osrm-backend/src/engine/plugins/match.cpp

322 lines
13 KiB
C++

#include "engine/plugins/match.hpp"
#include "engine/plugins/plugin_base.hpp"
#include "engine/api/match_api.hpp"
#include "engine/api/match_parameters.hpp"
#include "engine/api/match_parameters_tidy.hpp"
#include "engine/map_matching/bayes_classifier.hpp"
#include "engine/map_matching/sub_matching.hpp"
#include "util/coordinate_calculation.hpp"
#include "util/integer_range.hpp"
#include "util/json_util.hpp"
#include "util/string_util.hpp"
#include <cstdlib>
#include <algorithm>
#include <functional>
#include <iterator>
#include <memory>
#include <set>
#include <string>
#include <vector>
namespace osrm
{
namespace engine
{
namespace plugins
{
// Filters PhantomNodes to obtain a set of viable candiates
void filterCandidates(const std::vector<util::Coordinate> &coordinates,
MatchPlugin::CandidateLists &candidates_lists)
{
for (const auto current_coordinate : util::irange<std::size_t>(0, coordinates.size()))
{
bool allow_uturn = false;
if (coordinates.size() - 1 > current_coordinate && 0 < current_coordinate)
{
double turn_angle =
util::coordinate_calculation::computeAngle(coordinates[current_coordinate - 1],
coordinates[current_coordinate],
coordinates[current_coordinate + 1]);
// sharp turns indicate a possible uturn
if (turn_angle <= 90.0 || turn_angle >= 270.0)
{
allow_uturn = true;
}
}
auto &candidates = candidates_lists[current_coordinate];
if (candidates.empty())
{
continue;
}
// sort by forward id, then by reverse id and then by distance
std::sort(candidates.begin(),
candidates.end(),
[](const PhantomNodeWithDistance &lhs, const PhantomNodeWithDistance &rhs) {
return lhs.phantom_node.forward_segment_id.id <
rhs.phantom_node.forward_segment_id.id ||
(lhs.phantom_node.forward_segment_id.id ==
rhs.phantom_node.forward_segment_id.id &&
(lhs.phantom_node.reverse_segment_id.id <
rhs.phantom_node.reverse_segment_id.id ||
(lhs.phantom_node.reverse_segment_id.id ==
rhs.phantom_node.reverse_segment_id.id &&
lhs.distance < rhs.distance)));
});
auto new_end =
std::unique(candidates.begin(),
candidates.end(),
[](const PhantomNodeWithDistance &lhs, const PhantomNodeWithDistance &rhs) {
return lhs.phantom_node.forward_segment_id.id ==
rhs.phantom_node.forward_segment_id.id &&
lhs.phantom_node.reverse_segment_id.id ==
rhs.phantom_node.reverse_segment_id.id;
});
candidates.resize(new_end - candidates.begin());
if (!allow_uturn)
{
const auto compact_size = candidates.size();
for (const auto i : util::irange<std::size_t>(0, compact_size))
{
// Split edge if it is bidirectional and append reverse direction to end of list
if (candidates[i].phantom_node.forward_segment_id.enabled &&
candidates[i].phantom_node.reverse_segment_id.enabled)
{
PhantomNode reverse_node(candidates[i].phantom_node);
reverse_node.forward_segment_id.enabled = false;
candidates.push_back(
PhantomNodeWithDistance{reverse_node, candidates[i].distance});
candidates[i].phantom_node.reverse_segment_id.enabled = false;
}
}
}
// sort by distance to make pruning effective
std::sort(candidates.begin(),
candidates.end(),
[](const PhantomNodeWithDistance &lhs, const PhantomNodeWithDistance &rhs) {
return lhs.distance < rhs.distance;
});
}
}
Status MatchPlugin::HandleRequest(const RoutingAlgorithmsInterface &algorithms,
const api::MatchParameters &parameters,
util::json::Object &json_result) const
{
if (!algorithms.HasMapMatching())
{
return Error("NotImplemented",
"Map matching is not implemented for the chosen search algorithm.",
json_result);
}
if (!CheckAlgorithms(parameters, algorithms, json_result))
return Status::Error;
const auto &facade = algorithms.GetFacade();
BOOST_ASSERT(parameters.IsValid());
// enforce maximum number of locations for performance reasons
if (max_locations_map_matching > 0 &&
static_cast<int>(parameters.coordinates.size()) > max_locations_map_matching)
{
return Error("TooBig", "Too many trace coordinates", json_result);
}
if (!CheckAllCoordinates(parameters.coordinates))
{
return Error("InvalidValue", "Invalid coordinate value.", json_result);
}
if (max_radius_map_matching > 0 && std::any_of(parameters.radiuses.begin(),
parameters.radiuses.end(),
[&](const auto &radius) {
if (!radius)
return false;
return *radius > max_radius_map_matching;
}))
{
return Error("TooBig", "Radius search size is too large for map matching.", json_result);
}
// Check for same or increasing timestamps. Impl. note: Incontrast to `sort(first,
// last, less_equal)` checking `greater` in reverse meets irreflexive requirements.
const auto time_increases_monotonically = std::is_sorted(
parameters.timestamps.rbegin(), parameters.timestamps.rend(), std::greater<>{});
if (!time_increases_monotonically)
{
return Error(
"InvalidValue", "Timestamps need to be monotonically increasing.", json_result);
}
SubMatchingList sub_matchings;
api::tidy::Result tidied;
if (parameters.tidy)
{
// Transparently tidy match parameters, do map matching on tidied parameters.
