osrm-backend/src/engine/routing_algorithms/alternative_path_mld.cpp
Siarhei Fedartsou aadc088084
Fix distance calculation consistency. (#6315)
Consolidate great circle distance calculations to use cheap ruler library.
2022-08-19 22:31:40 +01:00

960 lines
40 KiB
C++

#include "engine/routing_algorithms/alternative_path.hpp"
#include "engine/routing_algorithms/routing_base_mld.hpp"
#include "util/static_assert.hpp"
#include <boost/assert.hpp>
#include <algorithm>
#include <iterator>
#include <memory>
#include <type_traits>
#include <unordered_set>
#include <utility>
#include <vector>
#include <boost/function_output_iterator.hpp>
namespace osrm
{
namespace engine
{
namespace routing_algorithms
{
// Unqualified calls below are from the mld namespace.
// This alternative implementation works only for mld.
using namespace mld;
using Heap = SearchEngineData<Algorithm>::QueryHeap;
using Partition = partitioner::MultiLevelPartitionView;
using Facade = DataFacade<Algorithm>;
// Implementation details
namespace
{
struct Parameters
{
// Alternative paths candidate via nodes are taken from overlapping search spaces.
// Overlapping by a third guarantees us taking candidate nodes "from the middle".
double kSearchSpaceOverlapFactor = 1.33;
// Unpack n-times more candidate paths to run high-quality checks on.
// Unpacking paths yields higher chance to find good alternatives but is also expensive.
unsigned kAlternativesToUnpackFactor = 2;
// Alternative paths length requirement (stretch).
// At most 25% longer then the shortest path.
double kAtMostLongerBy = 0.25;
// Alternative paths similarity requirement (sharing).
// At least 25% different than the shortest path.
double kAtMostSameBy = 0.75;
// Alternative paths are still reasonable around the via node candidate (local optimality).
// At least optimal around 10% sub-paths around the via node candidate.
double kAtLeastOptimalAroundViaBy = 0.1;
// Alternative paths similarity requirement (sharing) based on cells.
// At least 5% different than the shortest path.
double kCellsAtMostSameBy = 0.95;
};
// Represents a via middle node where forward (from s) and backward (from t)
// search spaces overlap and the weight a path (made up of s,via and via,t) has.
struct WeightedViaNode
{
NodeID node;
EdgeWeight weight;
};
// Represents a complete packed path (made up of s,via and via,t)
// its total weight and the via node used to construct the path.
struct WeightedViaNodePackedPath
{
WeightedViaNode via;
PackedPath path;
};
// Represents a high-detail unpacked path (s, .., via, .., t)
// its total weight and the via node used to construct the path.
struct WeightedViaNodeUnpackedPath
{
double sharing;
WeightedViaNode via;
UnpackedNodes nodes;
UnpackedEdges edges;
};
// Scale the maximum allowed weight increase based on its magnitude:
// - Shortest path 10 minutes, alternative 13 minutes => Factor of 0.30 ok
// - Shortest path 10 hours, alternative 13 hours => Factor of 0.30 unreasonable
double getLongerByFactorBasedOnDuration(const EdgeWeight duration)
{
BOOST_ASSERT(duration != INVALID_EDGE_WEIGHT);
// We only have generic weights here and no durations without unpacking.
// We also have restricted way penalties which are huge and will screw scaling here.
//
// Users can pass us generic weights not based on durations; we can't do anything about
// it here other than either generating too many or no alternatives in these cases.
//
// We scale the weights with a step function based on some rough guestimates, so that
// they match tens of minutes, in the low hours, tens of hours, etc.
// Computed using a least-squares curve fitiing on the following values:
//
// def func(xs, a, b, c, d):
// return a + b/(xs-d) + c/(xs-d)**3
//
// xs = np.array([5 * 60, 10 * 60, 30 * 60, 60 * 60, 3 * 60 * 60, 10 * 60 * 60])
// ys = np.array([1.0, 0.75, 0.5, 0.4, 0.3, 0.2])
//
// xs_interp = np.arange(5*60, 10*60*60, 5*60)
// ys_interp = np.interp(xs_interp, xs, ys)
//
// params, _ = scipy.optimize.curve_fit(func, xs_interp, ys_interp)
//
// The hyperbolic shape was chosen because it interpolated well between
// the given datapoints and drops off for large durations.
