osrm-backend/include/partitioner/edge_based_graph_reader.hpp
Daniel Patterson 0940f23d9d Store edge distances to improve matrix distance calculation.
Prep alpha release for testing.

Remove logging.

BY ALL MEANS REVERT THIS BEFORE CONTINUING DEVELOPMENT

comments out tests to pass

DIRTY COMMIT REVERT PLX; remove all failing node tests for mld distances

change assertions and permit distance zero edges

format

bump to alpha 2

update changelog after 5.19 release (#5203)

uncomment tests

comment out test that was never run

make unit tests pass
2018-10-25 17:57:51 -04:00

207 lines
7.6 KiB
C++

#ifndef OSRM_PARTITIONER_EDGE_BASED_GRAPH_READER_HPP
#define OSRM_PARTITIONER_EDGE_BASED_GRAPH_READER_HPP
#include "partitioner/edge_based_graph.hpp"
#include "extractor/edge_based_edge.hpp"
#include "extractor/files.hpp"
#include "storage/io.hpp"
#include "util/coordinate.hpp"
#include "util/dynamic_graph.hpp"
#include "util/typedefs.hpp"
#include <tbb/blocked_range.h>
#include <tbb/parallel_for.h>
#include <tbb/parallel_reduce.h>
#include <iostream>
#include <cstdint>
#include <algorithm>
#include <iterator>
#include <memory>
#include <vector>
namespace osrm
{
namespace partitioner
{
// Bidirectional (s,t) to (s,t) and (t,s)
inline std::vector<extractor::EdgeBasedEdge>
splitBidirectionalEdges(const std::vector<extractor::EdgeBasedEdge> &edges)
{
std::vector<extractor::EdgeBasedEdge> directed;
directed.reserve(edges.size() * 2);
for (const auto &edge : edges)
{
if (edge.data.weight == INVALID_EDGE_WEIGHT)
continue;
directed.emplace_back(edge.source,
edge.target,
edge.data.turn_id,
std::max(edge.data.weight, 1),
edge.data.duration,
edge.data.distance,
edge.data.forward,
edge.data.backward);
directed.emplace_back(edge.target,
edge.source,
edge.data.turn_id,
std::max(edge.data.weight, 1),
edge.data.duration,
edge.data.distance,
edge.data.backward,
edge.data.forward);
}
return directed;
}
template <typename OutputEdgeT>
std::vector<OutputEdgeT> prepareEdgesForUsageInGraph(std::vector<extractor::EdgeBasedEdge> edges)
{
// sort into blocks of edges with same source + target
// the we partition by the forward flag to sort all edges with a forward direction first.
// the we sort by weight to ensure the first forward edge is the smallest forward edge
std::sort(begin(edges), end(edges), [](const auto &lhs, const auto &rhs) {
return std::tie(lhs.source, lhs.target, rhs.data.forward, lhs.data.weight) <
std::tie(rhs.source, rhs.target, lhs.data.forward, rhs.data.weight);
});
std::vector<OutputEdgeT> output_edges;
output_edges.reserve(edges.size());
for (auto begin_interval = edges.begin(); begin_interval != edges.end();)
{
const NodeID source = begin_interval->source;
const NodeID target = begin_interval->target;
auto end_interval =
std::find_if_not(begin_interval, edges.end(), [source, target](const auto &edge) {
return std::tie(edge.source, edge.target) == std::tie(source, target);
});
BOOST_ASSERT(begin_interval != end_interval);
// remove eigenloops
if (source == target)
{
begin_interval = end_interval;
continue;
}
BOOST_ASSERT_MSG(begin_interval->data.forward != begin_interval->data.backward,
"The forward and backward flag need to be mutally exclusive");
// find smallest backward edge and check if we can merge
auto first_backward = std::find_if(
begin_interval, end_interval, [](const auto &edge) { return edge.data.backward; });
// thanks to the sorting we know this is the smallest backward edge
// and there is no forward edge
if (begin_interval == first_backward)
{
output_edges.push_back(OutputEdgeT{source, target, first_backward->data});
}
// only a forward edge, thanks to the sorting this is the smallest
else if (first_backward == end_interval)
{
output_edges.push_back(OutputEdgeT{source, target, begin_interval->data});
}
// we have both a forward and a backward edge, we need to evaluate
// if we can merge them
else
{
BOOST_ASSERT(begin_interval->data.forward);
BOOST_ASSERT(first_backward->data.backward);
BOOST_ASSERT(first_backward != end_interval);
// same weight, so we can just merge them
if (begin_interval->data.weight == first_backward->data.weight)
{
OutputEdgeT merged{source, target, begin_interval->data};
merged.data.backward = true;
output_edges.push_back(std::move(merged));
}
// we need to insert separate forward and reverse edges
else
{
output_edges.push_back(OutputEdgeT{source, target, begin_interval->data});
output_edges.push_back(OutputEdgeT{source, target, first_backward->data});
}
}
begin_interval = end_interval;
}
return output_edges;
}
inline std::vector<extractor::EdgeBasedEdge>
graphToEdges(const DynamicEdgeBasedGraph &edge_based_graph)
{
auto range = tbb::blocked_range<NodeID>(0, edge_based_graph.GetNumberOfNodes());
auto max_turn_id =
tbb::parallel_reduce(range,
NodeID{0},
[&edge_based_graph](const auto range, NodeID initial) {
NodeID max_turn_id = initial;
for (auto node = range.begin(); node < range.end(); ++node)
{
for (auto edge : edge_based_graph.GetAdjacentEdgeRange(node))
{
const auto &data = edge_based_graph.GetEdgeData(edge);
max_turn_id = std::max(max_turn_id, data.turn_id);
}
}
return max_turn_id;
},
[](const NodeID lhs, const NodeID rhs) { return std::max(lhs, rhs); });
std::vector<extractor::EdgeBasedEdge> edges(max_turn_id + 1);
tbb::parallel_for(range, [&](const auto range) {
for (auto node = range.begin(); node < range.end(); ++node)
{
for (auto edge : edge_based_graph.GetAdjacentEdgeRange(node))
{
const auto &data = edge_based_graph.GetEdgeData(edge);
// we only need to save the forward edges, since the read method will
// convert from forward to bi-directional edges again
if (data.forward)
{
auto target = edge_based_graph.GetTarget(edge);
BOOST_ASSERT(data.turn_id <= max_turn_id);
edges[data.turn_id] = extractor::EdgeBasedEdge{node, target, data};
// only save the forward edge
edges[data.turn_id].data.forward = true;
edges[data.turn_id].data.backward = false;
}
}
}
});
return edges;
}
inline DynamicEdgeBasedGraph LoadEdgeBasedGraph(const boost::filesystem::path &path)
{
EdgeID number_of_edge_based_nodes;
std::vector<extractor::EdgeBasedEdge> edges;
std::uint32_t checksum;
extractor::files::readEdgeBasedGraph(path, number_of_edge_based_nodes, edges, checksum);
auto directed = splitBidirectionalEdges(edges);
auto tidied = prepareEdgesForUsageInGraph<DynamicEdgeBasedGraphEdge>(std::move(directed));
return DynamicEdgeBasedGraph(number_of_edge_based_nodes, std::move(tidied), checksum);
}
} // namespace partitioner
} // namespace osrm
#endif