474 lines
19 KiB
C++
474 lines
19 KiB
C++
/*
|
|
open source routing machine
|
|
Copyright (C) Dennis Luxen, others 2010
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU AFFERO General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Affero General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
or see http://www.gnu.org/licenses/agpl.txt.
|
|
*/
|
|
|
|
#ifndef SEARCHENGINE_H_
|
|
#define SEARCHENGINE_H_
|
|
|
|
#include <climits>
|
|
#include <deque>
|
|
|
|
#include "BinaryHeap.h"
|
|
#include "PhantomNodes.h"
|
|
#include "../typedefs.h"
|
|
|
|
struct _HeapData {
|
|
NodeID parent;
|
|
_HeapData( NodeID p ) : parent(p) { }
|
|
};
|
|
|
|
struct _Statistics {
|
|
_Statistics () : insertedNodes(0), stalledNodes(0), meetingNodes(0), deleteMins(0), decreasedNodes(0), oqf(0), eqf(0), df(0), preprocTime(0) {};
|
|
void Reset() {
|
|
insertedNodes = 0;
|
|
stalledNodes = 0;
|
|
meetingNodes = 0;
|
|
deleteMins = 0;
|
|
decreasedNodes = 0;
|
|
}
|
|
unsigned insertedNodes;
|
|
unsigned stalledNodes;
|
|
unsigned meetingNodes;
|
|
unsigned deleteMins;
|
|
unsigned decreasedNodes;
|
|
unsigned oqf;
|
|
unsigned eqf;
|
|
unsigned df;
|
|
double preprocTime;
|
|
};
|
|
|
|
typedef BinaryHeap< NodeID, int, int, _HeapData, DenseStorage< NodeID, unsigned > > _Heap;
|
|
|
|
template<typename EdgeData, typename GraphT, typename NodeHelperT = NodeInformationHelpDesk>
|
|
class SearchEngine {
|
|
private:
|
|
const GraphT * _graph;
|
|
NodeHelperT * nodeHelpDesk;
|
|
std::vector<string> * _names;
|
|
inline double absDouble(double input) { if(input < 0) return input*(-1); else return input;}
|
|
public:
|
|
SearchEngine(GraphT * g, NodeHelperT * nh, vector<string> * n = new vector<string>()) : _graph(g), nodeHelpDesk(nh), _names(n) {}
|
|
~SearchEngine() {}
|
|
|
|
inline const void getNodeInfo(NodeID id, _Coordinate& result) const
|
|
{
|
|
result.lat = nodeHelpDesk->getLatitudeOfNode(id);
|
|
result.lon = nodeHelpDesk->getLongitudeOfNode(id);
|
|
}
|
|
|
|
unsigned int numberOfNodes() const {
|
|
return nodeHelpDesk->getNumberOfNodes();
|
|
}
|
|
|
|
unsigned int ComputeRoute(PhantomNodes * phantomNodes, vector<_PathData > * path, _Coordinate& startCoord, _Coordinate& targetCoord) {
|
|
|
|
bool onSameEdge = false;
|
|
bool onSameEdgeReversed = false;
|
|
bool startReverse = false;
|
|
bool targetReverse = false;
|
|
|
|
_Heap * _forwardHeap = new _Heap(nodeHelpDesk->getNumberOfNodes());
|
|
_Heap * _backwardHeap = new _Heap(nodeHelpDesk->getNumberOfNodes());
|
|
NodeID middle = ( NodeID ) 0;
|
|
unsigned int _upperbound = std::numeric_limits<unsigned int>::max();
|
|
|
|
if(phantomNodes->startNode1 == UINT_MAX || phantomNodes->startNode2 == UINT_MAX)
|
|
return _upperbound;
|
|
|
|
if( (phantomNodes->startNode1 == phantomNodes->targetNode1 && phantomNodes->startNode2 == phantomNodes->targetNode2 ) ||
|
|
(phantomNodes->startNode1 == phantomNodes->targetNode2 && phantomNodes->startNode2 == phantomNodes->targetNode1 ) )
|
|
{
|
|
bool reverse = false;
|
|
EdgeID currentEdge = _graph->FindEdge( phantomNodes->startNode1, phantomNodes->startNode2 );
|
|
if(currentEdge == UINT_MAX){
|
|
currentEdge = _graph->FindEdge( phantomNodes->startNode2, phantomNodes->startNode1 );
|
|
reverse = true;
|
|
}
|
|
|
|
if(currentEdge == UINT_MAX){
|
|
delete _forwardHeap;
|
|
delete _backwardHeap;
|
|
return _upperbound;
|
|
}
|
|
|
|
