647 lines
26 KiB
C++
647 lines
26 KiB
C++
/*
|
|
open source routing machine
|
|
Copyright (C) Dennis Luxen, others 2010
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU AFFERO General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Affero General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
or see http://www.gnu.org/licenses/agpl.txt.
|
|
*/
|
|
|
|
#ifndef CONTRACTOR_H_INCLUDED
|
|
#define CONTRACTOR_H_INCLUDED
|
|
#ifdef _GLIBCXX_PARALLEL
|
|
#include <parallel/algorithm>
|
|
#else
|
|
#include <algorithm>
|
|
#endif
|
|
#include "../DataStructures/DynamicGraph.h"
|
|
#include "../DataStructures/LevelInformation.h"
|
|
#include "../DataStructures/Percent.h"
|
|
#include <ctime>
|
|
#include <vector>
|
|
#include <queue>
|
|
#include <set>
|
|
#include <stack>
|
|
#include <limits>
|
|
#include <omp.h>
|
|
|
|
class Contractor {
|
|
|
|
private:
|
|
|
|
union _MiddleName {
|
|
NodeID middle;
|
|
NodeID nameID;
|
|
};
|
|
|
|
struct _EdgeData {
|
|
unsigned distance;
|
|
unsigned originalEdges : 29;
|
|
bool shortcut : 1;
|
|
bool forward : 1;
|
|
bool backward : 1;
|
|
short type:6;
|
|
bool forwardTurn:1;
|
|
bool backwardTurn:1;
|
|
_MiddleName middleName;
|
|
} data;
|
|
|
|
struct _HeapData {
|
|
bool target;
|
|
_HeapData() : target(false) {}
|
|
_HeapData( bool t ) : target(t) {}
|
|
};
|
|
|
|
typedef DynamicGraph< _EdgeData > _DynamicGraph;
|
|
typedef BinaryHeap< NodeID, NodeID, int, _HeapData > _Heap;
|
|
typedef _DynamicGraph::InputEdge _ImportEdge;
|
|
|
|
struct _ThreadData {
|
|
_Heap heap;
|
|
std::vector< _ImportEdge > insertedEdges;
|
|
_ThreadData( NodeID nodes ): heap( nodes ) {
|
|
}
|
|
};
|
|
|
|
struct _PriorityData {
|
|
int depth;
|
|
NodeID bias;
|
|
_PriorityData() {
|
|
depth = 0;
|
|
}
|
|
};
|
|
|
|
struct _ContractionInformation {
|
|
int edgesDeleted;
|
|
int edgesAdded;
|
|
int originalEdgesDeleted;
|
|
int originalEdgesAdded;
|
|
_ContractionInformation() {
|
|
edgesAdded = edgesDeleted = originalEdgesAdded = originalEdgesDeleted = 0;
|
|
}
|
|
};
|
|
|
|
struct _NodePartitionor {
|
|
bool operator()( std::pair< NodeID, bool > nodeData ) {
|
|
return !nodeData.second;
|
|
}
|
|
};
|
|
|
|
public:
|
|
|
|
template< class InputEdge >
|
|
Contractor( int nodes, std::vector< InputEdge >& inputEdges, unsigned eqf = 2, unsigned oqf = 1, unsigned df = 1) : edgeQuotionFactor(eqf), originalQuotientFactor(oqf), depthFactor(df), maxDepth(0) {
|
|
|
|
std::vector< _ImportEdge > edges;
|
|
edges.reserve( 2 * inputEdges.size() );
|
|
for ( typename std::vector< InputEdge >::const_iterator i = inputEdges.begin(), e = inputEdges.end(); i != e; ++i ) {
|
|
_ImportEdge edge;
|
|
edge.source = i->source();
|
|
edge.target = i->target();
|
|
|
|
edge.data.distance = std::max((int)i->weight(), 1 );
|
|
assert( edge.data.distance > 0 );
|
|
#ifdef DEBUG
|
|
if ( edge.data.distance > 24 * 60 * 60 * 10 ) {
|
|
cout << "Edge Weight too large -> May lead to invalid CH" << endl;
|
|
continue;
|
|
}
|
|
#endif
|
|
edge.data.shortcut = false;
|
|
edge.data.middleName.nameID = i->name();
|
|
edge.data.type = i->type();
|
|
edge.data.forward = i->isForward();
|
|
edge.data.backward = i->isBackward();
|
|
edge.data.originalEdges = 1;
|
|
edges.push_back( edge );
|
|
std::swap( edge.source, edge.target );
|
|
edge.data.forward = i->isBackward();
|
|
