(int nodes, std::vector<NodeBasedEdge> & inputEdges, std::vector<NodeID> & bn, std::vector<NodeID> & tl, std::vector<_Restriction> & irs, std::vector<NodeInfo> & nI, SpeedProfileProperties sp) : inputNodeInfoList(nI), numberOfTurnRestrictions(irs.size()), speedProfile(sp) {
|
|
BOOST_FOREACH(_Restriction & restriction, irs) {
|
|
std::pair<NodeID, NodeID> restrictionSource = std::make_pair(restriction.fromNode, restriction.viaNode);
|
|
unsigned index;
|
|
RestrictionMap::iterator restrIter = _restrictionMap.find(restrictionSource);
|
|
if(restrIter == _restrictionMap.end()) {
|
|
index = _restrictionBucketVector.size();
|
|
_restrictionBucketVector.resize(index+1);
|
|
_restrictionMap[restrictionSource] = index;
|
|
} else {
|
|
index = restrIter->second;
|
|
//Map already contains an is_only_*-restriction
|
|
if(_restrictionBucketVector.at(index).begin()->second)
|
|
continue;
|
|
else if(restriction.flags.isOnly){
|
|
//We are going to insert an is_only_*-restriction. There can be only one.
|
|
_restrictionBucketVector.at(index).clear();
|
|
}
|
|
}
|
|
|
|
_restrictionBucketVector.at(index).push_back(std::make_pair(restriction.toNode, restriction.flags.isOnly));
|
|
}
|
|
|
|
_barrierNodes.insert(bn.begin(), bn.end());
|
|
_trafficLights.insert(tl.begin(), tl.end());
|
|
|
|
DeallocatingVector< _NodeBasedEdge > edges;
|
|
_NodeBasedEdge edge;
|
|
for ( std::vector< NodeBasedEdge >::const_iterator i = inputEdges.begin(); i != inputEdges.end(); ++i ) {
|
|
if(!i->isForward()) {
|
|
edge.source = i->target();
|
|
edge.target = i->source();
|
|
edge.data.backward = i->isForward();
|
|
edge.data.forward = i->isBackward();
|
|
} else {
|
|
edge.source = i->source();
|
|
edge.target = i->target();
|
|
edge.data.forward = i->isForward();
|
|
edge.data.backward = i->isBackward();
|
|
}
|
|
if(edge.source == edge.target)
|
|
continue;
|
|
|
|
edge.data.distance = (std::max)((int)i->weight(), 1 );
|
|
assert( edge.data.distance > 0 );
|
|
edge.data.shortcut = false;
|
|
edge.data.roundabout = i->isRoundabout();
|
|
edge.data.ignoreInGrid = i->ignoreInGrid();
|
|
edge.data.nameID = i->name();
|
|
edge.data.type = i->type();
|
|
edge.data.isAccessRestricted = i->isAccessRestricted();
|
|
edge.data.edgeBasedNodeID = edges.size();
|
|
edges.push_back( edge );
|
|
if( edge.data.backward ) {
|
|
std::swap( edge.source, edge.target );
|
|
edge.data.forward = i->isBackward();
|
|
edge.data.backward = i->isForward();
|
|
edge.data.edgeBasedNodeID = edges.size();
|
|
edges.push_back( edge );
|
|
}
|
|
}
|
|
std::vector<NodeBasedEdge>().swap(inputEdges);
|
|
std::sort( edges.begin(), edges.end() );
|
|
_nodeBasedGraph = boost::make_shared<_NodeBasedDynamicGraph>( nodes, edges );
|
|
}
|
|
|
|
void EdgeBasedGraphFactory::GetEdgeBasedEdges(DeallocatingVector< EdgeBasedEdge >& outputEdgeList ) {
|
|
GUARANTEE(0 == outputEdgeList.size(), "Vector passed to EdgeBasedGraphFactory::GetEdgeBasedEdges(..) is not empty");
|
|
edgeBasedEdges.swap(outputEdgeList);
|
|
}
|
|
|
|
void EdgeBasedGraphFactory::GetEdgeBasedNodes( DeallocatingVector< EdgeBasedNode> & nodes) {
|
|
#ifndef NDEBUG
|
|
BOOST_FOREACH(EdgeBasedNode & node, edgeBasedNodes){
|
|
assert(node.lat1 != INT_MAX); assert(node.lon1 != INT_MAX);
|
|
assert(node.lat2 != INT_MAX); assert(node.lon2 != INT_MAX);
|
|
}
|
|
#endif
|
|
nodes.swap(edgeBasedNodes);
|
|
}
|
|
|
|
NodeID EdgeBasedGraphFactory::CheckForEmanatingIsOnlyTurn(const NodeID u, const NodeID v) const {
|
|
std::pair < NodeID, NodeID > restrictionSource = std::make_pair(u, v);
|
|
RestrictionMap::const_iterator restrIter = _restrictionMap.find(restrictionSource);
|
|
if (restrIter != _restrictionMap.end()) {
|
|
unsigned index = restrIter->second;
|
|
BOOST_FOREACH(RestrictionSource restrictionTarget, _restrictionBucketVector.at(index)) {
|
|
if(restrictionTarget.second) {
|
|
return restrictionTarget.first;
|
|
}
|
|
}
|
|
}
|
|
return UINT_MAX;
|
|
}
|
|
|
|
bool EdgeBasedGraphFactory::CheckIfTurnIsRestricted(const NodeID u, const NodeID v, const NodeID w) const {
|
|
//only add an edge if turn is not a U-turn except it is the end of dead-end street.
