171 lines
6.0 KiB
C++
171 lines
6.0 KiB
C++
/*
|
||
|
||
Copyright (c) 2013, Project OSRM, Dennis Luxen, others
|
||
All rights reserved.
|
||
|
||
Redistribution and use in source and binary forms, with or without modification,
|
||
are permitted provided that the following conditions are met:
|
||
|
||
Redistributions of source code must retain the above copyright notice, this list
|
||
of conditions and the following disclaimer.
|
||
Redistributions in binary form must reproduce the above copyright notice, this
|
||
list of conditions and the following disclaimer in the documentation and/or
|
||
other materials provided with the distribution.
|
||
|
||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
||
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
||
*/
|
||
|
||
#ifndef FIXED_POINT_COORDINATE_H_
|
||
#define FIXED_POINT_COORDINATE_H_
|
||
|
||
#include "../DataStructures/MercatorUtil.h"
|
||
#include "../Util/StringUtil.h"
|
||
|
||
#include <cassert>
|
||
#include <cmath>
|
||
#include <climits>
|
||
|
||
#include <iostream>
|
||
|
||
static const double COORDINATE_PRECISION = 1000000.;
|
||
|
||
struct FixedPointCoordinate {
|
||
int lat;
|
||
int lon;
|
||
FixedPointCoordinate () : lat(INT_MIN), lon(INT_MIN) {}
|
||
explicit FixedPointCoordinate (int lat, int lon) : lat(lat) , lon(lon) {}
|
||
|
||
void Reset() {
|
||
lat = INT_MIN;
|
||
lon = INT_MIN;
|
||
}
|
||
bool isSet() const {
|
||
return (INT_MIN != lat) && (INT_MIN != lon);
|
||
}
|
||
inline bool isValid() const {
|
||
if(
|
||
lat > 90*COORDINATE_PRECISION ||
|
||
lat < -90*COORDINATE_PRECISION ||
|
||
lon > 180*COORDINATE_PRECISION ||
|
||
lon < -180*COORDINATE_PRECISION
|
||
) {
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
bool operator==(const FixedPointCoordinate & other) const {
|
||
return lat == other.lat && lon == other.lon;
|
||
}
|
||
};
|
||
|
||
inline std::ostream & operator<<(std::ostream & out, const FixedPointCoordinate & c){
|
||
out << "(" << c.lat << "," << c.lon << ")";
|
||
return out;
|
||
}
|
||
|
||
inline double ApproximateDistance( const int lat1, const int lon1, const int lat2, const int lon2 ) {
|
||
assert(lat1 != INT_MIN);
|
||
assert(lon1 != INT_MIN);
|
||
assert(lat2 != INT_MIN);
|
||
assert(lon2 != INT_MIN);
|
||
double RAD = 0.017453292519943295769236907684886;
|
||
double lt1 = lat1/COORDINATE_PRECISION;
|
||
double ln1 = lon1/COORDINATE_PRECISION;
|
||
double lt2 = lat2/COORDINATE_PRECISION;
|
||
double ln2 = lon2/COORDINATE_PRECISION;
|
||
double dlat1=lt1*(RAD);
|
||
|
||
double dlong1=ln1*(RAD);
|
||
double dlat2=lt2*(RAD);
|
||
double dlong2=ln2*(RAD);
|
||
|
||
double dLong=dlong1-dlong2;
|
||
double dLat=dlat1-dlat2;
|
||
|
||
double aHarv= pow(sin(dLat/2.0),2.0)+cos(dlat1)*cos(dlat2)*pow(sin(dLong/2.),2);
|
||
double cHarv=2.*atan2(sqrt(aHarv),sqrt(1.0-aHarv));
|
||
//earth's radius from wikipedia varies between 6,356.750 km — 6,378.135 km (˜3,949.901 — 3,963.189 miles)
|
||
//The IUGG value for the equatorial radius of the Earth is 6378.137 km (3963.19 mile)
|
||
const double earth=6372797.560856;//I am doing miles, just change this to radius in kilometers to get distances in km
|
||
double distance=earth*cHarv;
|
||
return distance;
|
||
}
|
||
|
||
inline double ApproximateDistance(const FixedPointCoordinate &c1, const FixedPointCoordinate &c2) {
|
||
return ApproximateDistance( c1.lat, c1.lon, c2.lat, c2.lon );
|
||
}
|
||
|
||
inline double ApproximateEuclideanDistance(const FixedPointCoordinate &c1, const FixedPointCoordinate &c2) {
|
||
assert(c1.lat != INT_MIN);
|
||
assert(c1.lon != INT_MIN);
|
||
assert(c2.lat != INT_MIN);
|
||
assert(c2.lon != INT_MIN);
|
||
const double RAD = 0.017453292519943295769236907684886;
|
||
const double lat1 = (c1.lat/COORDINATE_PRECISION)*RAD;
|
||
const double lon1 = (c1.lon/COORDINATE_PRECISION)*RAD;
|
||
const double lat2 = (c2.lat/COORDINATE_PRECISION)*RAD;
|
||
const double lon2 = (c2.lon/COORDINATE_PRECISION)*RAD;
|
||
|
||
const double x = (lon2-lon1) * cos((lat1+lat2)/2.);
|
||
const double y = (lat2-lat1);
|
||
const double earthRadius = 6372797.560856;
|
||
const double d = sqrt(x*x + y*y) * earthRadius;
|
||
return d;
|
||
}
|
||
|
||
static inline void convertInternalLatLonToString(const int value, std::string & output) {
|
||
char buffer[100];
|
||
buffer[11] = 0; // zero termination
|
||
char* string = printInt< 11, 6 >( buffer, value );
|
||
output = string;
|
||
}
|
||
|
||
static inline void convertInternalCoordinateToString(const FixedPointCoordinate & coord, std::string & output) {
|
||
std::string tmp;
|
||
convertInternalLatLonToString(coord.lon, tmp);
|
||
output = tmp;
|
||
output += ",";
|
||
convertInternalLatLonToString(coord.lat, tmp);
|
||
output += tmp;
|
||
output += " ";
|
||
}
|
||
static inline void convertInternalReversedCoordinateToString(const FixedPointCoordinate & coord, std::string & output) {
|
||
std::string tmp;
|
||
convertInternalLatLonToString(coord.lat, tmp);
|
||
output = tmp;
|
||
output += ",";
|
||
convertInternalLatLonToString(coord.lon, tmp);
|
||
output += tmp;
|
||
output += " ";
|
||
}
|
||
|
||
|
||
/* Get angle of line segment (A,C)->(C,B), atan2 magic, formerly cosine theorem*/
|
||
template<class CoordinateT>
|
||
static inline double GetAngleBetweenThreeFixedPointCoordinates (
|
||
const CoordinateT & A,
|
||
const CoordinateT & C,
|
||
const CoordinateT & B
|
||
) {
|
||
const double v1x = (A.lon - C.lon)/COORDINATE_PRECISION;
|
||
const double v1y = lat2y(A.lat/COORDINATE_PRECISION) - lat2y(C.lat/COORDINATE_PRECISION);
|
||
const double v2x = (B.lon - C.lon)/COORDINATE_PRECISION;
|
||
const double v2y = lat2y(B.lat/COORDINATE_PRECISION) - lat2y(C.lat/COORDINATE_PRECISION);
|
||
|
||
double angle = (atan2(v2y,v2x) - atan2(v1y,v1x) )*180/M_PI;
|
||
while(angle < 0)
|
||
angle += 360;
|
||
return angle;
|
||
}
|
||
#endif /* FIXED_POINT_COORDINATE_H_ */
|