edge.data.backward = i->isForward();
|
|
edge.data.forwardTurn = i->isForwardTurn();
|
|
edge.data.backwardTurn = i->isBackwardTurn();
|
|
edges.push_back( edge );
|
|
}
|
|
std::vector< InputEdge >().swap( inputEdges ); //free memory
|
|
#ifdef _GLIBCXX_PARALLEL
|
|
__gnu_parallel::sort( edges.begin(), edges.end() );
|
|
#else
|
|
sort( edges.begin(), edges.end() );
|
|
#endif
|
|
NodeID edge = 0;
|
|
for ( NodeID i = 0; i < edges.size(); ) {
|
|
const NodeID source = edges[i].source;
|
|
const NodeID target = edges[i].target;
|
|
const NodeID middle = edges[i].data.middleName.nameID;
|
|
const short type = edges[i].data.type;
|
|
assert(type >= 0);
|
|
//remove eigenloops
|
|
if ( source == target ) {
|
|
i++;
|
|
continue;
|
|
}
|
|
_ImportEdge forwardEdge;
|
|
_ImportEdge backwardEdge;
|
|
forwardEdge.source = backwardEdge.source = source;
|
|
forwardEdge.target = backwardEdge.target = target;
|
|
forwardEdge.data.forward = backwardEdge.data.backward = true;
|
|
forwardEdge.data.backward = backwardEdge.data.forward = false;
|
|
forwardEdge.data.type = backwardEdge.data.type = type;
|
|
forwardEdge.data.middleName.nameID = backwardEdge.data.middleName.nameID = middle;
|
|
forwardEdge.data.shortcut = backwardEdge.data.shortcut = false;
|
|
forwardEdge.data.originalEdges = backwardEdge.data.originalEdges = 1;
|
|
forwardEdge.data.distance = backwardEdge.data.distance = std::numeric_limits< int >::max();
|
|
//remove parallel edges
|
|
while ( i < edges.size() && edges[i].source == source && edges[i].target == target ) {
|
|
if ( edges[i].data.forward )
|
|
forwardEdge.data.distance = std::min( edges[i].data.distance, forwardEdge.data.distance );
|
|
if ( edges[i].data.backward )
|
|
backwardEdge.data.distance = std::min( edges[i].data.distance, backwardEdge.data.distance );
|
|
i++;
|
|
}
|
|
//merge edges (s,t) and (t,s) into bidirectional edge
|
|
if ( forwardEdge.data.distance == backwardEdge.data.distance ) {
|
|
if ( (int)forwardEdge.data.distance != std::numeric_limits< int >::max() ) {
|
|
forwardEdge.data.backward = true;
|
|
edges[edge++] = forwardEdge;
|
|
}
|
|
} else { //insert seperate edges
|
|
if ( (int)forwardEdge.data.distance != std::numeric_limits< int >::max() ) {
|
|
edges[edge++] = forwardEdge;
|
|
}
|
|
if ( (int)backwardEdge.data.distance != std::numeric_limits< int >::max() ) {
|
|
edges[edge++] = backwardEdge;
|
|
}
|
|
}
|
|
}
|
|
cout << "ok" << endl << "removed " << edges.size() - edge << " edges of " << edges.size() << endl;
|
|
edges.resize( edge );
|
|
_graph = new _DynamicGraph( nodes, edges );
|
|
std::vector< _ImportEdge >().swap( edges );
|
|
_levelInformation = new LevelInformation();
|
|
}
|
|
|
|
~Contractor() {
|
|
delete _graph;
|
|
delete _levelInformation;
|
|
}
|
|
|
|
int GetNumberOfLevels() const { return maxDepth; }
|
|
|
|
template< class InputEdge >
|
|
void CheckForAllOrigEdges(std::vector< InputEdge >& inputEdges) {
|
|
for(unsigned int i = 0; i < inputEdges.size(); i++) {
|
|
bool found = false;
|
|
_DynamicGraph::EdgeIterator eit = _graph->BeginEdges(inputEdges[i].source());
|
|
for(;eit<_graph->EndEdges(inputEdges[i].source()); eit++) {
|
|
if(_graph->GetEdgeData(eit).distance == inputEdges[i].weight())
|
|
found = true;
|
|
}
|
|
eit = _graph->BeginEdges(inputEdges[i].target());
|
|
for(;eit<_graph->EndEdges(inputEdges[i].target()); eit++) {
|
|
