The new numbering uses the partition information to sort border nodes first to compactify storages that need access indexed by border node ID. We also get an optimized cache performance for free sincr we can also recursively sort the nodes by cell ID. This implements issue #3779.
200 lines
7.3 KiB
C++
200 lines
7.3 KiB
C++
#ifndef OSRM_EDGE_BASED_GRAPH_READER_HPP
|
|
#define OSRM_EDGE_BASED_GRAPH_READER_HPP
|
|
|
|
#include "partition/edge_based_graph.hpp"
|
|
|
|
#include "extractor/edge_based_edge.hpp"
|
|
#include "extractor/files.hpp"
|
|
#include "storage/io.hpp"
|
|
#include "util/coordinate.hpp"
|
|
#include "util/dynamic_graph.hpp"
|
|
#include "util/typedefs.hpp"
|
|
|
|
#include <tbb/parallel_reduce.h>
|
|
#include <tbb/parallel_sort.h>
|
|
|
|
#include <cstdint>
|
|
|
|
#include <algorithm>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
namespace osrm
|
|
{
|
|
namespace partition
|
|
{
|
|
|
|
// Bidirectional (s,t) to (s,t) and (t,s)
|
|
std::vector<extractor::EdgeBasedEdge>
|
|
splitBidirectionalEdges(const std::vector<extractor::EdgeBasedEdge> &edges)
|
|
{
|
|
std::vector<extractor::EdgeBasedEdge> directed;
|
|
directed.reserve(edges.size() * 2);
|
|
|
|
for (const auto &edge : edges)
|
|
{
|
|
if (edge.data.weight == INVALID_EDGE_WEIGHT)
|
|
continue;
|
|
|
|
directed.emplace_back(edge.source,
|
|
edge.target,
|
|
edge.data.turn_id,
|
|
std::max(edge.data.weight, 1),
|
|
edge.data.duration,
|
|
edge.data.forward,
|
|
edge.data.backward);
|
|
|
|
directed.emplace_back(edge.target,
|
|
edge.source,
|
|
edge.data.turn_id,
|
|
std::max(edge.data.weight, 1),
|
|
edge.data.duration,
|
|
edge.data.backward,
|
|
edge.data.forward);
|
|
}
|
|
|
|
return directed;
|
|
}
|
|
|
|
template <typename OutputEdgeT>
|
|
std::vector<OutputEdgeT> prepareEdgesForUsageInGraph(std::vector<extractor::EdgeBasedEdge> edges)
|
|
{
|
|
// sort into blocks of edges with same source + target
|
|
// the we partition by the forward flag to sort all edges with a forward direction first.
|
|
// the we sort by weight to ensure the first forward edge is the smallest forward edge
|
|
std::sort(begin(edges), end(edges), [](const auto &lhs, const auto &rhs) {
|
|
return std::tie(lhs.source, lhs.target, rhs.data.forward, lhs.data.weight) <
|
|
std::tie(rhs.source, rhs.target, lhs.data.forward, rhs.data.weight);
|
|
});
|
|
|
|
std::vector<OutputEdgeT> output_edges;
|
|
output_edges.reserve(edges.size());
|
|
|
|
for (auto begin_interval = edges.begin(); begin_interval != edges.end();)
|
|
{
|
|
const NodeID source = begin_interval->source;
|
|
const NodeID target = begin_interval->target;
|
|
|
|
auto end_interval =
|
|
std::find_if_not(begin_interval, edges.end(), [source, target](const auto &edge) {
|
|
return std::tie(edge.source, edge.target) == std::tie(source, target);
|
|
});
|
|
BOOST_ASSERT(begin_interval != end_interval);
|
|
|
|
// remove eigenloops
|
|
if (source == target)
|
|
{
|
|
begin_interval = end_interval;
|
|
continue;
|
|
}
|
|
|
|
BOOST_ASSERT_MSG(begin_interval->data.forward != begin_interval->data.backward,
|
|
"The forward and backward flag need to be mutally exclusive");
|
|
|
|
// find smallest backward edge and check if we can merge
|
|
auto first_backward = std::find_if(
|
|
begin_interval, end_interval, [](const auto &edge) { return edge.data.backward; });
|
|
|
|