if(phantomNodes->startRatio < phantomNodes->targetRatio && _graph->GetEdgeData(currentEdge).forward) {
|
|
onSameEdge = true;
|
|
_upperbound = 10 * ApproximateDistance(phantomNodes->startCoord.lat, phantomNodes->startCoord.lon, phantomNodes->targetCoord.lat, phantomNodes->targetCoord.lon);
|
|
} else if(phantomNodes->startRatio > phantomNodes->targetRatio && _graph->GetEdgeData(currentEdge).backward && !reverse)
|
|
{
|
|
onSameEdge = true;
|
|
_upperbound = 10 * ApproximateDistance(phantomNodes->startCoord.lat, phantomNodes->startCoord.lon, phantomNodes->targetCoord.lat, phantomNodes->targetCoord.lon);
|
|
} else if(phantomNodes->startRatio < phantomNodes->targetRatio && _graph->GetEdgeData(currentEdge).backward) {
|
|
onSameEdge = true;
|
|
_upperbound = 10 * ApproximateDistance(phantomNodes->startCoord.lat, phantomNodes->startCoord.lon, phantomNodes->targetCoord.lat, phantomNodes->targetCoord.lon);
|
|
} else if(phantomNodes->startRatio > phantomNodes->targetRatio && _graph->GetEdgeData(currentEdge).forward && _graph->GetEdgeData(currentEdge).backward) {
|
|
onSameEdge = true;
|
|
_upperbound = 10 * ApproximateDistance(phantomNodes->startCoord.lat, phantomNodes->startCoord.lon, phantomNodes->targetCoord.lat, phantomNodes->targetCoord.lon);
|
|
} else if(phantomNodes->startRatio > phantomNodes->targetRatio) {
|
|
onSameEdgeReversed = true;
|
|
|
|
_Coordinate result;
|
|
getNodeInfo(phantomNodes->startNode1, result);
|
|
getNodeInfo(phantomNodes->startNode2, result);
|
|
|
|
EdgeWeight w = _graph->GetEdgeData( currentEdge ).distance;
|
|
_forwardHeap->Insert(phantomNodes->startNode2, absDouble( w*phantomNodes->startRatio), phantomNodes->startNode2);
|
|
_backwardHeap->Insert(phantomNodes->startNode1, absDouble( w-w*phantomNodes->targetRatio), phantomNodes->startNode1);
|
|
}
|
|
|
|
} else if(phantomNodes->startNode1 != UINT_MAX)
|
|
{
|
|
EdgeID edge = _graph->FindEdge( phantomNodes->startNode1, phantomNodes->startNode2);
|
|
if(edge == UINT_MAX){
|
|
edge = _graph->FindEdge( phantomNodes->startNode2, phantomNodes->startNode1 );
|
|
startReverse = true;
|
|
}
|
|
if(edge == UINT_MAX){
|
|
delete _forwardHeap;
|
|
delete _backwardHeap;
|
|
return _upperbound;
|
|
}
|
|
const EdgeData& ed = _graph->GetEdgeData(edge);
|
|
EdgeWeight w = ed.distance;
|
|
if( (ed.backward && !startReverse) || (ed.forward && startReverse) )
|
|
_forwardHeap->Insert(phantomNodes->startNode1, absDouble( w*phantomNodes->startRatio), phantomNodes->startNode1);
|
|
if( (ed.backward && startReverse) || (ed.forward && !startReverse) )
|
|
_forwardHeap->Insert(phantomNodes->startNode2, absDouble(w-w*phantomNodes->startRatio), phantomNodes->startNode2);
|
|
}
|
|
if(phantomNodes->targetNode1 != UINT_MAX && !onSameEdgeReversed)
|
|
{
|
|
EdgeID edge = _graph->FindEdge( phantomNodes->targetNode1, phantomNodes->targetNode2);
|
|
if(edge == UINT_MAX){
|
|
edge = _graph->FindEdge( phantomNodes->targetNode2, phantomNodes->targetNode1 );
|
|
targetReverse = true;
|
|
}
|
|
if(edge == UINT_MAX){
|
|
delete _forwardHeap;
|
|
delete _backwardHeap;
|
|
return _upperbound;
|
|
}
|
|
|
|
const EdgeData& ed = _graph->GetEdgeData(edge);
|
|
EdgeWeight w = ed.distance;
|
|
|
|
if( (ed.backward && !targetReverse) || (ed.forward && targetReverse) )
|
|
_backwardHeap->Insert(phantomNodes->targetNode2, absDouble( w*phantomNodes->targetRatio), phantomNodes->targetNode2);
|
|
if( (ed.backward && targetReverse) || (ed.forward && !targetReverse) )