|
|
std::pair < NodeID, NodeID > restrictionSource = std::make_pair(u, v);
|
|
RestrictionMap::const_iterator restrIter = _restrictionMap.find(restrictionSource);
|
|
if (restrIter != _restrictionMap.end()) {
|
|
unsigned index = restrIter->second;
|
|
BOOST_FOREACH(RestrictionTarget restrictionTarget, _restrictionBucketVector.at(index)) {
|
|
if(w == restrictionTarget.first)
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void EdgeBasedGraphFactory::InsertEdgeBasedNode(
|
|
_NodeBasedDynamicGraph::EdgeIterator e1,
|
|
_NodeBasedDynamicGraph::NodeIterator u,
|
|
_NodeBasedDynamicGraph::NodeIterator v,
|
|
bool belongsToTinyComponent) {
|
|
_NodeBasedDynamicGraph::EdgeData & data = _nodeBasedGraph->GetEdgeData(e1);
|
|
EdgeBasedNode currentNode;
|
|
currentNode.nameID = data.nameID;
|
|
currentNode.lat1 = inputNodeInfoList[u].lat;
|
|
currentNode.lon1 = inputNodeInfoList[u].lon;
|
|
currentNode.lat2 = inputNodeInfoList[v].lat;
|
|
currentNode.lon2 = inputNodeInfoList[v].lon;
|
|
currentNode.belongsToTinyComponent = belongsToTinyComponent;
|
|
currentNode.id = data.edgeBasedNodeID;
|
|
currentNode.ignoreInGrid = data.ignoreInGrid;
|
|
currentNode.weight = data.distance;
|
|
edgeBasedNodes.push_back(currentNode);
|
|
}
|
|
|
|
void EdgeBasedGraphFactory::Run(const char * originalEdgeDataFilename) {
|
|
Percent p(_nodeBasedGraph->GetNumberOfNodes());
|
|
int numberOfSkippedTurns(0);
|
|
int nodeBasedEdgeCounter(0);
|
|
unsigned numberOfOriginalEdges(0);
|
|
std::ofstream originalEdgeDataOutFile(originalEdgeDataFilename, std::ios::binary);
|
|
originalEdgeDataOutFile.write((char*)&numberOfOriginalEdges, sizeof(unsigned));
|
|
|
|
|
|
INFO("Identifying small components");
|
|
//Run a BFS on the undirected graph and identify small components
|
|
std::queue<std::pair<NodeID, NodeID> > bfsQueue;
|
|
std::vector<unsigned> componentsIndex(_nodeBasedGraph->GetNumberOfNodes(), UINT_MAX);
|
|
std::vector<NodeID> vectorOfComponentSizes;
|
|
unsigned currentComponent = 0, sizeOfCurrentComponent = 0;
|
|
//put unexplorered node with parent pointer into queue
|
|
for(NodeID node = 0, endNodes = _nodeBasedGraph->GetNumberOfNodes(); node < endNodes; ++node) {
|
|
if(UINT_MAX == componentsIndex[node]) {
|
|
bfsQueue.push(std::make_pair(node, node));
|
|
//mark node as read
|
|
componentsIndex[node] = currentComponent;
|
|
p.printIncrement();
|
|
while(!bfsQueue.empty()) {
|
|
//fetch element from BFS queue
|
|
std::pair<NodeID, NodeID> currentQueueItem = bfsQueue.front();
|
|
bfsQueue.pop();
|
|
// INFO("sizeof queue: " << bfsQueue.size() << ", sizeOfCurrentComponents: " << sizeOfCurrentComponent << ", settled nodes: " << settledNodes++ << ", max: " << endNodes);
|
|
const NodeID v = currentQueueItem.first; //current node
|
|
const NodeID u = currentQueueItem.second; //parent
|
|
//increment size counter of current component
|
|
++sizeOfCurrentComponent;
|
|
const bool isBollardNode = (_barrierNodes.find(v) != _barrierNodes.end());
|
|
if(!isBollardNode) {
|
|
const NodeID onlyToNode = CheckForEmanatingIsOnlyTurn(u, v);
|
|
|
|
//relaxieren edge outgoing edge like below where edge-expanded graph
|
|
for(_NodeBasedDynamicGraph::EdgeIterator e2 = _nodeBasedGraph->BeginEdges(v); e2 < _nodeBasedGraph->EndEdges(v); ++e2) {
|
|
_NodeBasedDynamicGraph::NodeIterator w = _nodeBasedGraph->GetTarget(e2);
|
|
|
|
if(onlyToNode != UINT_MAX && w != onlyToNode) { //We are at an only_-restriction but not at the right turn.