if(_graph->GetEdgeData(eit).distance == inputEdges[i].weight())
|
|
found = true;
|
|
}
|
|
assert(found);
|
|
}
|
|
}
|
|
|
|
void Run() {
|
|
const NodeID numberOfNodes = _graph->GetNumberOfNodes();
|
|
Percent p (numberOfNodes);
|
|
|
|
unsigned maxThreads = omp_get_max_threads();
|
|
std::vector < _ThreadData* > threadData;
|
|
for ( unsigned threadNum = 0; threadNum < maxThreads; ++threadNum ) {
|
|
threadData.push_back( new _ThreadData( numberOfNodes ) );
|
|
}
|
|
cout << "Contractor is using " << maxThreads << " threads" << endl;
|
|
|
|
NodeID levelID = 0;
|
|
std::vector< std::pair< NodeID, bool > > remainingNodes( numberOfNodes );
|
|
std::vector< double > nodePriority( numberOfNodes );
|
|
std::vector< _PriorityData > nodeData( numberOfNodes );
|
|
|
|
//initialize the variables
|
|
#pragma omp parallel for schedule ( guided )
|
|
for ( int x = 0; x < ( int ) numberOfNodes; ++x )
|
|
remainingNodes[x].first = x;
|
|
std::random_shuffle( remainingNodes.begin(), remainingNodes.end() );
|
|
for ( int x = 0; x < ( int ) numberOfNodes; ++x )
|
|
nodeData[remainingNodes[x].first].bias = x;
|
|
|
|
cout << "initializing elimination PQ ..." << flush;
|
|
#pragma omp parallel
|
|
{
|
|
_ThreadData* data = threadData[omp_get_thread_num()];
|
|
#pragma omp for schedule ( guided )
|
|
for ( int x = 0; x < ( int ) numberOfNodes; ++x ) {
|
|
nodePriority[x] = _Evaluate( data, &nodeData[x], x );
|
|
}
|
|
}
|
|
cout << "ok" << endl << "preprocessing ..." << flush;
|
|
|
|
while ( levelID < numberOfNodes ) {
|
|
const int last = ( int ) remainingNodes.size();
|
|
|
|
//determine independent node set
|
|
#pragma omp parallel for schedule ( guided )
|
|
for ( int i = 0; i < last; ++i ) {
|
|
const NodeID node = remainingNodes[i].first;
|
|
remainingNodes[i].second = _IsIndependent( _graph, nodePriority, nodeData, node );
|
|
}
|
|
_NodePartitionor functor;
|
|
const std::vector < std::pair < NodeID, bool > >::const_iterator first = stable_partition( remainingNodes.begin(), remainingNodes.end(), functor );
|
|
const int firstIndependent = first - remainingNodes.begin();
|
|
|
|
//contract independent nodes
|
|
#pragma omp parallel
|
|
{
|
|
_ThreadData* data = threadData[omp_get_thread_num()];
|
|
#pragma omp for schedule ( guided ) nowait
|
|
for ( int position = firstIndependent ; position < last; ++position ) {
|
|
NodeID x = remainingNodes[position].first;
|
|
_Contract< false > ( data, x );
|
|
nodePriority[x] = -1;
|
|
}
|
|
std::sort( data->insertedEdges.begin(), data->insertedEdges.end() );
|
|
}
|
|
|
|
#pragma omp parallel
|
|
{
|
|
_ThreadData* data = threadData[omp_get_thread_num()];
|
|
#pragma omp for schedule ( guided ) nowait
|
|
for ( int position = firstIndependent ; position < last; ++position ) {
|
|
NodeID x = remainingNodes[position].first;
|
|
_DeleteIncomingEdges( data, x );
|
|
}
|
|
}
|
|
|
|
//insert new edges
|
|
for ( unsigned threadNum = 0; threadNum < maxThreads; ++threadNum ) {
|
|
_ThreadData& data = *threadData[threadNum];
|
|
for ( int i = 0; i < ( int ) data.insertedEdges.size(); ++i ) {
|
|
const _ImportEdge& edge = data.insertedEdges[i];
|
|
bool found = false;
|
|
for ( _DynamicGraph::EdgeIterator e = _graph->BeginEdges( edge.source ) ; e < _graph->EndEdges( edge.source ) ; ++e ) {
|
|
const NodeID target = _graph->GetTarget( e );
|
|
if ( target != edge.target )
