549 lines
25 KiB
C++
549 lines
25 KiB
C++
#ifndef OSRM_EXTRACTOR_GUIDANCE_INTERSECTION_HANDLER_HPP_
|
|
#define OSRM_EXTRACTOR_GUIDANCE_INTERSECTION_HANDLER_HPP_
|
|
|
|
#include "extractor/guidance/intersection.hpp"
|
|
#include "extractor/guidance/intersection_generator.hpp"
|
|
#include "extractor/guidance/node_based_graph_walker.hpp"
|
|
#include "extractor/query_node.hpp"
|
|
#include "extractor/suffix_table.hpp"
|
|
|
|
#include "util/coordinate_calculation.hpp"
|
|
#include "util/guidance/name_announcements.hpp"
|
|
#include "util/name_table.hpp"
|
|
#include "util/node_based_graph.hpp"
|
|
|
|
#include <algorithm>
|
|
#include <cstddef>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include <boost/optional.hpp>
|
|
|
|
namespace osrm
|
|
{
|
|
namespace extractor
|
|
{
|
|
namespace guidance
|
|
{
|
|
|
|
// Intersection handlers deal with all issues related to intersections.
|
|
// They assign appropriate turn operations to the TurnOperations.
|
|
// This base class provides both the interface and implementations for
|
|
// common functions.
|
|
class IntersectionHandler
|
|
{
|
|
public:
|
|
IntersectionHandler(const util::NodeBasedDynamicGraph &node_based_graph,
|
|
const std::vector<util::Coordinate> &coordinates,
|
|
const util::NameTable &name_table,
|
|
const SuffixTable &street_name_suffix_table,
|
|
const IntersectionGenerator &intersection_generator);
|
|
|
|
virtual ~IntersectionHandler() = default;
|
|
|
|
// check whether the handler can actually handle the intersection
|
|
virtual bool
|
|
canProcess(const NodeID nid, const EdgeID via_eid, const Intersection &intersection) const = 0;
|
|
|
|
// handle and process the intersection
|
|
virtual Intersection
|
|
operator()(const NodeID nid, const EdgeID via_eid, Intersection intersection) const = 0;
|
|
|
|
protected:
|
|
const util::NodeBasedDynamicGraph &node_based_graph;
|
|
const std::vector<util::Coordinate> &coordinates;
|
|
const util::NameTable &name_table;
|
|
const SuffixTable &street_name_suffix_table;
|
|
const IntersectionGenerator &intersection_generator;
|
|
const NodeBasedGraphWalker graph_walker; // for skipping traffic signal, distances etc.
|
|
|
|
// Decide on a basic turn types
|
|
TurnType::Enum findBasicTurnType(const EdgeID via_edge, const ConnectedRoad &candidate) const;
|
|
|
|
// Find the most obvious turn to follow. The function returns an index into the intersection
|
|
// determining whether there is a road that can be seen as obvious turn in the presence of many
|
|
// other possible turns. The function will consider road categories and other inputs like the
|
|
// turn angles.
|
|
template <typename IntersectionType> // works with Intersection and IntersectionView
|
|
std::size_t findObviousTurn(const EdgeID via_edge, const IntersectionType &intersection) const;
|
|
|
|
// Obvious turns can still take multiple forms. This function looks at the turn onto a road
|
|
// candidate when coming from a via_edge and determines the best instruction to emit.
|
|
// `through_street` indicates if the street turned onto is a through sreet (think mergees and
|
|
// similar)
|
|
TurnInstruction getInstructionForObvious(const std::size_t number_of_candidates,
|
|
const EdgeID via_edge,
|
|
const bool through_street,
|
|
const ConnectedRoad &candidate) const;
|
|
|
|
// Treating potential forks
|
|
void assignFork(const EdgeID via_edge, ConnectedRoad &left, ConnectedRoad &right) const;
|
|
void assignFork(const EdgeID via_edge,
|
|
ConnectedRoad &left,
|
|
ConnectedRoad ¢er,
|
|
ConnectedRoad &right) const;
|
|
|
|
// Trivial Turns use findBasicTurnType and getTurnDirection as only criteria
|
|
void assignTrivialTurns(const EdgeID via_eid,
|
|
Intersection &intersection,
|
|
const std::size_t begin,
|
|
const std::size_t end) const;
|
|
|
|
// Checks the intersection for a through street connected to `intersection[index]`
|
|
bool isThroughStreet(const std::size_t index, const Intersection &intersection) const;
|
|
|
|
// See `getNextIntersection`
|
|
struct IntersectionViewAndNode final
|
|
{
|
|
IntersectionView intersection; // < actual intersection
|
|
NodeID node; // < node at this intersection
|
|
};
|
|
|
|
// Skips over artificial intersections i.e. traffic lights, barriers etc.