|
|
_backwardHeap->Insert(phantomNodes->targetNode1, absDouble(w-w*phantomNodes->startRatio), phantomNodes->targetNode1);
|
|
}
|
|
// double time = get_timestamp();
|
|
|
|
NodeID sourceHeapNode = 0;
|
|
NodeID targetHeapNode = 0;
|
|
if(onSameEdgeReversed) {
|
|
sourceHeapNode = _forwardHeap->Min();
|
|
targetHeapNode = _backwardHeap->Min();
|
|
}
|
|
while(_forwardHeap->Size() + _backwardHeap->Size() > 0)
|
|
{
|
|
if ( _forwardHeap->Size() > 0 ) {
|
|
_RoutingStep( _forwardHeap, _backwardHeap, true, &middle, &_upperbound );
|
|
}
|
|
if ( _backwardHeap->Size() > 0 ) {
|
|
_RoutingStep( _backwardHeap, _forwardHeap, false, &middle, &_upperbound );
|
|
}
|
|
}
|
|
// std::cout << "[debug] computing distance took " << get_timestamp() - time << std::endl;
|
|
// time = get_timestamp();
|
|
|
|
if ( _upperbound == std::numeric_limits< unsigned int >::max() || onSameEdge ) {
|
|
delete _forwardHeap;
|
|
delete _backwardHeap;
|
|
return _upperbound;
|
|
}
|
|
|
|
NodeID pathNode = middle;
|
|
deque< NodeID > packedPath;
|
|
|
|
while ( onSameEdgeReversed ? pathNode != sourceHeapNode : pathNode != phantomNodes->startNode1 && pathNode != phantomNodes->startNode2 ) {
|
|
pathNode = _forwardHeap->GetData( pathNode ).parent;
|
|
packedPath.push_front( pathNode );
|
|
}
|
|
// NodeID realStart = pathNode;
|
|
packedPath.push_back( middle );
|
|
pathNode = middle;
|
|
|
|
while ( onSameEdgeReversed ? pathNode != targetHeapNode : pathNode != phantomNodes->targetNode2 && pathNode != phantomNodes->targetNode1 ){
|
|
pathNode = _backwardHeap->GetData( pathNode ).parent;
|
|
packedPath.push_back( pathNode );
|
|
}
|
|
|
|
path->push_back( _PathData(packedPath[0]) );
|
|
for(deque<NodeID>::size_type i = 0; i < packedPath.size()-1; i++)
|
|
{
|
|
_UnpackEdge(packedPath[i], packedPath[i+1], path);
|
|
}
|
|
|
|
packedPath.clear();
|
|
delete _forwardHeap;
|
|
delete _backwardHeap;
|
|
// std::cout << "[debug] unpacking path took " << get_timestamp() - time << std::endl;
|
|
|
|
return _upperbound/10;
|
|
}
|
|
|
|
unsigned int ComputeDistanceBetweenNodes(NodeID start, NodeID target) {
|
|
_Heap * _forwardHeap = new _Heap(_graph->GetNumberOfNodes());
|
|
_Heap * _backwardHeap = new _Heap(_graph->GetNumberOfNodes());
|
|
NodeID middle = ( NodeID ) 0;
|
|
unsigned int _upperbound = std::numeric_limits<unsigned int>::max();
|
|
|
|
_forwardHeap->Insert(start, 0, start);
|
|
_backwardHeap->Insert(target, 0, target);
|
|
|
|
while(_forwardHeap->Size() + _backwardHeap->Size() > 0)
|
|
{
|
|
if ( _forwardHeap->Size() > 0 ) {
|
|
_RoutingStep( _forwardHeap, _backwardHeap, true, &middle, &_upperbound );
|
|
}
|
|
if ( _backwardHeap->Size() > 0 ) {
|
|
_RoutingStep( _backwardHeap, _forwardHeap, false, &middle, &_upperbound );
|
|
}
|
|
}
|
|
delete _forwardHeap;
|
|
delete _backwardHeap;
|
|
return _upperbound;
|
|
}
|
|
|
|
unsigned int ComputeDistanceBetweenNodesWithStats(NodeID start, NodeID target, _Statistics& stats) {
|
|
_Heap * _forwardHeap = new _Heap(_graph->GetNumberOfNodes());
|
|
_Heap * _backwardHeap = new _Heap(_graph->GetNumberOfNodes());
|
|
NodeID middle = ( NodeID ) 0;
|
|
unsigned int _upperbound = std::numeric_limits<unsigned int>::max();
|
|
|
|
_forwardHeap->Insert(start, 0, start);
|
|
_backwardHeap->Insert(target, 0, target);
|
|
stats.insertedNodes += 2;
|
|
|
|
while(_forwardHeap->Size() + _backwardHeap->Size() > 0)
|
|
{
