osrm-backend/include/engine/routing_algorithms/routing_base.hpp
Daniel Patterson 0940f23d9d Store edge distances to improve matrix distance calculation.
Prep alpha release for testing.

Remove logging.

BY ALL MEANS REVERT THIS BEFORE CONTINUING DEVELOPMENT

comments out tests to pass

DIRTY COMMIT REVERT PLX; remove all failing node tests for mld distances

change assertions and permit distance zero edges

format

bump to alpha 2

update changelog after 5.19 release (#5203)

uncomment tests

comment out test that was never run

make unit tests pass
2018-10-25 17:57:51 -04:00

438 lines
18 KiB
C++

#ifndef OSRM_ENGINE_ROUTING_BASE_HPP
#define OSRM_ENGINE_ROUTING_BASE_HPP
#include "guidance/turn_bearing.hpp"
#include "guidance/turn_instruction.hpp"
#include "engine/algorithm.hpp"
#include "engine/datafacade.hpp"
#include "engine/internal_route_result.hpp"
#include "engine/phantom_node.hpp"
#include "engine/search_engine_data.hpp"
#include "util/coordinate_calculation.hpp"
#include "util/typedefs.hpp"
#include <boost/assert.hpp>
#include <cstddef>
#include <cstdint>
#include <algorithm>
#include <functional>
#include <iterator>
#include <memory>
#include <numeric>
#include <stack>
#include <utility>
#include <vector>
namespace osrm
{
namespace engine
{
namespace routing_algorithms
{
static constexpr bool FORWARD_DIRECTION = true;
static constexpr bool REVERSE_DIRECTION = false;
static constexpr bool DO_NOT_FORCE_LOOPS = false;
bool needsLoopForward(const PhantomNode &source_phantom, const PhantomNode &target_phantom);
bool needsLoopBackwards(const PhantomNode &source_phantom, const PhantomNode &target_phantom);
bool needsLoopForward(const PhantomNodes &phantoms);
bool needsLoopBackwards(const PhantomNodes &phantoms);
template <typename Heap>
void insertNodesInHeaps(Heap &forward_heap, Heap &reverse_heap, const PhantomNodes &nodes)
{
const auto &source = nodes.source_phantom;
if (source.IsValidForwardSource())
{
forward_heap.Insert(source.forward_segment_id.id,
-source.GetForwardWeightPlusOffset(),
source.forward_segment_id.id);
}
if (source.IsValidReverseSource())
{
forward_heap.Insert(source.reverse_segment_id.id,
-source.GetReverseWeightPlusOffset(),
source.reverse_segment_id.id);
}
const auto &target = nodes.target_phantom;
if (target.IsValidForwardTarget())
{
reverse_heap.Insert(target.forward_segment_id.id,
target.GetForwardWeightPlusOffset(),
target.forward_segment_id.id);
}
if (target.IsValidReverseTarget())
{
reverse_heap.Insert(target.reverse_segment_id.id,
target.GetReverseWeightPlusOffset(),
target.reverse_segment_id.id);
}
}
template <typename ManyToManyQueryHeap>
void insertSourceInHeap(ManyToManyQueryHeap &heap, const PhantomNode &phantom_node)
{
if (phantom_node.IsValidForwardSource())
{
heap.Insert(phantom_node.forward_segment_id.id,
-phantom_node.GetForwardWeightPlusOffset(),
{phantom_node.forward_segment_id.id,
-phantom_node.GetForwardDuration(),
-phantom_node.GetForwardDistance()});
}
if (phantom_node.IsValidReverseSource())
{
heap.Insert(phantom_node.reverse_segment_id.id,
-phantom_node.GetReverseWeightPlusOffset(),
{phantom_node.reverse_segment_id.id,
-phantom_node.GetReverseDuration(),
-phantom_node.GetReverseDistance()});
}
}
template <typename ManyToManyQueryHeap>
void insertTargetInHeap(ManyToManyQueryHeap &heap, const PhantomNode &phantom_node)
{
if (phantom_node.IsValidForwardTarget())
{
heap.Insert(phantom_node.forward_segment_id.id,
phantom_node.GetForwardWeightPlusOffset(),
{phantom_node.forward_segment_id.id,
phantom_node.GetForwardDuration(),
phantom_node.GetForwardDistance()});
}
if (phantom_node.IsValidReverseTarget())
{
heap.Insert(phantom_node.reverse_segment_id.id,
phantom_node.GetReverseWeightPlusOffset(),
{phantom_node.reverse_segment_id.id,
phantom_node.GetReverseDuration(),
phantom_node.GetReverseDistance()});
}
}
template <typename FacadeT>
void annotatePath(const FacadeT &facade,
