osrm-backend/src/engine/guidance/lane_processing.cpp

220 lines
11 KiB
C++

#include "util/for_each_pair.hpp"
#include "util/group_by.hpp"
#include "guidance/turn_instruction.hpp"
#include "engine/guidance/collapsing_utility.hpp"
#include <algorithm>
#include <iterator>
#include <unordered_set>
#include <utility>
namespace osrm::engine::guidance
{
using namespace osrm::guidance;
std::vector<RouteStep> anticipateLaneChange(std::vector<RouteStep> steps,
const double min_distance_needed_for_lane_change)
{
// Lane anticipation works on contiguous ranges of short steps that have lane information
const auto is_short_has_lanes = [&](const RouteStep &step)
{
const auto has_lanes = step.intersections.front().lanes.lanes_in_turn > 0;
if (!has_lanes)
return false;
// The more unused lanes to the left and right of the turn there are, the higher
// the chance the user is driving on one of those and has to cross lanes.
// Scale threshold for these cases to be adaptive to the situation's complexity.
//
// Note: what we could do instead: do Lane Anticipation on all step pairs and then scale
// the threshold based on the lanes we're constraining the user to. Would need a re-write
// since at the moment we first group-by and only then do Lane Anticipation selectively.
//
// We do not have a source-target lane mapping, assume worst case for lanes to cross.
const auto to_cross = std::max(step.NumLanesToTheRight(), step.NumLanesToTheLeft());
const auto scale = 1 + to_cross;
const auto threshold = scale * min_distance_needed_for_lane_change;
const auto is_short = step.distance < threshold;
return is_short;
};
using StepIter = decltype(steps)::iterator;
using StepIterRange = std::pair<StepIter, StepIter>;
std::vector<StepIterRange> quick_lanes_ranges;
const auto range_back_inserter = [&](StepIterRange range)
{
if (std::distance(range.first, range.second) > 1)
quick_lanes_ranges.push_back(std::move(range));
};
util::group_by(begin(steps), end(steps), is_short_has_lanes, range_back_inserter);
// The lanes for a keep straight depend on the next left/right turn. Tag them in advance.
std::unordered_set<const RouteStep *> is_straight_left;
std::unordered_set<const RouteStep *> is_straight_right;
// Walk backwards over all turns, constraining possible turn lanes.
// Later turn lanes constrain earlier ones: we have to anticipate lane changes.
const auto constrain_lanes = [&](const StepIterRange &turns)
{
const std::reverse_iterator<StepIter> rev_first{turns.second};
const std::reverse_iterator<StepIter> rev_last{turns.first};
// We're walking backwards over all adjacent turns:
// the current turn lanes constrain the lanes we have to take in the previous turn.
// state for the lamda
// the number of lanes we have to change depends on the number of lanes that are allowed for
// a turn (in general) and the set of lanes which would allow for us to do the turn without
// a problem. In a sequence of turns, we have to look at how much distance we need to switch
// the
// sequence. Given the turns in between, we would expect a bit longer than on a straight
// segment for a lane switch, but the total distance shouldn't be unlimited.
double distance_to_constrained = 0.0;
util::for_each_pair(
rev_first,
rev_last,
[&](RouteStep &current, RouteStep &previous)
{
const auto current_inst = current.maneuver.instruction;
const auto current_lanes = current.intersections.front().lanes;
// Constrain the previous turn's lanes
auto &previous_lanes = previous.intersections.front().lanes;
const auto previous_inst = previous.maneuver.instruction;
// Lane mapping (N:M) from previous lanes (N) to current lanes (M), with:
// N > M, N > 1 fan-in situation, constrain N lanes to min(N,M) shared lanes
// otherwise nothing to constrain
const bool lanes_to_constrain = previous_lanes.lanes_in_turn > 1;
const bool lanes_fan_in =
previous_lanes.lanes_in_turn > current_lanes.lanes_in_turn;
// only prevent use lanes due to making all turns. don't make turns during curvy
// segments
if (previous_inst.type == TurnType::Suppressed)
distance_to_constrained += previous.distance;
else
distance_to_constrained = 0.;
const auto lane_delta = previous_lanes.lanes_in_turn - current_lanes.lanes_in_turn;
const auto can_make_all_turns =
distance_to_constrained > lane_delta * min_distance_needed_for_lane_change;
if (!lanes_to_constrain || !lanes_fan_in || can_make_all_turns)
return;
// We do not have a mapping from lanes to lanes. All we have is the lanes in the
// turn and all the lanes at that situation. To perfectly handle lane anticipation
// in cases where lanes in the turn fan in but for example the overall lanes at that
// location fan out, we would have to know the asymmetric mapping of lanes. This is
// currently not possible at the moment. In the following we implement a heuristic
// instead.