const constexpr auto a = 1.91578463e-01;
const constexpr auto b = 1.35118442e+03;
const constexpr auto c = 2.45437877e+09;
const constexpr auto d = -2.07944571e+03;
if (duration < EdgeWeight(5 * 60))
{
return 1.0;
}
else if (duration > EdgeWeight(10 * 60 * 60))
{
return 0.20;
}
// Bigger than 10 minutes but smaller than 10 hours
BOOST_ASSERT(duration >= 5 * 60 && duration <= 10 * 60 * 60);
return a + b / (duration - d) + c / std::pow(duration - d, 3);
}
Parameters parametersFromRequest(const PhantomNodes &phantom_node_pair)
{
Parameters parameters;
const auto distance = util::coordinate_calculation::greatCircleDistance(
phantom_node_pair.source_phantom.location, phantom_node_pair.target_phantom.location);
// 10km
if (distance < 10000.)
{
parameters.kAlternativesToUnpackFactor = 10.0;
parameters.kCellsAtMostSameBy = 1.0;
parameters.kAtLeastOptimalAroundViaBy = 0.2;
parameters.kAtMostSameBy = 0.50;
}
// 20km
else if (distance < 20000.)
{
parameters.kAlternativesToUnpackFactor = 8.0;
parameters.kCellsAtMostSameBy = 1.0;
parameters.kAtLeastOptimalAroundViaBy = 0.2;
parameters.kAtMostSameBy = 0.60;
}
// 50km
else if (distance < 50000.)
{
parameters.kAlternativesToUnpackFactor = 6.0;
parameters.kCellsAtMostSameBy = 0.95;
parameters.kAtMostSameBy = 0.65;
}
// 100km
else if (distance < 100000.)
{
parameters.kAlternativesToUnpackFactor = 4.0;
parameters.kCellsAtMostSameBy = 0.95;
parameters.kAtMostSameBy = 0.70;
}
return parameters;
}
// Filters candidates which are on not unique.
// Returns an iterator to the uniquified range's new end.
// Note: mutates the range in-place invalidating iterators.
template <typename RandIt> RandIt filterViaCandidatesByUniqueNodeIds(RandIt first, RandIt last)
{
util::static_assert_iter_category<RandIt, std::random_access_iterator_tag>();
util::static_assert_iter_value<RandIt, WeightedViaNode>();
std::sort(first, last, [](auto lhs, auto rhs) { return lhs.node < rhs.node; });
return std::unique(first, last, [](auto lhs, auto rhs) { return lhs.node == rhs.node; });
}
// Filters candidates which are on un-important roads.
// Returns an iterator to the filtered range's new end.
template <typename RandIt>
RandIt filterViaCandidatesByRoadImportance(RandIt first, RandIt last, const Facade &facade)
{
util::static_assert_iter_category<RandIt, std::random_access_iterator_tag>();
util::static_assert_iter_value<RandIt, WeightedViaNode>();
// Todo: the idea here is to filter out alternatives where the via candidate is not on a
// high-priority road. We should experiment if this is really needed or if the boundary
// nodes the mld search space gives us already provides us with reasonable via candidates.
//
// Implementation: we already have `RoadClassification` from guidance. We need to serialize
// it to disk and then in the facades read it in again providing `IsImportantRoad(NodeID)`.
// Note: serialize out bit vector keyed by node id with 0/1 <=> unimportant/important.
(void)first;
(void)last;
(void)facade;
return last;
}
// Filters candidates with much higher weight than the primary route. Mutates range in-place.
// Returns an iterator to the filtered range's new end.
template <typename RandIt>
RandIt filterViaCandidatesByStretch(RandIt first,
RandIt last,
const EdgeWeight weight,
const Parameters &parameters)
{
util::static_assert_iter_category<RandIt, std::random_access_iterator_tag>();
util::static_assert_iter_value<RandIt, WeightedViaNode>();
// Assumes weight roughly corresponds to duration-ish. If this is not the case e.g.
// because users are setting weight to be distance in the profiles, then we might
// either generate more candidates than we have to or not enough. But is okay.
const auto stretch_weight_limit = (1. + parameters.kAtMostLongerBy) * weight;
const auto over_weight_limit = [=](const auto via) {
return via.weight > stretch_weight_limit;
};
return std::remove_if(first, last, over_weight_limit);
}
// Filters candidates that are on the path. Mutates range in-place.