|
|
// Returns the next non-artificial intersection and its node in the node based
|
|
// graph if an intersection could be found or none otherwise.
|
|
//
|
|
// a ... tl ... b .. c
|
|
// .
|
|
// .
|
|
// d
|
|
//
|
|
// ^ at
|
|
// ^ via
|
|
//
|
|
// For this scenario returns intersection at `b` and `b`.
|
|
boost::optional<IntersectionHandler::IntersectionViewAndNode>
|
|
getNextIntersection(const NodeID at, const EdgeID via) const;
|
|
};
|
|
|
|
// Impl.
|
|
|
|
template <typename IntersectionType> // works with Intersection and IntersectionView
|
|
std::size_t IntersectionHandler::findObviousTurn(const EdgeID via_edge,
|
|
const IntersectionType &intersection) const
|
|
{
|
|
using Road = typename IntersectionType::value_type;
|
|
using EdgeData = osrm::util::NodeBasedDynamicGraph::EdgeData;
|
|
using osrm::util::angularDeviation;
|
|
|
|
// no obvious road
|
|
if (intersection.size() == 1)
|
|
return 0;
|
|
|
|
// a single non u-turn is obvious
|
|
if (intersection.size() == 2)
|
|
return 1;
|
|
|
|
const EdgeData &in_way_data = node_based_graph.GetEdgeData(via_edge);
|
|
|
|
// the strategy for picking the most obvious turn involves deciding between
|
|
// an overall best candidate and a best candidate that shares the same name
|
|
// as the in road, i.e. a continue road
|
|
std::size_t best_option = 0;
|
|
double best_option_deviation = 180;
|
|
std::size_t best_continue = 0;
|
|
double best_continue_deviation = 180;
|
|
|
|
/* helper functions */
|
|
const auto IsContinueRoad = [&](const EdgeData &way_data) {
|
|
return !util::guidance::requiresNameAnnounced(
|
|
in_way_data.name_id, way_data.name_id, name_table, street_name_suffix_table);
|
|
};
|
|
auto sameOrHigherPriority = [&in_way_data](const auto &way_data) {
|
|
return way_data.road_classification.GetPriority() <=
|
|
in_way_data.road_classification.GetPriority();
|
|
};
|
|
auto IsLowPriority = [](const auto &way_data) {
|
|
return way_data.road_classification.IsLowPriorityRoadClass();
|
|
};
|
|
// These two Compare functions are used for sifting out best option and continue
|
|
// candidates by evaluating all the ways in an intersection by what they share
|
|
// with the in way. Ideal candidates are of similar road class with the in way
|
|
// and are require relatively straight turns.