const PhantomNodes &phantom_node_pair,
const std::vector<NodeID> &unpacked_nodes,
const std::vector<EdgeID> &unpacked_edges,
std::vector<PathData> &unpacked_path)
{
BOOST_ASSERT(!unpacked_nodes.empty());
BOOST_ASSERT(unpacked_nodes.size() == unpacked_edges.size() + 1);
const auto source_node_id = unpacked_nodes.front();
const auto target_node_id = unpacked_nodes.back();
const bool start_traversed_in_reverse =
phantom_node_pair.source_phantom.forward_segment_id.id != source_node_id;
const bool target_traversed_in_reverse =
phantom_node_pair.target_phantom.forward_segment_id.id != target_node_id;
BOOST_ASSERT(phantom_node_pair.source_phantom.forward_segment_id.id == source_node_id ||
phantom_node_pair.source_phantom.reverse_segment_id.id == source_node_id);
BOOST_ASSERT(phantom_node_pair.target_phantom.forward_segment_id.id == target_node_id ||
phantom_node_pair.target_phantom.reverse_segment_id.id == target_node_id);
// datastructures to hold extracted data from geometry
std::vector<NodeID> id_vector;
std::vector<SegmentWeight> weight_vector;
std::vector<SegmentDuration> duration_vector;
std::vector<DatasourceID> datasource_vector;
const auto get_segment_geometry = [&](const auto geometry_index) {
const auto copy = [](auto &vector, const auto range) {
vector.resize(range.size());
std::copy(range.begin(), range.end(), vector.begin());
};
if (geometry_index.forward)
{
copy(id_vector, facade.GetUncompressedForwardGeometry(geometry_index.id));
copy(weight_vector, facade.GetUncompressedForwardWeights(geometry_index.id));
copy(duration_vector, facade.GetUncompressedForwardDurations(geometry_index.id));
copy(datasource_vector, facade.GetUncompressedForwardDatasources(geometry_index.id));
}
else
{
copy(id_vector, facade.GetUncompressedReverseGeometry(geometry_index.id));
copy(weight_vector, facade.GetUncompressedReverseWeights(geometry_index.id));
copy(duration_vector, facade.GetUncompressedReverseDurations(geometry_index.id));
copy(datasource_vector, facade.GetUncompressedReverseDatasources(geometry_index.id));
}
};
auto node_from = unpacked_nodes.begin(), node_last = std::prev(unpacked_nodes.end());
for (auto edge = unpacked_edges.begin(); node_from != node_last; ++node_from, ++edge)
{
const auto &edge_data = facade.GetEdgeData(*edge);
const auto turn_id = edge_data.turn_id; // edge-based graph edge index
const auto node_id = *node_from; // edge-based graph node index
const auto name_index = facade.GetNameIndex(node_id);
const bool is_segregated = facade.IsSegregated(node_id);
const auto turn_instruction = facade.GetTurnInstructionForEdgeID(turn_id);
const extractor::TravelMode travel_mode = facade.GetTravelMode(node_id);
const auto classes = facade.GetClassData(node_id);
const auto geometry_index = facade.GetGeometryIndex(node_id);
get_segment_geometry(geometry_index);
BOOST_ASSERT(id_vector.size() > 0);
BOOST_ASSERT(datasource_vector.size() > 0);
BOOST_ASSERT(weight_vector.size() + 1 == id_vector.size());
BOOST_ASSERT(duration_vector.size() + 1 == id_vector.size());
const bool is_first_segment = unpacked_path.empty();
const std::size_t start_index =
(is_first_segment ? ((start_traversed_in_reverse)
? weight_vector.size() -
phantom_node_pair.source_phantom.fwd_segment_position - 1
: phantom_node_pair.source_phantom.fwd_segment_position)
: 0);
const std::size_t end_index = weight_vector.size();
bool is_left_hand_driving = facade.IsLeftHandDriving(node_id);
BOOST_ASSERT(start_index >= 0);
BOOST_ASSERT(start_index < end_index);
for (std::size_t segment_idx = start_index; segment_idx < end_index; ++segment_idx)
{
unpacked_path.push_back(
PathData{*node_from,
id_vector[segment_idx + 1],
name_index,
is_segregated,
static_cast<EdgeWeight>(weight_vector[segment_idx]),
0,
static_cast<EdgeDuration>(duration_vector[segment_idx]),
0,
guidance::TurnInstruction::NO_TURN(),
{{0, INVALID_LANEID}, INVALID_LANE_DESCRIPTIONID},