// Returns an iterator to the filtered range's new end.
template <typename RandIt>
RandIt
filterViaCandidatesByViaNotOnPath(const WeightedViaNodePackedPath &path, RandIt first, RandIt last)
{
util::static_assert_iter_category<RandIt, std::random_access_iterator_tag>();
util::static_assert_iter_value<RandIt, WeightedViaNode>();
if (path.path.empty())
return last;
std::unordered_set<NodeID> nodes;
nodes.reserve(path.path.size() + 1);
nodes.insert(std::get<0>(path.path.front()));
for (const auto &edge : path.path)
nodes.insert(std::get<1>(edge));
const auto via_on_path = [&](const auto via) { return nodes.count(via.node) > 0; };
return std::remove_if(first, last, via_on_path);
}
// Filters packed paths with similar cells between each other. Mutates range in-place.
// Returns an iterator to the filtered range's new end.
template <typename RandIt>
RandIt filterPackedPathsByCellSharing(RandIt first,
RandIt last,
const Partition &partition,
const Parameters &parameters)
{
// In this case we don't need to calculate sharing, because it would not filter anything
if (parameters.kCellsAtMostSameBy >= 1.0)
return last;
util::static_assert_iter_category<RandIt, std::random_access_iterator_tag>();
util::static_assert_iter_value<RandIt, WeightedViaNodePackedPath>();
// Todo: we could scale cell sharing with edge weights. Also basing sharing on
// cells could be problematic e.g. think of parallel ways in grid cities.
const auto size = static_cast<std::size_t>(last - first);
if (size < 2)
return last;
const auto number_of_levels = partition.GetNumberOfLevels();
(void)number_of_levels;
BOOST_ASSERT(number_of_levels >= 1);
// Todo: sharing could be a linear combination based on level and sharing on each level.
// Experimental evaluation shows using the lowest level works surprisingly well already.
const auto level = 1;
const auto get_cell = [&](auto node) { return partition.GetCell(level, node); };
const auto shortest_path = *first;
if (shortest_path.path.empty())
return last;
std::unordered_set<CellID> cells;
cells.reserve(size * (shortest_path.path.size() + 1) * (1 + parameters.kAtMostLongerBy));
cells.insert(get_cell(std::get<0>(shortest_path.path.front())));
for (const auto &edge : shortest_path.path)
cells.insert(get_cell(std::get<1>(edge)));
const auto over_sharing_limit = [&](const auto &packed) {
if (packed.path.empty())
{ // don't remove routes with single-node (empty) path
return false;
}
const auto not_seen = [&](const PackedEdge edge) {
const auto source_cell = get_cell(std::get<0>(edge));
const auto target_cell = get_cell(std::get<1>(edge));
return cells.count(source_cell) < 1 && cells.count(target_cell) < 1;
};
const auto different = std::count_if(begin(packed.path), end(packed.path), not_seen);
const auto difference = different / static_cast<double>(packed.path.size() + 1);
BOOST_ASSERT(difference >= 0.);
BOOST_ASSERT(difference <= 1.);
const auto sharing = 1. - difference;
if (sharing > parameters.kCellsAtMostSameBy)
{
return true;
}
else
{
cells.insert(get_cell(std::get<0>(packed.path.front())));
for (const auto &edge : packed.path)
cells.insert(get_cell(std::get<1>(edge)));
return false;
}
};
return std::remove_if(first + 1, last, over_sharing_limit);
}
// Filters packed paths based on local optimality. Mutates range in-place.
// Returns an iterator to the filtered range's new end.
template <typename RandIt>
RandIt filterPackedPathsByLocalOptimality(const WeightedViaNodePackedPath &path,
const Heap &forward_heap,
const Heap &reverse_heap,
RandIt first,
RandIt last,
const Parameters &parameters)
{
util::static_assert_iter_category<RandIt, std::random_access_iterator_tag>();
util::static_assert_iter_value<RandIt, WeightedViaNodePackedPath>();
if (path.path.empty())
return last;
// Check sub-path optimality on alternative path crossing the via node candidate.
//
// s - - - v - - - t our packed path made up of (from, to) edges
// |--|--| sub-paths "left" and "right" of v based on threshold
// f v l nodes in [v,f] and in [v, l] have to match predecessor in heaps
//
// Todo: this approach is efficient but works on packed paths only. Do we need to do a
// thorough check on the unpacked paths instead? Or do we even need to introduce two
// new thread-local heaps for the mld SearchEngineData and do proper s-t routing here?
BOOST_ASSERT(path.via.weight != INVALID_EDGE_WEIGHT);
// node == parent_in_main_heap(parent_in_side_heap(v)) -> plateaux at `node`
const auto has_plateaux_at_node = [&](const NodeID node, const Heap &fst, const Heap &snd) {
BOOST_ASSERT(fst.WasInserted(node));
auto const parent = fst.GetData(node).parent;
return snd.WasInserted(parent) && snd.GetData(parent).parent == node;
};
// A plateaux is defined as a segment in which the search tree from s and the search
// tree from t overlap. An edge is part of such a plateaux around `v` if:
// v == parent_in_reverse_search(parent_in_forward_search(v)).