|
|
const auto RoadCompare = [&](const auto &lhs, const auto &rhs) {
|
|
const EdgeData &lhs_data = node_based_graph.GetEdgeData(lhs.eid);
|
|
const EdgeData &rhs_data = node_based_graph.GetEdgeData(rhs.eid);
|
|
const auto lhs_deviation = angularDeviation(lhs.angle, STRAIGHT_ANGLE);
|
|
const auto rhs_deviation = angularDeviation(rhs.angle, STRAIGHT_ANGLE);
|
|
|
|
const bool rhs_same_classification =
|
|
rhs_data.road_classification == in_way_data.road_classification;
|
|
const bool lhs_same_classification =
|
|
lhs_data.road_classification == in_way_data.road_classification;
|
|
const bool rhs_same_or_higher_priority = sameOrHigherPriority(rhs_data);
|
|
const bool rhs_low_priority = IsLowPriority(rhs_data);
|
|
const bool lhs_same_or_higher_priority = sameOrHigherPriority(lhs_data);
|
|
const bool lhs_low_priority = IsLowPriority(lhs_data);
|
|
auto left_tie = std::tie(lhs.entry_allowed,
|
|
lhs_same_or_higher_priority,
|
|
rhs_low_priority,
|
|
rhs_deviation,
|
|
lhs_same_classification);
|
|
auto right_tie = std::tie(rhs.entry_allowed,
|
|
rhs_same_or_higher_priority,
|
|
lhs_low_priority,
|
|
lhs_deviation,
|
|
rhs_same_classification);
|
|
return left_tie > right_tie;
|
|
};
|
|
const auto RoadCompareSameName = [&](const auto &lhs, const auto &rhs) {
|
|
const EdgeData &lhs_data = node_based_graph.GetEdgeData(lhs.eid);
|
|
const EdgeData &rhs_data = node_based_graph.GetEdgeData(rhs.eid);
|
|
const auto lhs_continues = IsContinueRoad(lhs_data);
|
|
const auto rhs_continues = IsContinueRoad(rhs_data);
|
|
const auto left_tie = std::tie(lhs.entry_allowed, lhs_continues);
|
|
const auto right_tie = std::tie(rhs.entry_allowed, rhs_continues);
|
|
return left_tie > right_tie || (left_tie == right_tie && RoadCompare(lhs, rhs));
|
|
};
|
|
|
|
auto best_option_it = std::min_element(begin(intersection), end(intersection), RoadCompare);
|
|
|
|
// min element should only return end() when vector is empty
|
|
BOOST_ASSERT(best_option_it != end(intersection));
|
|
|
|
best_option = std::distance(begin(intersection), best_option_it);
|
|
best_option_deviation = angularDeviation(intersection[best_option].angle, STRAIGHT_ANGLE);
|
|
const auto &best_option_data = node_based_graph.GetEdgeData(intersection[best_option].eid);
|
|
|
|
// Unless the in way is also low priority, it is generally undesirable to
|
|
// indicate that a low priority road is obvious
|
|
if (IsLowPriority(best_option_data) &&
|
|
best_option_data.road_classification != in_way_data.road_classification)
|
|
{
|
|
best_option = 0;
|
|
best_option_deviation = 180;
|
|
}
|
|
|
|
// double check if the way with the lowest deviation from straight is still be better choice
|
|
const auto straightest = intersection.findClosestTurn(STRAIGHT_ANGLE);
|
|
if (straightest != best_option_it)
|
|
{
|
|
const EdgeData &straightest_data = node_based_graph.GetEdgeData(straightest->eid);
|
|
double straightest_data_deviation = angularDeviation(straightest->angle, STRAIGHT_ANGLE);
|
|
const auto deviation_diff =
|
|
std::abs(best_option_deviation - straightest_data_deviation) > FUZZY_ANGLE_DIFFERENCE;
|
|
const auto not_ramp_class = !straightest_data.road_classification.IsRampClass();
|
|
const auto not_link_class = !straightest_data.road_classification.IsLinkClass();
|
|
if (deviation_diff && !IsLowPriority(straightest_data) && not_ramp_class &&
|
|
not_link_class && !IsContinueRoad(best_option_data))
|
|
{
|
|
best_option = std::distance(begin(intersection), straightest);
|
|
best_option_deviation =
|
|
angularDeviation(intersection[best_option].angle, STRAIGHT_ANGLE);
|
|
}
|
|
}
|
|
|
|
// No non-low priority roads? Declare no obvious turn
|
|
if (best_option == 0)
|
|
return 0;
|
|
|
|
auto best_continue_it =
|
|
std::min_element(begin(intersection), end(intersection), RoadCompareSameName);
|
|
const auto best_continue_data = node_based_graph.GetEdgeData(best_continue_it->eid);
|
|