|
|
continue;
|
|
_EdgeData& data = _graph->GetEdgeData( e );
|
|
if ( data.distance != edge.data.distance )
|
|
continue;
|
|
if ( data.shortcut != edge.data.shortcut )
|
|
continue;
|
|
if ( data.middleName.middle != edge.data.middleName.middle )
|
|
continue;
|
|
data.forward |= edge.data.forward;
|
|
data.backward |= edge.data.backward;
|
|
found = true;
|
|
break;
|
|
}
|
|
if ( !found )
|
|
_graph->InsertEdge( edge.source, edge.target, edge.data );
|
|
}
|
|
std::vector< _ImportEdge >().swap( data.insertedEdges );
|
|
}
|
|
|
|
//update priorities
|
|
#pragma omp parallel
|
|
{
|
|
_ThreadData* data = threadData[omp_get_thread_num()];
|
|
#pragma omp for schedule ( guided ) nowait
|
|
for ( int position = firstIndependent ; position < last; ++position ) {
|
|
NodeID x = remainingNodes[position].first;
|
|
_UpdateNeighbours( &nodePriority, &nodeData, data, x );
|
|
}
|
|
}
|
|
|
|
//remove contracted nodes from the pool
|
|
levelID += last - firstIndependent;
|
|
remainingNodes.resize( firstIndependent );
|
|
std::vector< std::pair< NodeID, bool > >( remainingNodes ).swap( remainingNodes );
|
|
p.printStatus(levelID);
|
|
}
|
|
|
|
for ( _DynamicGraph::NodeIterator n = 0; n < _graph->GetNumberOfNodes(); n++ ) {
|
|
_levelInformation->Add(nodeData[n].depth, n);
|
|
}
|
|
|
|
for ( unsigned threadNum = 0; threadNum < maxThreads; threadNum++ ) {
|
|
delete threadData[threadNum];
|
|
}
|
|
|
|
cout << "[contractor] checking sanity of generated data ..." << flush;
|
|
_CheckCH<_EdgeData>();
|
|
cout << "ok" << endl;
|
|
std::cout << "[contractor] max level: " << maxDepth << std::endl;
|
|
}
|
|
|
|
template< class Edge >
|
|
void GetEdges( std::vector< Edge >& edges ) {
|
|
NodeID numberOfNodes = _graph->GetNumberOfNodes();
|
|
for ( NodeID node = 0; node < numberOfNodes; ++node ) {
|
|
for ( _DynamicGraph::EdgeIterator edge = _graph->BeginEdges( node ), endEdges = _graph->EndEdges( node ); edge < endEdges; edge++ ) {
|
|
const NodeID target = _graph->GetTarget( edge );
|
|
const _EdgeData& data = _graph->GetEdgeData( edge );
|
|
Edge newEdge;
|
|
newEdge.source = node;
|
|
newEdge.target = target;
|
|
newEdge.data.distance = data.distance;
|
|
newEdge.data.shortcut = data.shortcut;
|
|
if(data.shortcut) {
|
|
newEdge.data.middleName.middle = data.middleName.middle;
|
|
newEdge.data.type = -1;
|
|
} else {
|
|
newEdge.data.middleName.nameID = data.middleName.nameID;
|
|
newEdge.data.type = data.type;
|
|
assert(newEdge.data.type >= 0);
|
|
}
|
|
|
|
newEdge.data.forward = data.forward;
|
|
newEdge.data.forwardTurn = data.forwardTurn;
|
|
newEdge.data.backwardTurn = data.backwardTurn;
|
|
newEdge.data.backward = data.backward;
|
|
edges.push_back( newEdge );
|
|
}
|
|
}
|
|
}
|
|
|
|
LevelInformation * GetLevelInformation() {
|
|
return _levelInformation;
|
|
}
|
|
|
|
private:
|
|
bool _ConstructCH( _DynamicGraph* _graph );
|
|
|
|
void _Dijkstra( NodeID source, const int maxDistance, const unsigned numTargets, _ThreadData* data ){
|
|
|
|
_Heap& heap = data->heap;
|
|
|
|
int nodes = 0;
|
|
unsigned targetsFound = 0;
|
|
while ( heap.Size() > 0 ) {
|
|
const NodeID node = heap.DeleteMin();
|
|
const int distance = heap.GetKey( node );
|
|
//const int hops = heap.GetData( node ).hops;
|
|
if ( nodes++ > 1000 )
|
|
return;
|
|
//if ( hops >= 5 )
|
|
// return;
|
|
//Destination settled?