// Then use the mapping to restore the original <-> tidied relationship.
tidied = api::tidy::tidy(parameters);
}
else
{
tidied = api::tidy::keep_all(parameters);
}
// Error: first and last points should be waypoints
if (!parameters.waypoints.empty() &&
(tidied.parameters.waypoints[0] != 0 ||
tidied.parameters.waypoints.back() != (tidied.parameters.coordinates.size() - 1)))
{
return Error("InvalidValue",
"First and last coordinates must be specified as waypoints.",
json_result);
}
// assuming radius is the standard deviation of a normal distribution
// that models GPS noise (in this model), x3 should give us the correct
// search radius with > 99% confidence
std::vector<double> search_radiuses;
if (tidied.parameters.radiuses.empty())
{
search_radiuses.resize(tidied.parameters.coordinates.size(),
routing_algorithms::DEFAULT_GPS_PRECISION * RADIUS_MULTIPLIER);
}
else
{
search_radiuses.resize(tidied.parameters.coordinates.size());
std::transform(tidied.parameters.radiuses.begin(),
tidied.parameters.radiuses.end(),
search_radiuses.begin(),
[](const boost::optional<double> &maybe_radius) {
if (maybe_radius)
{
return *maybe_radius * RADIUS_MULTIPLIER;
}
else
{
return routing_algorithms::DEFAULT_GPS_PRECISION * RADIUS_MULTIPLIER;
}
});
}
auto candidates_lists = GetPhantomNodesInRange(facade, tidied.parameters, search_radiuses);
filterCandidates(tidied.parameters.coordinates, candidates_lists);
if (std::all_of(candidates_lists.begin(),
candidates_lists.end(),
[](const std::vector<PhantomNodeWithDistance> &candidates) {
return candidates.empty();
}))
{
return Error("NoSegment",
std::string("Could not find a matching segment for any coordinate."),
json_result);
}
// call the actual map matching
sub_matchings =
algorithms.MapMatching(candidates_lists,
tidied.parameters.coordinates,
tidied.parameters.timestamps,
tidied.parameters.radiuses,
parameters.gaps == api::MatchParameters::GapsType::Split);
if (sub_matchings.size() == 0)
{
return Error("NoMatch", "Could not match the trace.", json_result);
}
// trace was split, we don't support the waypoints parameter across multiple match objects
if (sub_matchings.size() > 1 && !parameters.waypoints.empty())
{
return Error("NoMatch", "Could not match the trace with the given waypoints.", json_result);
}
// Error: Check if user-supplied waypoints can be found in the resulting matches
if (!parameters.waypoints.empty())
{
std::set<std::size_t> tidied_waypoints(tidied.parameters.waypoints.begin(),
tidied.parameters.waypoints.end());
for (const auto &sm : sub_matchings)
{
std::for_each(sm.indices.begin(),
sm.indices.end(),
[&tidied_waypoints](const auto index) { tidied_waypoints.erase(index); });
}
if (!tidied_waypoints.empty())
{
return Error(
"NoMatch", "Requested waypoint parameter could not be matched.", json_result);
}
}
// we haven't errored yet, only allow leg collapsing if it was originally requested
BOOST_ASSERT(parameters.waypoints.empty() || sub_matchings.size() == 1);
const auto collapse_legs = !parameters.waypoints.empty();
// each sub_route will correspond to a MatchObject
std::vector<InternalRouteResult> sub_routes(sub_matchings.size());
for (auto index : util::irange<std::size_t>(0UL, sub_matchings.size()))
{
BOOST_ASSERT(sub_matchings[index].nodes.size() > 1);
// FIXME we only run this to obtain the geometry
// The clean way would be to get this directly from the map matching plugin
PhantomNodes current_phantom_node_pair;
for (unsigned i = 0; i < sub_matchings[index].nodes.size() - 1; ++i)
{
current_phantom_node_pair.source_phantom = sub_matchings[index].nodes[i];
current_phantom_node_pair.target_phantom = sub_matchings[index].nodes[i + 1];
BOOST_ASSERT(current_phantom_node_pair.source_phantom.IsValid());
BOOST_ASSERT(current_phantom_node_pair.target_phantom.IsValid());
sub_routes[index].segment_end_coordinates.emplace_back(current_phantom_node_pair);
}
// force uturns to be on
// we split the phantom nodes anyway and only have bi-directional phantom nodes for
// possible uturns
sub_routes[index] =
algorithms.ShortestPathSearch(sub_routes[index].segment_end_coordinates, {false});
BOOST_ASSERT(sub_routes[index].shortest_path_weight != INVALID_EDGE_WEIGHT);
if (collapse_legs)
{
std::vector<bool> waypoint_legs;
waypoint_legs.reserve(sub_matchings[index].indices.size());
for (unsigned i = 0, j = 0; i < sub_matchings[index].indices.size(); ++i)
{
auto current_wp = tidied.parameters.waypoints[j];
if (current_wp == sub_matchings[index].indices[i])
{
waypoint_legs.push_back(true);
++j;
}
else
{
waypoint_legs.push_back(false);
}
}
sub_routes[index] = CollapseInternalRouteResult(sub_routes[index], waypoint_legs);
}
}
api::MatchAPI match_api{facade, parameters, tidied};
match_api.MakeResponse(sub_matchings, sub_routes, json_result);
return Status::Ok;
}
}
}
}