|
|
if ( _forwardHeap->Size() > 0 ) {
|
|
_RoutingStepWithStats( _forwardHeap, _backwardHeap, true, &middle, &_upperbound, stats );
|
|
}
|
|
if ( _backwardHeap->Size() > 0 ) {
|
|
_RoutingStepWithStats( _backwardHeap, _forwardHeap, false, &middle, &_upperbound, stats );
|
|
}
|
|
}
|
|
delete _forwardHeap;
|
|
delete _backwardHeap;
|
|
return _upperbound;
|
|
}
|
|
|
|
inline unsigned int findNearestNodeForLatLon(const _Coordinate& coord, _Coordinate& result) const
|
|
{
|
|
nodeHelpDesk->findNearestNodeCoordForLatLon( coord, result );
|
|
return 0;
|
|
|
|
}
|
|
|
|
inline bool FindRoutingStarts(const _Coordinate start, const _Coordinate target, PhantomNodes * routingStarts)
|
|
{
|
|
nodeHelpDesk->FindRoutingStarts(start, target, routingStarts);
|
|
return true;
|
|
}
|
|
|
|
inline NodeID GetNameIDForOriginDestinationNodeID(NodeID s, NodeID t) const {
|
|
assert(s!=t);
|
|
EdgeID e = _graph->FindEdge( s, t );
|
|
if(e == UINT_MAX)
|
|
e = _graph->FindEdge( t, s );
|
|
assert(e != UINT_MAX);
|
|
const EdgeData ed = _graph->GetEdgeData(e);
|
|
return ed.middleName.nameID;
|
|
}
|
|
|
|
inline std::string& GetNameForNameID(const NodeID nameID) const {
|
|
assert(nameID < _names->size());
|
|
return _names->at(nameID);
|
|
}
|
|
|
|
inline short GetTypeOfEdgeForOriginDestinationNodeID(NodeID s, NodeID t) const {
|
|
assert(s!=t);
|
|
EdgeID e = _graph->FindEdge( s, t );
|
|
if(e == UINT_MAX)
|
|
e = _graph->FindEdge( t, s );
|
|
assert(e != UINT_MAX);
|
|
const EdgeData ed = _graph->GetEdgeData(e);
|
|
return ed.type;
|
|
}
|
|
|
|
inline void RegisterThread(const unsigned k, const unsigned v) {
|
|
nodeHelpDesk->RegisterThread(k,v);
|
|
}
|
|
private:
|
|
|
|
inline void _RoutingStep(_Heap * _forwardHeap, _Heap *_backwardHeap, const bool& forwardDirection, NodeID * middle, unsigned int * _upperbound) {
|
|
const NodeID node = _forwardHeap->DeleteMin();
|
|
const unsigned int distance = _forwardHeap->GetKey( node );
|
|
if ( _backwardHeap->WasInserted( node ) ) {
|
|
const unsigned int newDistance = _backwardHeap->GetKey( node ) + distance;
|
|
if ( newDistance < *_upperbound ) {
|
|
*middle = node;
|
|
*_upperbound = newDistance;
|
|
}
|
|
}
|
|
if ( distance > *_upperbound ) {
|
|
_forwardHeap->DeleteAll();
|
|
return;
|
|
}
|
|
|
|
|
|
for ( typename GraphT::EdgeIterator edge = _graph->BeginEdges( node ); edge < _graph->EndEdges(node); edge++ ) {
|
|
const EdgeData& ed = _graph->GetEdgeData(edge);
|
|
// if(!ed.shortcut)
|
|
// continue;
|
|
const NodeID to = _graph->GetTarget(edge);
|
|
const EdgeWeight edgeWeight = ed.distance;
|
|
|
|
assert( edgeWeight > 0 );
|
|
const int toDistance = distance + edgeWeight;
|
|
|
|
//Stalling
|
|
if(_forwardHeap->WasInserted( to )) {
|
|
if(!forwardDirection ? ed.forward : ed.backward) {
|
|
if(_forwardHeap->GetKey( to ) + edgeWeight < distance) {
|
|
// std::cout << "[stalled] node " << node << std::endl;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(forwardDirection ? ed.forward : ed.backward ) {
|
|
//New Node discovered -> Add to Heap + Node Info Storage
|
|
if ( !_forwardHeap->WasInserted( to ) ) {
|
|
_forwardHeap->Insert( to, toDistance, node );
|
|
}
|
|
//Found a shorter Path -> Update distance
|
|
else if ( toDistance < _forwardHeap->GetKey( to ) ) {
|
|
_forwardHeap->GetData( to ).parent = node;
|
|
_forwardHeap->DecreaseKey( to, toDistance );
|
|
//new parent