|
|
if ( distance > maxDistance )
|
|
return;
|
|
if( heap.GetData( node ).target ) {
|
|
targetsFound++;
|
|
if ( targetsFound >= numTargets )
|
|
return;
|
|
}
|
|
|
|
//iterate over all edges of node
|
|
for ( _DynamicGraph::EdgeIterator edge = _graph->BeginEdges( node ), endEdges = _graph->EndEdges( node ); edge != endEdges; ++edge ) {
|
|
const _EdgeData& data = _graph->GetEdgeData( edge );
|
|
if ( !data.forward )
|
|
continue;
|
|
const NodeID to = _graph->GetTarget( edge );
|
|
const int toDistance = distance + data.distance;
|
|
|
|
//New Node discovered -> Add to Heap + Node Info Storage
|
|
if ( !heap.WasInserted( to ) )
|
|
heap.Insert( to, toDistance, _HeapData() );
|
|
|
|
//Found a shorter Path -> Update distance
|
|
else if ( toDistance < heap.GetKey( to ) ) {
|
|
heap.DecreaseKey( to, toDistance );
|
|
//heap.GetData( to ).hops = hops + 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
double _Evaluate( _ThreadData* data, _PriorityData* nodeData, NodeID node ){
|
|
_ContractionInformation stats;
|
|
|
|
//perform simulated contraction
|
|
_Contract< true > ( data, node, &stats );
|
|
if(nodeData->depth > maxDepth) {
|
|
#pragma omp critical
|
|
maxDepth = nodeData->depth;
|
|
}
|
|
// Result will contain the priority
|
|
if ( stats.edgesDeleted == 0 || stats.originalEdgesDeleted == 0 )
|
|
return depthFactor * nodeData->depth;
|
|
return edgeQuotionFactor * ((( double ) stats.edgesAdded ) / stats.edgesDeleted ) + originalQuotientFactor * ((( double ) stats.originalEdgesAdded ) / stats.originalEdgesDeleted ) + depthFactor * nodeData->depth;
|
|
}
|
|
|
|
template< class Edge >
|
|
bool _CheckCH()
|
|
{
|
|
NodeID numberOfNodes = _graph->GetNumberOfNodes();
|
|
for ( NodeID node = 0; node < numberOfNodes; ++node ) {
|
|
for ( _DynamicGraph::EdgeIterator edge = _graph->BeginEdges( node ), endEdges = _graph->EndEdges( node ); edge != endEdges; ++edge ) {
|
|
const NodeID start = node;
|
|
const NodeID target = _graph->GetTarget( edge );
|
|
const _EdgeData& data = _graph->GetEdgeData( edge );
|
|
const NodeID middle = data.middleName.middle;
|
|
assert(start != target);
|
|
if(data.shortcut)
|
|
{
|
|
if(_graph->FindEdge(start, middle) == SPECIAL_EDGEID && _graph->FindEdge(middle, start) == SPECIAL_EDGEID)
|
|
{
|
|
assert(false);
|
|
return false;
|
|
}
|
|
if(_graph->FindEdge(middle, target) == SPECIAL_EDGEID && _graph->FindEdge(target, middle) == SPECIAL_EDGEID)
|
|
{
|
|
assert(false);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template< bool Simulate > bool _Contract( _ThreadData* data, NodeID node, _ContractionInformation* stats = NULL ) {
|
|
_Heap& heap = data->heap;
|
|
|
|
for ( _DynamicGraph::EdgeIterator inEdge = _graph->BeginEdges( node ), endInEdges = _graph->EndEdges( node ); inEdge != endInEdges; ++inEdge ) {
|
|
const _EdgeData& inData = _graph->GetEdgeData( inEdge );
|
|
const NodeID source = _graph->GetTarget( inEdge );
|
|
if ( Simulate ) {
|
|
assert( stats != NULL );
|
|
unsigned factor = (inData.forward && inData.backward ? 2 : 1 );