|
|
continue;
|
|
}
|
|
if( u != w ) { //only add an edge if turn is not a U-turn except it is the end of dead-end street.
|
|
if (!CheckIfTurnIsRestricted(u, v, w) ) { //only add an edge if turn is not prohibited
|
|
//insert next (node, parent) only if w has not yet been explored
|
|
if(UINT_MAX == componentsIndex[w]) {
|
|
//mark node as read
|
|
componentsIndex[w] = currentComponent;
|
|
bfsQueue.push(std::make_pair(w,v));
|
|
p.printIncrement();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
//push size into vector
|
|
vectorOfComponentSizes.push_back(sizeOfCurrentComponent);
|
|
//reset counters;
|
|
sizeOfCurrentComponent = 0;
|
|
++currentComponent;
|
|
}
|
|
}
|
|
INFO("identified: " << vectorOfComponentSizes.size() << " many components");
|
|
|
|
p.reinit(_nodeBasedGraph->GetNumberOfNodes());
|
|
//loop over all edges and generate new set of nodes.
|
|
for(_NodeBasedDynamicGraph::NodeIterator u = 0; u < _nodeBasedGraph->GetNumberOfNodes(); ++u ) {
|
|
for(_NodeBasedDynamicGraph::EdgeIterator e1 = _nodeBasedGraph->BeginEdges(u); e1 < _nodeBasedGraph->EndEdges(u); ++e1) {
|
|
_NodeBasedDynamicGraph::NodeIterator v = _nodeBasedGraph->GetTarget(e1);
|
|
|
|
if(_nodeBasedGraph->GetEdgeData(e1).type != SHRT_MAX) {
|
|
assert(e1 != UINT_MAX);
|
|
assert(u != UINT_MAX);
|
|
assert(v != UINT_MAX);
|
|
//edges that end on bollard nodes may actually be in two distinct components
|
|
InsertEdgeBasedNode(e1, u, v, (std::min(vectorOfComponentSizes[componentsIndex[u]], vectorOfComponentSizes[componentsIndex[v]]) < 1000) );
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<NodeID>().swap(vectorOfComponentSizes);
|
|
std::vector<NodeID>().swap(componentsIndex);
|
|
|
|
//Loop over all turns and generate new set of edges.
|
|
//Three nested loop look super-linear, but we are dealing with a linear number of turns only.
|
|
for(_NodeBasedDynamicGraph::NodeIterator u = 0; u < _nodeBasedGraph->GetNumberOfNodes(); ++u ) {
|
|
for(_NodeBasedDynamicGraph::EdgeIterator e1 = _nodeBasedGraph->BeginEdges(u); e1 < _nodeBasedGraph->EndEdges(u); ++e1) {
|
|
++nodeBasedEdgeCounter;
|
|
_NodeBasedDynamicGraph::NodeIterator v = _nodeBasedGraph->GetTarget(e1);
|
|
//EdgeWeight heightPenalty = ComputeHeightPenalty(u, v);
|
|
NodeID onlyToNode = CheckForEmanatingIsOnlyTurn(u, v);
|
|
for(_NodeBasedDynamicGraph::EdgeIterator e2 = _nodeBasedGraph->BeginEdges(v); e2 < _nodeBasedGraph->EndEdges(v); ++e2) {
|
|
const _NodeBasedDynamicGraph::NodeIterator w = _nodeBasedGraph->GetTarget(e2);
|
|
|
|
if(onlyToNode != UINT_MAX && w != onlyToNode) { //We are at an only_-restriction but not at the right turn.