// Here we calculate the last node on the plateaux in either direction.
const auto plateaux_end = [&](NodeID node, const Heap &fst, const Heap &snd) {
BOOST_ASSERT(node != SPECIAL_NODEID);
BOOST_ASSERT(fst.WasInserted(node));
BOOST_ASSERT(snd.WasInserted(node));
// Check plateaux edges towards the target. Terminates at the source / target
// at the latest, since parent(target)==target for the reverse heap and
// parent(target) != target in the forward heap (and vice versa).
while (node != fst.GetData(node).parent && has_plateaux_at_node(node, fst, snd))
node = fst.GetData(node).parent;
return node;
};
const auto is_not_locally_optimal = [&](const auto &packed) {
BOOST_ASSERT(packed.via.node != path.via.node);
BOOST_ASSERT(packed.via.weight != INVALID_EDGE_WEIGHT);
BOOST_ASSERT(packed.via.node != SPECIAL_NODEID);
if (packed.path.empty())
{ // the edge case when packed.via.node is both source and target node
return false;
}
const NodeID via = packed.via.node;
// Plateaux iff via == parent_in_reverse_search(parent_in_forward_search(via))
//
// Forward search starts from s, reverse search starts from t:
// - parent_in_forward_search(via) = a
// - parent_in_reverse_search(a) = b != via and therefore not local optimal
//
// via
// .' '.
// s - a - - - b - t
//
// Care needs to be taken for the edge case where the via node is on the border
// of the search spaces and therefore parent pointers may not be valid in heaps.
// In these cases we know we can't have local optimality around the via already.
const auto first_on_plateaux = plateaux_end(via, forward_heap, reverse_heap);
const auto last_on_plateaux = plateaux_end(via, reverse_heap, forward_heap);
// fop - - via - - lop
// .' '.
// s - a - - - - - - - - - - - - b - t
//
// Lenth of plateaux is given by the weight vetween fop and via as well as via and lop.
const auto plateaux_length =
forward_heap.GetKey(last_on_plateaux) - forward_heap.GetKey(first_on_plateaux);
// Find a/b as the first location where packed and path differ
const auto a = std::get<0>(*std::mismatch(packed.path.begin(), //
packed.path.end(),
path.path.begin(),
path.path.end())
.first);
const auto b = std::get<1>(*std::mismatch(packed.path.rbegin(), //
packed.path.rend(),
path.path.rbegin(),
path.path.rend())
.first);
BOOST_ASSERT(forward_heap.WasInserted(a));
BOOST_ASSERT(reverse_heap.WasInserted(b));
const auto detour_length = forward_heap.GetKey(via) - forward_heap.GetKey(a) +
reverse_heap.GetKey(via) - reverse_heap.GetKey(b);
return plateaux_length < parameters.kAtLeastOptimalAroundViaBy * detour_length;
};
return std::remove_if(first, last, is_not_locally_optimal);
}
// Filters unpacked paths compared to all other paths. Mutates range in-place.
// Returns an iterator to the filtered range's new end.
template <typename RandIt>
RandIt filterUnpackedPathsBySharing(RandIt first,
RandIt last,
const Facade &facade,
const Parameters &parameters)
{
util::static_assert_iter_category<RandIt, std::random_access_iterator_tag>();
util::static_assert_iter_value<RandIt, WeightedViaNodeUnpackedPath>();
const auto size = static_cast<std::size_t>(last - first);
if (size < 2)
return last;
const auto &shortest_path = *first;
if (shortest_path.edges.empty())
return last;
std::unordered_set<NodeID> nodes;
nodes.reserve(size * shortest_path.nodes.size() * (1.25));
nodes.insert(begin(shortest_path.nodes), end(shortest_path.nodes));
const auto over_sharing_limit = [&](auto &unpacked) {
if (unpacked.edges.empty())
{ // don't remove routes with single-node (empty) path
return false;
}
EdgeWeight total_duration = 0;
const auto add_if_seen = [&](const EdgeWeight duration, const NodeID node) {
auto node_duration = facade.GetNodeDuration(node);
total_duration += node_duration;
if (nodes.count(node) > 0)
{
return duration + node_duration;
}
return duration;
};
const auto shared_duration = std::accumulate(
begin(unpacked.nodes), end(unpacked.nodes), EdgeDuration{0}, add_if_seen);
unpacked.sharing = shared_duration / static_cast<double>(total_duration);
BOOST_ASSERT(unpacked.sharing >= 0.);
BOOST_ASSERT(unpacked.sharing <= 1.);
if (unpacked.sharing > parameters.kAtMostSameBy)
{
return true;
}
else
{
nodes.insert(begin(unpacked.nodes), end(unpacked.nodes));
return false;
}
};
auto end = std::remove_if(first + 1, last, over_sharing_limit);
std::sort(
first + 1, end, [](const auto &lhs, const auto &rhs) { return lhs.sharing < rhs.sharing; });
return end;
}
// Filters annotated routes by stretch based on duration. Mutates range in-place.