|
|
stats->edgesDeleted+=factor;
|
|
stats->originalEdgesDeleted += factor*inData.originalEdges;
|
|
}
|
|
if ( !inData.backward )
|
|
continue;
|
|
|
|
heap.Clear();
|
|
heap.Insert( source, 0, _HeapData() );
|
|
if ( node != source )
|
|
heap.Insert( node, inData.distance, _HeapData() );
|
|
int maxDistance = 0;
|
|
//unsigned numTargets = 0;
|
|
|
|
for ( _DynamicGraph::EdgeIterator outEdge = _graph->BeginEdges( node ), endOutEdges = _graph->EndEdges( node ); outEdge != endOutEdges; ++outEdge ) {
|
|
const _EdgeData& outData = _graph->GetEdgeData( outEdge );
|
|
if ( !outData.forward )
|
|
continue;
|
|
const NodeID target = _graph->GetTarget( outEdge );
|
|
const int pathDistance = inData.distance + outData.distance;
|
|
maxDistance = std::max( maxDistance, pathDistance );
|
|
if ( !heap.WasInserted( target ) )
|
|
heap.Insert( target, pathDistance, _HeapData(true) );
|
|
else if ( pathDistance < heap.GetKey( target ) )
|
|
heap.DecreaseKey( target, pathDistance );
|
|
}
|
|
|
|
if( Simulate )
|
|
_Dijkstra( source, maxDistance, 500, data );
|
|
else
|
|
_Dijkstra( source, maxDistance, 1000, data );
|
|
|
|
for ( _DynamicGraph::EdgeIterator outEdge = _graph->BeginEdges( node ), endOutEdges = _graph->EndEdges( node ); outEdge != endOutEdges; ++outEdge ) {
|
|
const _EdgeData& outData = _graph->GetEdgeData( outEdge );
|
|
if ( !outData.forward )
|
|
continue;
|
|
const NodeID target = _graph->GetTarget( outEdge );
|
|
const int pathDistance = inData.distance + outData.distance;
|
|
const int distance = heap.GetKey( target );
|
|
|
|
if ( pathDistance <= distance ) {
|
|
if ( Simulate ) {
|
|
assert( stats != NULL );
|
|
stats->edgesAdded++;
|
|
stats->originalEdgesAdded += ( outData.originalEdges + inData.originalEdges );
|
|
} else {
|
|
_ImportEdge newEdge;
|
|
newEdge.source = source;
|
|
newEdge.target = target;
|
|
newEdge.data.distance = pathDistance;
|
|
newEdge.data.forward = true;
|
|
newEdge.data.backward = false;
|
|
newEdge.data.middleName.middle = node;
|
|
newEdge.data.shortcut = true;
|
|
newEdge.data.originalEdges = outData.originalEdges + inData.originalEdges;
|
|
data->insertedEdges.push_back( newEdge );
|
|
std::swap( newEdge.source, newEdge.target );
|
|
newEdge.data.forward = false;
|
|
newEdge.data.backward = true;
|
|
data->insertedEdges.push_back( newEdge );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool _DeleteIncomingEdges( _ThreadData* data, NodeID node ) {
|
|
std::vector < NodeID > neighbours;
|
|
|
|
//find all neighbours
|
|
for ( _DynamicGraph::EdgeIterator e = _graph->BeginEdges( node ) ; e < _graph->EndEdges( node ) ; ++e ) {
|
|
const NodeID u = _graph->GetTarget( e );
|
|
if ( u == node )
|
|
continue;
|
|
neighbours.push_back( u );
|
|
}
|
|
//eliminate duplicate entries ( forward + backward edges )
|
|
std::sort( neighbours.begin(), neighbours.end() );
|
|
neighbours.resize( std::unique( neighbours.begin(), neighbours.end() ) - neighbours.begin() );
|
|
|
|
for ( int i = 0, e = ( int ) neighbours.size(); i < e; ++i ) {
