128 lines
5.3 KiB
C++
128 lines
5.3 KiB
C++
/*
|
|
open source routing machine
|
|
Copyright (C) Dennis Luxen, others 2010
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU AFFERO General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Affero General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
or see http://www.gnu.org/licenses/agpl.txt.
|
|
*/
|
|
|
|
#ifndef DOUGLASPEUCKER_H_
|
|
#define DOUGLASPEUCKER_H_
|
|
|
|
#include <cfloat>
|
|
#include "../DataStructures/SimpleStack.h"
|
|
|
|
/*This class object computes the bitvector of indicating generalized input points
|
|
* according to the (Ramer-)Douglas-Peucker algorithm.
|
|
*
|
|
* Input is vector of pairs. Each pair consists of the point information and a bit
|
|
* indicating if the points is present in the generalization.
|
|
* Note: points may also be pre-selected*/
|
|
|
|
//These thresholds are more or less heuristically chosen.
|
|
static double DouglasPeuckerThresholds[19] = { 10240000., 5120000., 2560000., 1280000., 640000., 320000., 160000., 80000., 40000., 20000., 10000., 5000., 2400., 1200., 200, 16, 6, 3., 1. };
|
|
|
|
template<class PointT>
|
|
class DouglasPeucker {
|
|
private:
|
|
typedef std::pair<std::size_t, std::size_t> PairOfPoints;
|
|
//Stack to simulate the recursion
|
|
std::stack<PairOfPoints > recursionStack;
|
|
|
|
double ComputeDistanceOfPointToLine(const _Coordinate& inputPoint, const _Coordinate& source, const _Coordinate& target) {
|
|
double r;
|
|
const double x = (double)inputPoint.lat;
|
|
const double y = (double)inputPoint.lon;
|
|
const double a = (double)source.lat;
|
|
const double b = (double)source.lon;
|
|
const double c = (double)target.lat;
|
|
const double d = (double)target.lon;
|
|
double p,q,mX,nY;
|
|
if(c != a) {
|
|
const double m = (d-b)/(c-a); // slope
|
|
// Projection of (x,y) on line joining (a,b) and (c,d)
|
|
p = ((x + (m*y)) + (m*m*a - m*b))/(1 + m*m);
|
|
q = b + m*(p - a);
|
|
} else {
|
|
p = c;
|
|
q = y;
|
|
}
|
|
nY = (d*p - c*q)/(a*d - b*c);
|
|
mX = (p - nY*a)/c;// These values are actually n/m+n and m/m+n , we neednot calculate the values of m an n as we are just interested in the ratio
|
|
r = mX;
|
|
if(r<=0){
|
|
return ((b - y)*(b - y) + (a - x)*(a - x));
|
|
}
|
|
else if(r >= 1){
|
|
return ((d - y)*(d - y) + (c - x)*(c - x));
|
|
|
|
}
|
|
// point lies in between
|
|
return (p-x)*(p-x) + (q-y)*(q-y);
|
|
}
|
|
|
|
public:
|
|
void Run(std::vector<PointT> & inputVector, const unsigned zoomLevel) {
|
|
{
|
|
assert(zoomLevel < 19);
|
|
assert(1 < inputVector.size());
|
|
std::size_t leftBorderOfRange = 0;
|
|
std::size_t rightBorderOfRange = 1;
|
|
//Sweep linerarily over array and identify those ranges that need to be checked
|
|
// recursionStack.hint(inputVector.size());
|
|
do {
|
|
assert(inputVector[leftBorderOfRange].necessary);
|
|
assert(inputVector[inputVector.size()-1].necessary);
|
|
|
|
if(inputVector[rightBorderOfRange].necessary) {
|
|
recursionStack.push(std::make_pair(leftBorderOfRange, rightBorderOfRange));
|
|
leftBorderOfRange = rightBorderOfRange;
|
|
}
|
|
++rightBorderOfRange;
|
|
} while( rightBorderOfRange < inputVector.size());
|
|
}
|
|
while(!recursionStack.empty()) {
|
|
//pop next element
|
|
const PairOfPoints pair = recursionStack.top();
|
|
recursionStack.pop();
|
|
assert(inputVector[pair.first].necessary);
|
|
assert(inputVector[pair.second].necessary);
|
|
assert(pair.second < inputVector.size());
|
|
assert(pair.first < pair.second);
|
|
double maxDistance = -DBL_MAX;
|
|
std::size_t indexOfFarthestElement = pair.second;
|
|
//find index idx of element with maxDistance
|
|
for(std::size_t i = pair.first+1; i < pair.second; ++i){
|
|
double distance = std::fabs(ComputeDistanceOfPointToLine(inputVector[i].location, inputVector[pair.first].location, inputVector[pair.second].location));
|
|
if(distance > DouglasPeuckerThresholds[zoomLevel] && distance > maxDistance) {
|
|
indexOfFarthestElement = i;
|
|
maxDistance = distance;
|
|
}
|
|
}
|
|
if (maxDistance > DouglasPeuckerThresholds[zoomLevel]) {
|
|
// mark idx as necessary
|
|
inputVector[indexOfFarthestElement].necessary = true;
|
|
if (1 < indexOfFarthestElement - pair.first) {
|
|
recursionStack.push(std::make_pair(pair.first, indexOfFarthestElement) );
|
|
}
|
|
if (1 < pair.second - indexOfFarthestElement)
|
|
recursionStack.push(std::make_pair(indexOfFarthestElement, pair.second) );
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
#endif /* DOUGLASPEUCKER_H_ */
|