if (IsContinueRoad(best_continue_data) ||
|
|
(in_way_data.name_id == EMPTY_NAMEID && best_continue_data.name_id == EMPTY_NAMEID))
|
|
{
|
|
best_continue = std::distance(begin(intersection), best_continue_it);
|
|
best_continue_deviation =
|
|
angularDeviation(intersection[best_continue].angle, STRAIGHT_ANGLE);
|
|
}
|
|
|
|
// if the best angle is going straight but the road is turning, declare no obvious turn
|
|
if (0 != best_continue && best_option != best_continue &&
|
|
best_option_deviation < MAXIMAL_ALLOWED_NO_TURN_DEVIATION &&
|
|
node_based_graph.GetEdgeData(intersection[best_continue].eid).road_classification ==
|
|
best_option_data.road_classification)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
// get a count of number of ways from that intersection that qualify to have
|
|
// continue instruction because they share a name with the approaching way
|
|
const std::int64_t continue_count =
|
|
count_if(++begin(intersection), end(intersection), [&](const auto &way) {
|
|
return IsContinueRoad(node_based_graph.GetEdgeData(way.eid));
|
|
});
|
|
const std::int64_t continue_count_valid =
|
|
count_if(++begin(intersection), end(intersection), [&](const auto &way) {
|
|
return IsContinueRoad(node_based_graph.GetEdgeData(way.eid)) && way.entry_allowed;
|
|
});
|
|
|
|
// checks if continue candidates are sharp turns
|
|
const bool all_continues_are_narrow = [&]() {
|
|
return std::count_if(begin(intersection), end(intersection), [&](const Road &road) {
|
|
const EdgeData &road_data = node_based_graph.GetEdgeData(road.eid);
|
|
const double &road_angle = angularDeviation(road.angle, STRAIGHT_ANGLE);
|
|
return IsContinueRoad(road_data) && (road_angle < NARROW_TURN_ANGLE);
|
|
}) == continue_count;
|
|
}();
|
|
|
|
// return true if the best_option candidate is more promising than the best_continue candidate
|
|
// otherwise return false, the best_continue candidate is more promising
|
|
const auto best_over_best_continue = [&]() {
|
|
// no continue road exists
|
|
if (best_continue == 0)
|
|
return true;
|
|
|
|
// we have multiple continues and not all are narrow. This suggests that
|
|
// the continue candidates are ambiguous
|
|
if (!all_continues_are_narrow && (continue_count >= 2 && intersection.size() >= 4))
|
|
return true;
|
|
|
|
// if the best continue is not narrow and we also have at least 2 possible choices, the
|
|
// intersection size does not matter anymore
|
|
if (continue_count_valid >= 2 && best_continue_deviation >= 2 * NARROW_TURN_ANGLE)
|
|
return true;
|
|
|
|
// continue data now most certainly exists
|
|
const auto &continue_data = node_based_graph.GetEdgeData(intersection[best_continue].eid);
|
|
|
|
// best_continue is obvious by road class
|
|
if (obviousByRoadClass(in_way_data.road_classification,
|
|
continue_data.road_classification,
|
|
best_option_data.road_classification))
|
|
return false;
|
|
|
|
// best_option is obvious by road class
|
|
if (obviousByRoadClass(in_way_data.road_classification,
|
|
best_option_data.road_classification,
|
|
continue_data.road_classification))
|
|
return true;
|
|
|
|
// the best_option deviation is very straight and not a ramp
|
|
if (best_option_deviation < best_continue_deviation &&
|
|
best_option_deviation < FUZZY_ANGLE_DIFFERENCE &&
|
|
!best_option_data.road_classification.IsRampClass())
|
|
return true;
|
|
|
|
// the continue road is of a lower priority, while the road continues on the same priority
|
|
// with a better angle
|
|
if (best_option_deviation < best_continue_deviation &&
|
|
in_way_data.road_classification == best_option_data.road_classification &&
|
|
continue_data.road_classification.GetPriority() >
|
|
best_option_data.road_classification.GetPriority())
|
|
return true;
|
|
|
|
return false;
|
|
}();
|
|
|
|
if (best_over_best_continue)
|
|
{
|
|
// Find left/right deviation
|
|
// skipping over service roads
|
|
const std::size_t left_index = [&]() {