// thanks to the sorting we know this is the smallest backward edge
|
|
// and there is no forward edge
|
|
if (begin_interval == first_backward)
|
|
{
|
|
output_edges.push_back(OutputEdgeT{source, target, first_backward->data});
|
|
}
|
|
// only a forward edge, thanks to the sorting this is the smallest
|
|
else if (first_backward == end_interval)
|
|
{
|
|
output_edges.push_back(OutputEdgeT{source, target, begin_interval->data});
|
|
}
|
|
// we have both a forward and a backward edge, we need to evaluate
|
|
// if we can merge them
|
|
else
|
|
{
|
|
BOOST_ASSERT(begin_interval->data.forward);
|
|
BOOST_ASSERT(first_backward->data.backward);
|
|
BOOST_ASSERT(first_backward != end_interval);
|
|
|
|
// same weight, so we can just merge them
|
|
if (begin_interval->data.weight == first_backward->data.weight)
|
|
{
|
|
OutputEdgeT merged{source, target, begin_interval->data};
|
|
merged.data.backward = true;
|
|
output_edges.push_back(std::move(merged));
|
|
}
|
|
// we need to insert separate forward and reverse edges
|
|
else
|
|
{
|
|
output_edges.push_back(OutputEdgeT{source, target, begin_interval->data});
|
|
output_edges.push_back(OutputEdgeT{source, target, first_backward->data});
|
|
}
|
|
}
|
|
|
|
begin_interval = end_interval;
|
|
}
|
|
|
|
return output_edges;
|
|
}
|
|
|
|
std::vector<extractor::EdgeBasedEdge> graphToEdges(const DynamicEdgeBasedGraph &edge_based_graph)
|
|
{
|
|
auto range = tbb::blocked_range<NodeID>(0, edge_based_graph.GetNumberOfNodes());
|
|
auto max_turn_id =
|
|
tbb::parallel_reduce(range,
|
|
NodeID{0},
|
|
[&edge_based_graph](const auto range, NodeID initial) {
|
|
NodeID max_turn_id = initial;
|
|
for (auto node = range.begin(); node < range.end(); ++node)
|
|
{
|
|
for (auto edge : edge_based_graph.GetAdjacentEdgeRange(node))
|
|
{
|
|
const auto &data = edge_based_graph.GetEdgeData(edge);
|
|
max_turn_id = std::max(max_turn_id, data.turn_id);
|
|
}
|
|
}
|
|
return max_turn_id;
|
|
},
|
|
[](const NodeID lhs, const NodeID rhs) { return std::max(lhs, rhs); });
|
|
|
|
std::vector<extractor::EdgeBasedEdge> edges(max_turn_id + 1);
|
|
tbb::parallel_for(range, [&](const auto range) {
|
|
for (auto node = range.begin(); node < range.end(); ++node)
|
|
{
|
|
for (auto edge : edge_based_graph.GetAdjacentEdgeRange(node))
|
|
{
|
|
const auto &data = edge_based_graph.GetEdgeData(edge);
|
|
// we only need to save the forward edges, since the read method will
|
|
// convert from forward to bi-directional edges again
|
|
if (data.forward)
|
|
{
|
|
auto target = edge_based_graph.GetTarget(edge);
|
|
BOOST_ASSERT(data.turn_id <= max_turn_id);
|
|
edges[data.turn_id] = extractor::EdgeBasedEdge{node, target, data};
|
|
// only save the forward edge
|
|
edges[data.turn_id].data.forward = true;
|
|
edges[data.turn_id].data.backward = false;
|
|
}
|
|
}
|
|
}
|
|
});
|
|
|
|
return edges;
|
|
}
|
|
|
|
inline DynamicEdgeBasedGraph LoadEdgeBasedGraph(const boost::filesystem::path &path)
|
|
{
|
|
EdgeID max_node_id;
|
|
std::vector<extractor::EdgeBasedEdge> edges;
|
|
extractor::files::readEdgeBasedGraph(path, max_node_id, edges);
|
|
|
|
auto directed = splitBidirectionalEdges(edges);
|
|
auto tidied = prepareEdgesForUsageInGraph<DynamicEdgeBasedGraphEdge>(std::move(directed));
|
|
|
|
return DynamicEdgeBasedGraph(max_node_id + 1, std::move(tidied));
|
|
}
|
|
|
|
} // ns partition
|
|
} // ns osrm
|
|
|
|
#endif
|