travel_mode,
classes,
EMPTY_ENTRY_CLASS,
datasource_vector[segment_idx],
osrm::guidance::TurnBearing(0),
osrm::guidance::TurnBearing(0),
is_left_hand_driving});
}
BOOST_ASSERT(unpacked_path.size() > 0);
if (facade.HasLaneData(turn_id))
unpacked_path.back().lane_data = facade.GetLaneData(turn_id);
const auto turn_duration = facade.GetDurationPenaltyForEdgeID(turn_id);
const auto turn_weight = facade.GetWeightPenaltyForEdgeID(turn_id);
unpacked_path.back().entry_class = facade.GetEntryClass(turn_id);
unpacked_path.back().turn_instruction = turn_instruction;
unpacked_path.back().duration_until_turn += turn_duration;
unpacked_path.back().duration_of_turn = turn_duration;
unpacked_path.back().weight_until_turn += turn_weight;
unpacked_path.back().weight_of_turn = turn_weight;
unpacked_path.back().pre_turn_bearing = facade.PreTurnBearing(turn_id);
unpacked_path.back().post_turn_bearing = facade.PostTurnBearing(turn_id);
}
std::size_t start_index = 0, end_index = 0;
const auto source_geometry_id = facade.GetGeometryIndex(source_node_id).id;
const auto target_geometry = facade.GetGeometryIndex(target_node_id);
const auto is_local_path = source_geometry_id == target_geometry.id && unpacked_path.empty();
get_segment_geometry(target_geometry);
if (target_traversed_in_reverse)
{
if (is_local_path)
{
start_index =
weight_vector.size() - phantom_node_pair.source_phantom.fwd_segment_position - 1;
}
end_index =
weight_vector.size() - phantom_node_pair.target_phantom.fwd_segment_position - 1;
}
else
{
if (is_local_path)
{
start_index = phantom_node_pair.source_phantom.fwd_segment_position;
}
end_index = phantom_node_pair.target_phantom.fwd_segment_position;
}
// Given the following compressed geometry:
// U---v---w---x---y---Z
// s t
// s: fwd_segment 0
// t: fwd_segment 3
// -> (U, v), (v, w), (w, x)
// note that (x, t) is _not_ included but needs to be added later.
bool is_target_left_hand_driving = facade.IsLeftHandDriving(target_node_id);
for (std::size_t segment_idx = start_index; segment_idx != end_index;
(start_index < end_index ? ++segment_idx : --segment_idx))
{
BOOST_ASSERT(segment_idx < static_cast<std::size_t>(id_vector.size() - 1));
BOOST_ASSERT(facade.GetTravelMode(target_node_id) > 0);
unpacked_path.push_back(
PathData{target_node_id,
id_vector[start_index < end_index ? segment_idx + 1 : segment_idx - 1],
facade.GetNameIndex(target_node_id),
facade.IsSegregated(target_node_id),
static_cast<EdgeWeight>(weight_vector[segment_idx]),
0,
static_cast<EdgeDuration>(duration_vector[segment_idx]),
0,
guidance::TurnInstruction::NO_TURN(),
{{0, INVALID_LANEID}, INVALID_LANE_DESCRIPTIONID},
facade.GetTravelMode(target_node_id),
facade.GetClassData(target_node_id),
EMPTY_ENTRY_CLASS,
datasource_vector[segment_idx],
guidance::TurnBearing(0),
guidance::TurnBearing(0),
is_target_left_hand_driving});
}
if (unpacked_path.size() > 0)
{
const auto source_weight = start_traversed_in_reverse
? phantom_node_pair.source_phantom.reverse_weight
: phantom_node_pair.source_phantom.forward_weight;
const auto source_duration = start_traversed_in_reverse
? phantom_node_pair.source_phantom.reverse_duration
: phantom_node_pair.source_phantom.forward_duration;
// The above code will create segments for (v, w), (w,x), (x, y) and (y, Z).
// However the first segment duration needs to be adjusted to the fact that the source
// phantom is in the middle of the segment. We do this by subtracting v--s from the
// duration.
// Since it's possible duration_until_turn can be less than source_weight here if
// a negative enough turn penalty is used to modify this edge weight during
// osrm-contract, we clamp to 0 here so as not to return a negative duration
// for this segment.
// TODO this creates a scenario where it's possible the duration from a phantom
// node to the first turn would be the same as from end to end of a segment,