|
|
++numberOfSkippedTurns;
|
|
continue;
|
|
}
|
|
bool isBollardNode = (_barrierNodes.find(v) != _barrierNodes.end());
|
|
if(u == w && 1 != _nodeBasedGraph->GetOutDegree(v) ) {
|
|
continue;
|
|
}
|
|
|
|
if( !isBollardNode ) { //only add an edge if turn is not a U-turn except it is the end of dead-end street.
|
|
if (!CheckIfTurnIsRestricted(u, v, w) || (onlyToNode != UINT_MAX && w == onlyToNode)) { //only add an edge if turn is not prohibited
|
|
const _NodeBasedDynamicGraph::EdgeData edgeData1 = _nodeBasedGraph->GetEdgeData(e1);
|
|
const _NodeBasedDynamicGraph::EdgeData edgeData2 = _nodeBasedGraph->GetEdgeData(e2);
|
|
assert(edgeData1.edgeBasedNodeID < _nodeBasedGraph->GetNumberOfEdges());
|
|
assert(edgeData2.edgeBasedNodeID < _nodeBasedGraph->GetNumberOfEdges());
|
|
|
|
if(!edgeData1.forward || !edgeData2.forward) {
|
|
continue;
|
|
}
|
|
|
|
unsigned distance = edgeData1.distance;
|
|
if(_trafficLights.find(v) != _trafficLights.end()) {
|
|
distance += speedProfile.trafficSignalPenalty;
|
|
}
|
|
TurnInstruction turnInstruction = AnalyzeTurn(u, v, w);
|
|
if(turnInstruction == TurnInstructions.UTurn)
|
|
distance += speedProfile.uTurnPenalty;
|
|
// if(!edgeData1.isAccessRestricted && edgeData2.isAccessRestricted) {
|
|
// distance += TurnInstructions.AccessRestrictionPenalty;
|
|
// turnInstruction |= TurnInstructions.AccessRestrictionFlag;
|
|
// }
|
|
|
|
|
|
//distance += heightPenalty;
|
|
//distance += ComputeTurnPenalty(u, v, w);
|
|
assert(edgeData1.edgeBasedNodeID != edgeData2.edgeBasedNodeID);
|
|
if(originalEdgeData.size() == originalEdgeData.capacity()-3) {
|
|
originalEdgeData.reserve(originalEdgeData.size()*1.2);
|
|
}
|
|
OriginalEdgeData oed(v,edgeData2.nameID, turnInstruction);
|
|
EdgeBasedEdge newEdge(edgeData1.edgeBasedNodeID, edgeData2.edgeBasedNodeID, edgeBasedEdges.size(), distance, true, false );
|
|
originalEdgeData.push_back(oed);
|
|
if(originalEdgeData.size() > 100000) {
|
|
originalEdgeDataOutFile.write((char*)&(originalEdgeData[0]), originalEdgeData.size()*sizeof(OriginalEdgeData));
|
|
originalEdgeData.clear();
|
|
}
|
|
++numberOfOriginalEdges;
|
|
++nodeBasedEdgeCounter;
|
|
edgeBasedEdges.push_back(newEdge);
|
|
} else {
|
|
++numberOfSkippedTurns;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
p.printIncrement();
|
|
}
|
|
numberOfOriginalEdges += originalEdgeData.size();
|
|
originalEdgeDataOutFile.write((char*)&(originalEdgeData[0]), originalEdgeData.size()*sizeof(OriginalEdgeData));
|
|
originalEdgeDataOutFile.seekp(std::ios::beg);
|
|
originalEdgeDataOutFile.write((char*)&numberOfOriginalEdges, sizeof(unsigned));
|
|
originalEdgeDataOutFile.close();
|
|
|
|
// INFO("Sorting edge-based Nodes");
|
|
// std::sort(edgeBasedNodes.begin(), edgeBasedNodes.end());
|
|
// INFO("Removing duplicate nodes (if any)");
|
|
// edgeBasedNodes.erase( std::unique(edgeBasedNodes.begin(), edgeBasedNodes.end()), edgeBasedNodes.end() );
|
|
// INFO("Applying vector self-swap trick to free up memory");
|
|
// INFO("size: " << edgeBasedNodes.size() << ", cap: " << edgeBasedNodes.capacity());