|
|
const NodeID u = neighbours[i];
|
|
_graph->DeleteEdgesTo( u, node );
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool _UpdateNeighbours( std::vector< double >* priorities, std::vector< _PriorityData >* nodeData, _ThreadData* data, NodeID node ) {
|
|
std::vector < NodeID > neighbours;
|
|
|
|
//find all neighbours
|
|
for ( _DynamicGraph::EdgeIterator e = _graph->BeginEdges( node ) ; e < _graph->EndEdges( node ) ; ++e ) {
|
|
const NodeID u = _graph->GetTarget( e );
|
|
if ( u == node )
|
|
continue;
|
|
neighbours.push_back( u );
|
|
( *nodeData )[u].depth = std::max(( *nodeData )[node].depth + 1, ( *nodeData )[u].depth );
|
|
}
|
|
//eliminate duplicate entries ( forward + backward edges )
|
|
std::sort( neighbours.begin(), neighbours.end() );
|
|
neighbours.resize( std::unique( neighbours.begin(), neighbours.end() ) - neighbours.begin() );
|
|
|
|
for ( int i = 0, e = ( int ) neighbours.size(); i < e; ++i ) {
|
|
const NodeID u = neighbours[i];
|
|
( *priorities )[u] = _Evaluate( data, &( *nodeData )[u], u );
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool _IsIndependent( const _DynamicGraph* _graph, const std::vector< double >& priorities, const std::vector< _PriorityData >& nodeData, NodeID node ) {
|
|
const double priority = priorities[node];
|
|
|
|
std::vector< NodeID > neighbours;
|
|
|
|
for ( _DynamicGraph::EdgeIterator e = _graph->BeginEdges( node ) ; e < _graph->EndEdges( node ) ; ++e ) {
|
|
const NodeID target = _graph->GetTarget( e );
|
|
const double targetPriority = priorities[target];
|
|
assert( targetPriority >= 0 );
|
|
//found a neighbour with lower priority?
|
|
if ( priority > targetPriority )
|
|
return false;
|
|
//tie breaking
|
|
if ( priority == targetPriority && nodeData[node].bias < nodeData[target].bias )
|
|
return false;
|
|
neighbours.push_back( target );
|
|
}
|
|
|
|
std::sort( neighbours.begin(), neighbours.end() );
|
|
neighbours.resize( std::unique( neighbours.begin(), neighbours.end() ) - neighbours.begin() );
|
|
|
|
//examine all neighbours that are at most 2 hops away
|
|
for ( std::vector< NodeID >::const_iterator i = neighbours.begin(), lastNode = neighbours.end(); i != lastNode; ++i ) {
|
|
const NodeID u = *i;
|
|
|
|
for ( _DynamicGraph::EdgeIterator e = _graph->BeginEdges( u ) ; e < _graph->EndEdges( u ) ; ++e ) {
|
|
const NodeID target = _graph->GetTarget( e );
|
|
|
|
const double targetPriority = priorities[target];
|
|
assert( targetPriority >= 0 );
|
|
//found a neighbour with lower priority?
|
|
if ( priority > targetPriority )
|
|
return false;
|
|
//tie breaking
|
|
if ( priority == targetPriority && nodeData[node].bias < nodeData[target].bias )
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
LevelInformation * _levelInformation;
|
|
_DynamicGraph* _graph;
|
|
std::vector<NodeID> * _components;
|
|
unsigned edgeQuotionFactor;
|
|
unsigned originalQuotientFactor;
|
|
unsigned depthFactor;
|
|
int maxDepth;
|
|
};
|
|
|
|
#endif // CONTRACTOR_H_INCLUDED
|