// which is obviously incorrect and not ideal...
unpacked_path.front().weight_until_turn =
std::max(unpacked_path.front().weight_until_turn - source_weight, 0);
unpacked_path.front().duration_until_turn =
std::max(unpacked_path.front().duration_until_turn - source_duration, 0);
}
}
template <typename Algorithm>
double getPathDistance(const DataFacade<Algorithm> &facade,
const std::vector<PathData> unpacked_path,
const PhantomNode &source_phantom,
const PhantomNode &target_phantom)
{
using util::coordinate_calculation::detail::DEGREE_TO_RAD;
using util::coordinate_calculation::detail::EARTH_RADIUS;
double distance = 0;
double prev_lat =
static_cast<double>(util::toFloating(source_phantom.location.lat)) * DEGREE_TO_RAD;
double prev_lon =
static_cast<double>(util::toFloating(source_phantom.location.lon)) * DEGREE_TO_RAD;
double prev_cos = std::cos(prev_lat);
for (const auto &p : unpacked_path)
{
const auto current_coordinate = facade.GetCoordinateOfNode(p.turn_via_node);
const double current_lat =
static_cast<double>(util::toFloating(current_coordinate.lat)) * DEGREE_TO_RAD;
const double current_lon =
static_cast<double>(util::toFloating(current_coordinate.lon)) * DEGREE_TO_RAD;
const double current_cos = std::cos(current_lat);
const double sin_dlon = std::sin((prev_lon - current_lon) / 2.0);
const double sin_dlat = std::sin((prev_lat - current_lat) / 2.0);
const double aharv = sin_dlat * sin_dlat + prev_cos * current_cos * sin_dlon * sin_dlon;
const double charv = 2. * std::atan2(std::sqrt(aharv), std::sqrt(1.0 - aharv));
distance += EARTH_RADIUS * charv;
prev_lat = current_lat;
prev_lon = current_lon;
prev_cos = current_cos;
}
const double current_lat =
static_cast<double>(util::toFloating(target_phantom.location.lat)) * DEGREE_TO_RAD;
const double current_lon =
static_cast<double>(util::toFloating(target_phantom.location.lon)) * DEGREE_TO_RAD;
const double current_cos = std::cos(current_lat);
const double sin_dlon = std::sin((prev_lon - current_lon) / 2.0);
const double sin_dlat = std::sin((prev_lat - current_lat) / 2.0);
const double aharv = sin_dlat * sin_dlat + prev_cos * current_cos * sin_dlon * sin_dlon;
const double charv = 2. * std::atan2(std::sqrt(aharv), std::sqrt(1.0 - aharv));
distance += EARTH_RADIUS * charv;
return distance;
}
template <typename AlgorithmT>
InternalRouteResult extractRoute(const DataFacade<AlgorithmT> &facade,
const EdgeWeight weight,
const PhantomNodes &phantom_nodes,
const std::vector<NodeID> &unpacked_nodes,
const std::vector<EdgeID> &unpacked_edges)
{
InternalRouteResult raw_route_data;
raw_route_data.segment_end_coordinates = {phantom_nodes};
// No path found for both target nodes?
if (INVALID_EDGE_WEIGHT == weight)
{
return raw_route_data;
}
raw_route_data.shortest_path_weight = weight;
raw_route_data.unpacked_path_segments.resize(1);
raw_route_data.source_traversed_in_reverse.push_back(
(unpacked_nodes.front() != phantom_nodes.source_phantom.forward_segment_id.id));
raw_route_data.target_traversed_in_reverse.push_back(
(unpacked_nodes.back() != phantom_nodes.target_phantom.forward_segment_id.id));
annotatePath(facade,
phantom_nodes,
unpacked_nodes,
unpacked_edges,
raw_route_data.unpacked_path_segments.front());
return raw_route_data;
}
template <typename FacadeT> EdgeDistance computeEdgeDistance(const FacadeT &facade, NodeID node_id)
{
const auto geometry_index = facade.GetGeometryIndex(node_id);
EdgeDistance total_distance = 0.0;
auto geometry_range = facade.GetUncompressedForwardGeometry(geometry_index.id);
for (auto current = geometry_range.begin(); current < geometry_range.end() - 1; ++current)
{
total_distance += util::coordinate_calculation::fccApproximateDistance(
facade.GetCoordinateOfNode(*current), facade.GetCoordinateOfNode(*std::next(current)));
}
return total_distance;
}
} // namespace routing_algorithms
} // namespace engine
} // namespace osrm
#endif // OSRM_ENGINE_ROUTING_BASE_HPP