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void _RoutingStepWithStats( _Heap * _forwardHeap, _Heap *_backwardHeap, const bool& forwardDirection, NodeID * middle, unsigned int * _upperbound, _Statistics& stats) {
|
|
const NodeID node = _forwardHeap->DeleteMin();
|
|
stats.deleteMins++;
|
|
const unsigned int distance = _forwardHeap->GetKey( node );
|
|
if ( _backwardHeap->WasInserted( node ) ) {
|
|
const unsigned int newDistance = _backwardHeap->GetKey( node ) + distance;
|
|
if ( newDistance < *_upperbound ) {
|
|
*middle = node;
|
|
*_upperbound = newDistance;
|
|
}
|
|
}
|
|
if ( distance > *_upperbound ) {
|
|
stats.meetingNodes++;
|
|
_forwardHeap->DeleteAll();
|
|
return;
|
|
}
|
|
|
|
|
|
for ( typename GraphT::EdgeIterator edge = _graph->BeginEdges( node ); edge < _graph->EndEdges(node); edge++ ) {
|
|
const EdgeData& ed = _graph->GetEdgeData(edge);
|
|
const NodeID to = _graph->GetTarget(edge);
|
|
const EdgeWeight edgeWeight = ed.distance;
|
|
|
|
assert( edgeWeight > 0 );
|
|
const int toDistance = distance + edgeWeight;
|
|
|
|
//Stalling
|
|
if(_forwardHeap->WasInserted( to )) {
|
|
if(!forwardDirection ? ed.forward : ed.backward) {
|
|
if(_forwardHeap->GetKey( to ) + edgeWeight < distance) {
|
|
stats.stalledNodes++;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(forwardDirection ? ed.forward : ed.backward ) {
|
|
//New Node discovered -> Add to Heap + Node Info Storage
|
|
if ( !_forwardHeap->WasInserted( to ) ) {
|
|
_forwardHeap->Insert( to, toDistance, node );
|
|
stats.insertedNodes++;
|
|
}
|
|
//Found a shorter Path -> Update distance
|
|
else if ( toDistance < _forwardHeap->GetKey( to ) ) {
|
|
_forwardHeap->GetData( to ).parent = node;
|
|
_forwardHeap->DecreaseKey( to, toDistance );
|
|
stats.decreasedNodes++;
|
|
//new parent
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool _UnpackEdge( const NodeID source, const NodeID target, std::vector< _PathData >* path ) {
|
|
assert(source != target);
|
|
//find edge first.
|
|
bool forward = true;
|
|
typename GraphT::EdgeIterator smallestEdge = SPECIAL_EDGEID;
|
|
EdgeWeight smallestWeight = UINT_MAX;
|
|
for(typename GraphT::EdgeIterator eit = _graph->BeginEdges(source); eit < _graph->EndEdges(source); eit++)
|
|
{
|
|
const EdgeWeight weight = _graph->GetEdgeData(eit).distance;
|
|
{
|
|
if(_graph->GetTarget(eit) == target && weight < smallestWeight && _graph->GetEdgeData(eit).forward)
|
|
{
|
|
smallestEdge = eit; smallestWeight = weight;
|
|
}
|
|
}
|
|
}
|
|
if(smallestEdge == SPECIAL_EDGEID)
|
|
{
|
|
for(typename GraphT::EdgeIterator eit = _graph->BeginEdges(target); eit < _graph->EndEdges(target); eit++)
|
|
{
|
|
const EdgeWeight weight = _graph->GetEdgeData(eit).distance;
|
|
{
|
|
if(_graph->GetTarget(eit) == source && weight < smallestWeight && _graph->GetEdgeData(eit).backward)
|
|
{
|
|
smallestEdge = eit; smallestWeight = weight;
|
|
forward = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(smallestWeight != SPECIAL_EDGEID); //no edge found. This should not happen at all!
|
|
|
|
const EdgeData& ed = _graph->GetEdgeData(smallestEdge);
|
|
if(ed.shortcut)
|
|
{//unpack
|
|
const NodeID middle = ed.middleName.middle;
|
|
_UnpackEdge(source, middle, path);
|
|
_UnpackEdge(middle, target, path);
|
|
return false;
|
|
} else {
|
|
assert(!ed.shortcut);
|
|
path->push_back(_PathData(target) );
|
|
return true;
|
|
}
|
|
}
|
|
};
|
|
|
|
#endif /* SEARCHENGINE_H_ */
|