osrm-backend/include/engine/guidance/assemble_geometry.hpp
Michael Bell 5d468f2897
Make edge metrics strongly typed (#6421)
This change takes the existing typedefs for weight, duration and
distance, and makes them proper types, using the existing Alias
functionality.

Primarily this is to prevent bugs where the metrics are switched,
but it also adds additional documentation. For example, it now
makes it clear (despite the naming of variables) that most of the
trip algorithm is running on the duration metric.

I've not made any changes to the casts performed between metrics
and numeric types, they now just more explicit.
2022-10-28 15:16:12 +01:00

180 lines
7.8 KiB
C++

#ifndef ENGINE_GUIDANCE_ASSEMBLE_GEOMETRY_HPP
#define ENGINE_GUIDANCE_ASSEMBLE_GEOMETRY_HPP
#include "extractor/travel_mode.hpp"
#include "guidance/turn_instruction.hpp"
#include "engine/datafacade/datafacade_base.hpp"
#include "engine/guidance/leg_geometry.hpp"
#include "engine/guidance/route_step.hpp"
#include "engine/internal_route_result.hpp"
#include "engine/phantom_node.hpp"
#include "util/coordinate.hpp"
#include "util/coordinate_calculation.hpp"
#include <algorithm>
#include <cmath>
#include <utility>
#include <vector>
namespace osrm
{
namespace engine
{
namespace guidance
{
// Extracts the geometry for each segment and calculates the traveled distance
// Combines the geometry form the phantom node with the PathData
// to the full route geometry.
//
// turn 0 1 2 3 4
// s...x...y...z...t
// |---|segment 0
// |---| segment 1
// |---| segment 2
// |---| segment 3
inline LegGeometry assembleGeometry(const datafacade::BaseDataFacade &facade,
const std::vector<PathData> &leg_data,
const PhantomNode &source_node,
const PhantomNode &target_node,
const bool reversed_source,
const bool reversed_target)
{
LegGeometry geometry;
// segment 0 first and last
geometry.segment_offsets.push_back(0);
geometry.locations.push_back(source_node.location);
// u * v
// 0 -- 1 -- 2 -- 3
// fwd_segment_position: 1
// source node fwd: 1 1 -> 2 -> 3
// source node rev: 2 0 <- 1 <- 2
const auto source_segment_start_coordinate =
source_node.fwd_segment_position + (reversed_source ? 1 : 0);
const auto source_node_id =
reversed_source ? source_node.reverse_segment_id.id : source_node.forward_segment_id.id;
const auto source_geometry_id = facade.GetGeometryIndex(source_node_id).id;
const auto source_geometry = facade.GetUncompressedForwardGeometry(source_geometry_id);
geometry.node_ids.push_back(source_geometry(source_segment_start_coordinate));
auto cumulative_distance = 0.;
auto current_distance = 0.;
auto prev_coordinate = geometry.locations.front();
for (const auto &path_point : leg_data)
{
auto coordinate = facade.GetCoordinateOfNode(path_point.turn_via_node);
current_distance =
util::coordinate_calculation::greatCircleDistance(prev_coordinate, coordinate);
cumulative_distance += current_distance;
// all changes to this check have to be matched with assemble_steps
auto turn_instruction = path_point.turn_edge
? facade.GetTurnInstructionForEdgeID(*path_point.turn_edge)
: osrm::guidance::TurnInstruction::NO_TURN();
if (turn_instruction.type != osrm::guidance::TurnType::NoTurn)
{
geometry.segment_distances.push_back(cumulative_distance);
geometry.segment_offsets.push_back(geometry.locations.size());
cumulative_distance = 0.;
}
prev_coordinate = coordinate;
const auto node_id = path_point.turn_via_node;
if (node_id != geometry.node_ids.back() ||
turn_instruction.type != osrm::guidance::TurnType::NoTurn)
{
geometry.annotations.emplace_back(LegGeometry::Annotation{
current_distance,
// NOTE: we want annotations to include only the duration/weight
// of the segment itself. For segments immediately before
// a turn, the duration_until_turn/weight_until_turn values
// include the turn cost. To counter this, we subtract
// the duration_of_turn/weight_of_turn value, which is 0 for
// non-preceeding-turn segments, but contains the turn value
// for segments before a turn.
from_alias<double>(path_point.duration_until_turn - path_point.duration_of_turn) /
10.,
from_alias<double>(path_point.weight_until_turn - path_point.weight_of_turn) /
facade.GetWeightMultiplier(),
path_point.datasource_id});
geometry.locations.push_back(coordinate);
geometry.node_ids.push_back(node_id);
}
}
current_distance =
util::coordinate_calculation::greatCircleDistance(prev_coordinate, target_node.location);
cumulative_distance += current_distance;
// segment leading to the target node
geometry.segment_distances.push_back(cumulative_distance);
const auto target_node_id =
reversed_target ? target_node.reverse_segment_id.id : target_node.forward_segment_id.id;
const auto target_geometry_id = facade.GetGeometryIndex(target_node_id).id;
const auto forward_datasources = facade.GetUncompressedForwardDatasources(target_geometry_id);
// This happens when the source/target are on the same edge-based-node
// There will be no entries in the unpacked path, thus no annotations.
// We will need to calculate the lone annotation by looking at the position
// of the source/target nodes, and calculating their differences.
if (geometry.annotations.empty())
{
auto duration =
std::abs(from_alias<EdgeDuration::value_type>(
(reversed_target ? target_node.reverse_duration : target_node.forward_duration) -
(reversed_source ? source_node.reverse_duration : source_node.forward_duration))) /
10.;
BOOST_ASSERT(duration >= 0);
auto weight =
std::abs(from_alias<EdgeWeight::value_type>(
(reversed_target ? target_node.reverse_weight : target_node.forward_weight) -
(reversed_source ? source_node.reverse_weight : source_node.forward_weight))) /
facade.GetWeightMultiplier();
BOOST_ASSERT(weight >= 0);
geometry.annotations.emplace_back(
LegGeometry::Annotation{current_distance,
duration,
weight,
forward_datasources(target_node.fwd_segment_position)});
}
else
{
geometry.annotations.emplace_back(LegGeometry::Annotation{
current_distance,
from_alias<double>(reversed_target ? target_node.reverse_duration
: target_node.forward_duration) /
10.,
from_alias<double>(reversed_target ? target_node.reverse_weight
: target_node.forward_weight) /
facade.GetWeightMultiplier(),
forward_datasources(target_node.fwd_segment_position)});
}
geometry.segment_offsets.push_back(geometry.locations.size());
geometry.locations.push_back(target_node.location);
// u * v
// 0 -- 1 -- 2 -- 3
// fwd_segment_position: 1
// target node fwd: 2 0 -> 1 -> 2
// target node rev: 1 1 <- 2 <- 3
const auto target_segment_end_coordinate =
target_node.fwd_segment_position + (reversed_target ? 0 : 1);
const auto target_geometry = facade.GetUncompressedForwardGeometry(target_geometry_id);
geometry.node_ids.push_back(target_geometry(target_segment_end_coordinate));
BOOST_ASSERT(geometry.segment_distances.size() == geometry.segment_offsets.size() - 1);
BOOST_ASSERT(geometry.locations.size() > geometry.segment_distances.size());
BOOST_ASSERT(geometry.annotations.size() == geometry.locations.size() - 1);
return geometry;
}
} // namespace guidance
} // namespace engine
} // namespace osrm
#endif