// Returns an iterator to the filtered range's new end.
template <typename RandIt>
RandIt filterAnnotatedRoutesByStretch(RandIt first,
RandIt last,
const InternalRouteResult &shortest_route,
const Parameters &parameters)
{
util::static_assert_iter_category<RandIt, std::random_access_iterator_tag>();
util::static_assert_iter_value<RandIt, InternalRouteResult>();
BOOST_ASSERT(shortest_route.is_valid());
const auto shortest_route_duration = shortest_route.duration();
const auto stretch_duration_limit = (1. + parameters.kAtMostLongerBy) * shortest_route_duration;
const auto over_duration_limit = [=](const auto &route) {
return route.duration() > stretch_duration_limit;
};
return std::remove_if(first, last, over_duration_limit);
}
// Unpacks a range of WeightedViaNodePackedPaths into a range of WeightedViaNodeUnpackedPaths.
// Note: destroys search engine heaps for recursive unpacking. Extract heap data you need before.
template <typename InputIt, typename OutIt>
void unpackPackedPaths(InputIt first,
InputIt last,
OutIt out,
SearchEngineData<Algorithm> &search_engine_data,
const Facade &facade,
const PhantomNodes &phantom_node_pair)
{
util::static_assert_iter_category<InputIt, std::input_iterator_tag>();
util::static_assert_iter_category<OutIt, std::output_iterator_tag>();
util::static_assert_iter_value<InputIt, WeightedViaNodePackedPath>();
const Partition &partition = facade.GetMultiLevelPartition();
Heap &forward_heap = *search_engine_data.forward_heap_1;
Heap &reverse_heap = *search_engine_data.reverse_heap_1;
for (auto it = first; it != last; ++it, ++out)
{
const auto packed_path_weight = it->via.weight;
const auto packed_path_via = it->via.node;
const auto &packed_path = it->path;
//
// Todo: dup. code with mld::search except for level entry: we run a slight mld::search
// adaption here and then dispatch to mld::search for recursively descending down.
//
std::vector<NodeID> unpacked_nodes;
std::vector<EdgeID> unpacked_edges;
unpacked_nodes.reserve(packed_path.size());
unpacked_edges.reserve(packed_path.size());
// Beware the edge case when start, via, end are all the same.
// In this case we return a single node, no edges. We also don't unpack.
if (packed_path.empty())
{
const auto source_node = packed_path_via;
unpacked_nodes.push_back(source_node);
}
else
{
const auto source_node = std::get<0>(packed_path.front());
unpacked_nodes.push_back(source_node);
}
for (auto const &packed_edge : packed_path)
{
NodeID source, target;
bool overlay_edge;
std::tie(source, target, overlay_edge) = packed_edge;
if (!overlay_edge)
{ // a base graph edge
unpacked_nodes.push_back(target);
unpacked_edges.push_back(facade.FindEdge(source, target));
}
else
{ // an overlay graph edge
LevelID level = getNodeQueryLevel(partition, source, phantom_node_pair); // XXX
CellID parent_cell_id = partition.GetCell(level, source);
BOOST_ASSERT(parent_cell_id == partition.GetCell(level, target));
LevelID sublevel = level - 1;
// Here heaps can be reused, let's go deeper!
forward_heap.Clear();
reverse_heap.Clear();
forward_heap.Insert(source, 0, {source});
reverse_heap.Insert(target, 0, {target});
BOOST_ASSERT(!facade.ExcludeNode(source));
BOOST_ASSERT(!facade.ExcludeNode(target));
// TODO: when structured bindings will be allowed change to
// auto [subpath_weight, subpath_source, subpath_target, subpath] = ...