|
|
// std::vector<EdgeBasedNode>(edgeBasedNodes).swap(edgeBasedNodes);
|
|
// INFO("size: " << edgeBasedNodes.size() << ", cap: " << edgeBasedNodes.capacity());
|
|
INFO("Node-based graph contains " << nodeBasedEdgeCounter << " edges");
|
|
// INFO("Edge-based graph contains " << edgeBasedEdges.size() << " edges, blowup is " << 2*((double)edgeBasedEdges.size()/(double)nodeBasedEdgeCounter));
|
|
INFO("Edge-based graph skipped " << numberOfSkippedTurns << " turns, defined by " << numberOfTurnRestrictions << " restrictions.");
|
|
INFO("Generated " << edgeBasedNodes.size() << " edge based nodes");
|
|
}
|
|
|
|
TurnInstruction EdgeBasedGraphFactory::AnalyzeTurn(const NodeID u, const NodeID v, const NodeID w) const {
|
|
if(u == w) {
|
|
return TurnInstructions.UTurn;
|
|
}
|
|
|
|
_NodeBasedDynamicGraph::EdgeIterator edge1 = _nodeBasedGraph->FindEdge(u, v);
|
|
_NodeBasedDynamicGraph::EdgeIterator edge2 = _nodeBasedGraph->FindEdge(v, w);
|
|
|
|
_NodeBasedDynamicGraph::EdgeData & data1 = _nodeBasedGraph->GetEdgeData(edge1);
|
|
_NodeBasedDynamicGraph::EdgeData & data2 = _nodeBasedGraph->GetEdgeData(edge2);
|
|
|
|
//roundabouts need to be handled explicitely
|
|
if(data1.roundabout && data2.roundabout) {
|
|
//Is a turn possible? If yes, we stay on the roundabout!
|
|
if( 1 == (_nodeBasedGraph->EndEdges(v) - _nodeBasedGraph->BeginEdges(v)) ) {
|
|
//No turn possible.
|
|
return TurnInstructions.NoTurn;
|
|
} else {
|
|
return TurnInstructions.StayOnRoundAbout;
|
|
}
|
|
}
|
|
//Does turn start or end on roundabout?
|
|
if(data1.roundabout || data2.roundabout) {
|
|
//We are entering the roundabout
|
|
if( (!data1.roundabout) && data2.roundabout)
|
|
return TurnInstructions.EnterRoundAbout;
|
|
//We are leaving the roundabout
|
|
else if(data1.roundabout && (!data2.roundabout) )
|
|
return TurnInstructions.LeaveRoundAbout;
|
|
}
|
|
|
|
//If street names stay the same and if we are certain that it is not a roundabout, we skip it.
|
|
if( (data1.nameID == data2.nameID) && (0 != data1.nameID))
|
|
return TurnInstructions.NoTurn;
|
|
if( (data1.nameID == data2.nameID) && (0 == data1.nameID) && (_nodeBasedGraph->GetOutDegree(v) <= 2) )
|
|
return TurnInstructions.NoTurn;
|
|
|
|
double angle = GetAngleBetweenTwoEdges(inputNodeInfoList[u], inputNodeInfoList[v], inputNodeInfoList[w]);
|
|
return TurnInstructions.GetTurnDirectionOfInstruction(angle);
|
|
}
|
|
|
|
unsigned EdgeBasedGraphFactory::GetNumberOfNodes() const {
|
|
return _nodeBasedGraph->GetNumberOfEdges();
|
|
}
|
|
|
|
/* Get angle of line segment (A,C)->(C,B), atan2 magic, formerly cosine theorem*/
|
|
template<class CoordinateT>
|
|
double EdgeBasedGraphFactory::GetAngleBetweenTwoEdges(const CoordinateT& A, const CoordinateT& C, const CoordinateT& B) const {
|
|
const int v1x = A.lon - C.lon;
|
|
const int v1y = A.lat - C.lat;
|
|
const int v2x = B.lon - C.lon;
|
|
const int v2y = B.lat - C.lat;
|
|
|
|
double angle = (atan2((double)v2y,v2x) - atan2((double)v1y,v1x) )*180/M_PI;
|
|
while(angle < 0)
|
|
angle += 360;
|
|
return angle;
|
|
}
|