const LaneID current_num_lanes_right_of_turn = current.NumLanesToTheRight();
const LaneID current_num_lanes_left_of_turn = current.NumLanesToTheLeft();
// 0/ Tag keep straight with the next turn's direction if available
const auto previous_is_straight =
!isLeftTurn(previous_inst) && !isRightTurn(previous_inst);
if (previous_is_straight)
{
if (isLeftTurn(current_inst) || is_straight_left.contains(&current))
is_straight_left.insert(&previous);
else if (isRightTurn(current_inst) || is_straight_right.contains(&current))
is_straight_right.insert(&previous);
}
// 1/ How to anticipate left, right:
const auto anticipate_for_left_turn = [&]
{
// Current turn is left turn, already keep left during previous turn.
// This implies constraining the rightmost lanes in previous step.
LaneID new_first_lane_from_the_right =
previous_lanes.first_lane_from_the_right // start from rightmost lane
+ previous_lanes.lanes_in_turn // one past leftmost lane
- current_lanes.lanes_in_turn; // back number of new lanes
// The leftmost target lanes might not be involved in the turn. Figure out
// how many lanes are to the left and not in the turn.
new_first_lane_from_the_right -=
std::min(current_num_lanes_left_of_turn, current_lanes.lanes_in_turn);
previous_lanes = {current_lanes.lanes_in_turn, new_first_lane_from_the_right};
};
const auto anticipate_for_right_turn = [&]
{
// Current turn is right turn, already keep right during the previous turn.
// This implies constraining the leftmost lanes in the previous turn step.
LaneID new_first_lane_from_the_right = previous_lanes.first_lane_from_the_right;
// The rightmost target lanes might not be involved in the turn. Figure out
// how many lanes are to the right and not in the turn.
new_first_lane_from_the_right +=
std::min(current_num_lanes_right_of_turn, current_lanes.lanes_in_turn);
previous_lanes = {current_lanes.lanes_in_turn, new_first_lane_from_the_right};
};
// 2/ When to anticipate a left, right turn
if (isLeftTurn(current_inst))
anticipate_for_left_turn();
else if (isRightTurn(current_inst))
anticipate_for_right_turn();
else // keepStraight
{
// Heuristic: we do not have a from-lanes -> to-lanes mapping. What we use
// here instead in addition is the number of all lanes (not only the lanes
// in a turn):
//
// -v-v v-v- straight follows
// | | | |
// <- v v -> keep straight here
// | |
// <-| |->
//
// A route from the top left to the bottom right here goes over a keep
// straight. If we handle all keep straights as right turns (in right-sided
// driving), we wrongly guide the user to the rightmost lanes in the first turn.
// Not only is this wrong but the opposite of what we expect.
//
// The following implements a heuristic to determine a keep straight's
// direction in relation to the next step. In the above example we would get:
//
// coming from right, going to left (in direction of way) -> handle as left turn
if (is_straight_left.contains(&current))
anticipate_for_left_turn();
else if (is_straight_right.contains(&current))
anticipate_for_right_turn();
else // FIXME: right-sided driving
anticipate_for_right_turn();
}
if (previous_inst.type == TurnType::Suppressed &&
current_inst.type == TurnType::Suppressed && previous.mode == current.mode &&
previous_lanes == current_lanes)
{
previous.ElongateBy(current);
current.Invalidate();
}
});
};
std::for_each(begin(quick_lanes_ranges), end(quick_lanes_ranges), constrain_lanes);
// Lane Anticipation might have collapsed steps after constraining lanes. Remove invalid steps.
steps = removeNoTurnInstructions(std::move(steps));
return steps;
}
} // namespace osrm::engine::guidance