EdgeWeight subpath_weight;
std::vector<NodeID> subpath_nodes;
std::vector<EdgeID> subpath_edges;
std::tie(subpath_weight, subpath_nodes, subpath_edges) = search(search_engine_data,
facade,
forward_heap,
reverse_heap,
DO_NOT_FORCE_LOOPS,
DO_NOT_FORCE_LOOPS,
INVALID_EDGE_WEIGHT,
sublevel,
parent_cell_id);
BOOST_ASSERT(!subpath_edges.empty());
BOOST_ASSERT(subpath_nodes.size() > 1);
BOOST_ASSERT(subpath_nodes.front() == source);
BOOST_ASSERT(subpath_nodes.back() == target);
unpacked_nodes.insert(
unpacked_nodes.end(), std::next(subpath_nodes.begin()), subpath_nodes.end());
unpacked_edges.insert(
unpacked_edges.end(), subpath_edges.begin(), subpath_edges.end());
}
}
WeightedViaNodeUnpackedPath unpacked_path{
0.0,
WeightedViaNode{packed_path_via, packed_path_weight},
std::move(unpacked_nodes),
std::move(unpacked_edges)};
out = std::move(unpacked_path);
}
}
// Generates via candidate nodes from the overlap of the two search spaces from s and t.
// Returns via node candidates in no particular order; they're not guaranteed to be unique.
// Note: heaps are modified in-place, after the function returns they're valid and can be used.
inline std::vector<WeightedViaNode>
makeCandidateVias(SearchEngineData<Algorithm> &search_engine_data,
const Facade &facade,
const PhantomNodes &phantom_node_pair,
const Parameters &parameters)
{
Heap &forward_heap = *search_engine_data.forward_heap_1;
Heap &reverse_heap = *search_engine_data.reverse_heap_1;
insertNodesInHeaps(forward_heap, reverse_heap, phantom_node_pair);
if (forward_heap.Empty() || reverse_heap.Empty())
{
return {};
}
// The single via node in the shortest paths s,via and via,t sub-paths and
// the weight for the shortest path s,t we return and compare alternatives to.
EdgeWeight shortest_path_weight = INVALID_EDGE_WEIGHT;
// The current via node during search spaces overlap stepping and an artificial
// weight (overlap factor * shortest path weight) we use as a termination criteria.
NodeID overlap_via = SPECIAL_NODEID;
EdgeWeight overlap_weight = INVALID_EDGE_WEIGHT;
// All via nodes in the overlapping search space (except the shortest path via node).
// Will be filtered and ranked and then used for s,via and via,t alternative paths.
std::vector<WeightedViaNode> candidate_vias;
// The logic below is a bit weird - here's why: we want to re-use the MLD routingStep for
// stepping our search space from s and from t. We don't know how far to overlap until we have
// the shortest path. Once we have the shortest path we can use its weight to terminate when
// we're over factor * weight. We have to set the weight for routingStep to INVALID_EDGE_WEIGHT
// so that stepping will continue even after we reached the shortest path upper bound.
EdgeWeight forward_heap_min = forward_heap.MinKey();
EdgeWeight reverse_heap_min = reverse_heap.MinKey();
while (forward_heap.Size() + reverse_heap.Size() > 0)
{
if (shortest_path_weight != INVALID_EDGE_WEIGHT)
overlap_weight = shortest_path_weight * parameters.kSearchSpaceOverlapFactor;
// Termination criteria - when we have a shortest path this will guarantee for our overlap.
const bool keep_going = forward_heap_min + reverse_heap_min < overlap_weight;
if (!keep_going)
break;
// Force forward step to not break early when we reached the middle, continue for overlap.
// Note: only invalidate the via node, the weight upper bound is still correct!
overlap_via = SPECIAL_NODEID;
if (!forward_heap.Empty())
{
routingStep<FORWARD_DIRECTION>(facade,
forward_heap,
reverse_heap,
overlap_via,
overlap_weight,
DO_NOT_FORCE_LOOPS,
DO_NOT_FORCE_LOOPS,
phantom_node_pair);
if (!forward_heap.Empty())
forward_heap_min = forward_heap.MinKey();
if (overlap_weight != INVALID_EDGE_WEIGHT && overlap_via != SPECIAL_NODEID)
{
candidate_vias.push_back(WeightedViaNode{overlap_via, overlap_weight});
}
}
// Adjusting upper bound for forward search
shortest_path_weight = std::min(shortest_path_weight, overlap_weight);
// Force reverse step to not break early when we reached the middle, continue for overlap.
// Note: only invalidate the via node, the weight upper bound is still correct!
overlap_via = SPECIAL_NODEID;
if (!reverse_heap.Empty())
{
routingStep<REVERSE_DIRECTION>(facade,
reverse_heap,
forward_heap,
overlap_via,
overlap_weight,
DO_NOT_FORCE_LOOPS,
DO_NOT_FORCE_LOOPS,
phantom_node_pair);
if (!reverse_heap.Empty())
reverse_heap_min = reverse_heap.MinKey();
if (overlap_weight != INVALID_EDGE_WEIGHT && overlap_via != SPECIAL_NODEID)
{
candidate_vias.push_back(WeightedViaNode{overlap_via, overlap_weight});
}
}
// Adjusting upper bound for reverse search
shortest_path_weight = std::min(shortest_path_weight, overlap_weight);
}
return candidate_vias;
}
} // namespace
// Alternative Routes for MLD.
//
// Start search from s and continue "for a while" when middle was found. Save vertices.
// Start search from t and continue "for a while" when middle was found. Save vertices.
// Intersect both vertex sets: these are the candidate vertices.
// For all candidate vertices c a (potentially arbitrarily bad) alternative route is (s, c, t).
// Apply heuristic to evaluate alternative route based on stretch, overlap, how reasonable it is.
//
// For MLD specifically we can pull off some tricks to make evaluating alternatives fast:
// Only consider (s, c, t) with c border vertex: re-use MLD search steps.
// Add meta data to border vertices: consider (s, c, t) only when c is e.g. on a highway.
// Prune based on vertex cell id
//
// https://github.com/Project-OSRM/osrm-backend/issues/3905
InternalManyRoutesResult alternativePathSearch(SearchEngineData<Algorithm> &search_engine_data,
const Facade &facade,
const PhantomNodes &phantom_node_pair,
unsigned number_of_alternatives)
{
Parameters parameters = parametersFromRequest(phantom_node_pair);
const auto max_number_of_alternatives = number_of_alternatives;
const auto max_number_of_alternatives_to_unpack =
parameters.kAlternativesToUnpackFactor * max_number_of_alternatives;
BOOST_ASSERT(max_number_of_alternatives > 0);
BOOST_ASSERT(max_number_of_alternatives_to_unpack >= max_number_of_alternatives);
const Partition &partition = facade.GetMultiLevelPartition();
// Prepare heaps for usage below. The searches will modify them in-place.
search_engine_data.InitializeOrClearFirstThreadLocalStorage(facade.GetNumberOfNodes(),
facade.GetMaxBorderNodeID() + 1);
Heap &forward_heap = *search_engine_data.forward_heap_1;
Heap &reverse_heap = *search_engine_data.reverse_heap_1;
// Do forward and backward search, save search space overlap as via candidates.
auto candidate_vias =
makeCandidateVias(search_engine_data, facade, phantom_node_pair, parameters);
const auto by_weight = [](const auto &lhs, const auto &rhs) { return lhs.weight < rhs.weight; };
auto shortest_path_via_it =
std::min_element(begin(candidate_vias), end(candidate_vias), by_weight);
const auto has_shortest_path = shortest_path_via_it != end(candidate_vias) &&
shortest_path_via_it->node != SPECIAL_NODEID &&
shortest_path_via_it->weight != INVALID_EDGE_WEIGHT;
// Care needs to be taken to meet the call sites post condition.
// We must return at least one route, even if it's an invalid one.
if (!has_shortest_path)
{
InternalRouteResult invalid;
invalid.shortest_path_weight = INVALID_EDGE_WEIGHT;
invalid.segment_end_coordinates = {phantom_node_pair};
return invalid;
}
NodeID shortest_path_via = shortest_path_via_it->node;
EdgeWeight shortest_path_weight = shortest_path_via_it->weight;
const double duration_estimation = shortest_path_weight / facade.GetWeightMultiplier();
parameters.kAtMostLongerBy = getLongerByFactorBasedOnDuration(duration_estimation);
// Filters via candidate nodes with heuristics
// Note: filter pipeline below only makes range smaller; no need to erase items
// from the vector when we can mutate in-place and for filtering adjust iterators.
auto it = end(candidate_vias);
it = filterViaCandidatesByUniqueNodeIds(begin(candidate_vias), it);
it = filterViaCandidatesByRoadImportance(begin(candidate_vias), it, facade);
it = filterViaCandidatesByStretch(begin(candidate_vias), it, shortest_path_weight, parameters);
// Pre-rank by weight; sharing filtering below then discards by similarity.
std::sort(begin(candidate_vias), it, [](const auto lhs, const auto rhs) {
return lhs.weight < rhs.weight;
});
// Filtered and ranked candidate range
const auto candidate_vias_first = begin(candidate_vias);
const auto candidate_vias_last = it;
const auto number_of_candidate_vias = candidate_vias_last - candidate_vias_first;
// Reconstruct packed paths from the heaps.
// The recursive path unpacking below destructs heaps.
// We need to save all packed paths from the heaps upfront.
const auto extract_packed_path_from_heaps = [&](WeightedViaNode via) {
auto packed_path = retrievePackedPathFromHeap(forward_heap, reverse_heap, via.node);
return WeightedViaNodePackedPath{std::move(via), std::move(packed_path)};
};
std::vector<WeightedViaNodePackedPath> weighted_packed_paths;
weighted_packed_paths.reserve(1 + number_of_candidate_vias);
// Store shortest path
WeightedViaNode shortest_path_weighted_via{shortest_path_via, shortest_path_weight};
weighted_packed_paths.push_back(extract_packed_path_from_heaps(shortest_path_weighted_via));
const auto last_filtered = filterViaCandidatesByViaNotOnPath(
weighted_packed_paths[0], candidate_vias_first + 1, candidate_vias_last);
// Store all alternative packed paths (if there are any).
auto into = std::back_inserter(weighted_packed_paths);
std::transform(begin(candidate_vias) + 1, last_filtered, into, extract_packed_path_from_heaps);
// Filter packed paths with heuristics
auto alternative_paths_last = end(weighted_packed_paths);
alternative_paths_last = filterPackedPathsByLocalOptimality(weighted_packed_paths[0],
forward_heap, // paths for s, via
reverse_heap, // paths for via, t
begin(weighted_packed_paths) + 1,
alternative_paths_last,
parameters);
alternative_paths_last = filterPackedPathsByCellSharing(
begin(weighted_packed_paths), alternative_paths_last, partition, parameters);
BOOST_ASSERT(weighted_packed_paths.size() >= 1);
const auto number_of_filtered_alternative_paths = std::min(
static_cast<std::size_t>(max_number_of_alternatives_to_unpack),
static_cast<std::size_t>(alternative_paths_last - (begin(weighted_packed_paths) + 1)));
const auto paths_first = begin(weighted_packed_paths);
const auto paths_last = begin(weighted_packed_paths) + 1 + number_of_filtered_alternative_paths;
const auto number_of_packed_paths = paths_last - paths_first;
std::vector<WeightedViaNodeUnpackedPath> unpacked_paths;
unpacked_paths.reserve(number_of_packed_paths);
// Note: re-uses (read: destroys) heaps; we don't need them from here on anyway.
unpackPackedPaths(paths_first,
paths_last,
std::back_inserter(unpacked_paths),
search_engine_data,
facade,
phantom_node_pair);
//
// Filter and rank a second time. This time instead of being fast and doing
// heuristics on the packed path only we now have the detailed unpacked path.
//
auto unpacked_paths_last = end(unpacked_paths);
unpacked_paths_last = filterUnpackedPathsBySharing(
begin(unpacked_paths), end(unpacked_paths), facade, parameters);
const auto unpacked_paths_first = begin(unpacked_paths);
const auto number_of_unpacked_paths =
std::min(static_cast<std::size_t>(max_number_of_alternatives) + 1,
static_cast<std::size_t>(unpacked_paths_last - unpacked_paths_first));
BOOST_ASSERT(number_of_unpacked_paths >= 1);
unpacked_paths_last = unpacked_paths_first + number_of_unpacked_paths;
//
// Annotate the unpacked path and transform to proper internal route result.
//
std::vector<InternalRouteResult> routes;
routes.reserve(number_of_unpacked_paths);
const auto unpacked_path_to_route = [&](const WeightedViaNodeUnpackedPath &path) {
return extractRoute(facade, path.via.weight, phantom_node_pair, path.nodes, path.edges);
};
std::transform(unpacked_paths_first,
unpacked_paths_last,
std::back_inserter(routes),
unpacked_path_to_route);
BOOST_ASSERT(routes.size() >= 1);
// Only now that we annotated the routes do we have their actual duration.
const auto routes_first = begin(routes);
auto routes_last = end(routes);
if (routes.size() > 1)
{
parameters.kAtMostLongerBy = getLongerByFactorBasedOnDuration(routes_first->duration());
routes_last = filterAnnotatedRoutesByStretch(
routes_first + 1, routes_last, *routes_first, parameters);
routes.erase(routes_last, end(routes));
}
BOOST_ASSERT(routes.size() >= 1);
return InternalManyRoutesResult{std::move(routes)};
}
} // namespace routing_algorithms
} // namespace engine
} // namespace osrm