|
|
const auto index_candidate = (best_option + 1) % intersection.size();
|
|
if (index_candidate == 0)
|
|
return index_candidate;
|
|
const auto &candidate_data =
|
|
node_based_graph.GetEdgeData(intersection[index_candidate].eid);
|
|
if (obviousByRoadClass(in_way_data.road_classification,
|
|
best_option_data.road_classification,
|
|
candidate_data.road_classification))
|
|
return (index_candidate + 1) % intersection.size();
|
|
else
|
|
return index_candidate;
|
|
|
|
}();
|
|
const auto right_index = [&]() {
|
|
BOOST_ASSERT(best_option > 0);
|
|
const auto index_candidate = best_option - 1;
|
|
if (index_candidate == 0)
|
|
return index_candidate;
|
|
const auto candidate_data =
|
|
node_based_graph.GetEdgeData(intersection[index_candidate].eid);
|
|
if (obviousByRoadClass(in_way_data.road_classification,
|
|
best_option_data.road_classification,
|
|
candidate_data.road_classification))
|
|
return index_candidate - 1;
|
|
else
|
|
return index_candidate;
|
|
}();
|
|
|
|
const double left_deviation =
|
|
angularDeviation(intersection[left_index].angle, STRAIGHT_ANGLE);
|
|
const double right_deviation =
|
|
angularDeviation(intersection[right_index].angle, STRAIGHT_ANGLE);
|
|
|
|
// return best_option candidate if it is nearly straight and distinct from the nearest other
|
|
// out
|
|
// way
|
|
if (best_option_deviation < MAXIMAL_ALLOWED_NO_TURN_DEVIATION &&
|
|
std::min(left_deviation, right_deviation) > FUZZY_ANGLE_DIFFERENCE)
|
|
return best_option;
|
|
|
|
const auto &left_data = node_based_graph.GetEdgeData(intersection[left_index].eid);
|
|
const auto &right_data = node_based_graph.GetEdgeData(intersection[right_index].eid);
|
|
|
|
const bool obvious_to_left =
|
|
left_index == 0 || obviousByRoadClass(in_way_data.road_classification,
|
|
best_option_data.road_classification,
|
|
left_data.road_classification);
|
|
const bool obvious_to_right =
|
|
right_index == 0 || obviousByRoadClass(in_way_data.road_classification,
|
|
best_option_data.road_classification,
|
|
right_data.road_classification);
|
|
|
|
// if the best_option turn isn't narrow, but there is a nearly straight turn, we don't
|
|
// consider the
|
|
// turn obvious
|
|
const auto check_narrow = [&intersection, best_option_deviation](const std::size_t index) {
|
|
return angularDeviation(intersection[index].angle, STRAIGHT_ANGLE) <=
|
|
FUZZY_ANGLE_DIFFERENCE &&
|
|
(best_option_deviation > NARROW_TURN_ANGLE || intersection[index].entry_allowed);
|
|
};
|
|
|
|
// other narrow turns?
|
|
if (check_narrow(right_index) && !obvious_to_right)
|
|
return 0;
|
|
|
|
if (check_narrow(left_index) && !obvious_to_left)
|
|
return 0;
|
|
|
|
// checks if a given way in the intersection is distinct enough from the best_option
|
|
// candidate
|
|
const auto isDistinct = [&](const std::size_t index, const double deviation) {
|
|
/*
|
|
If the neighbor is not possible to enter, we allow for a lower
|
|
distinction rate. If the road category is smaller, its also adjusted. Only
|
|
roads of the same priority require the full distinction ratio.
|
|
*/
|
|
const auto &best_option_data =
|
|
node_based_graph.GetEdgeData(intersection[best_option].eid);
|
|
const auto adjusted_distinction_ratio = [&]() {
|
|
// not allowed competitors are easily distinct
|
|
if (!intersection[index].entry_allowed)
|
|
return 0.7 * DISTINCTION_RATIO;
|
|
// a bit less obvious are road classes
|
|
else if (in_way_data.road_classification == best_option_data.road_classification &&
|
|
best_option_data.road_classification.GetPriority() <
|
|
node_based_graph.GetEdgeData(intersection[index].eid)
|
|
.road_classification.GetPriority())
|
|
return 0.8 * DISTINCTION_RATIO;
|
|
// if road classes are the same, we use the full ratio
|
|
else
|
|
return DISTINCTION_RATIO;
|
|
}();
|
|
return index == 0 || deviation / best_option_deviation >= adjusted_distinction_ratio ||
|
|
(deviation <= NARROW_TURN_ANGLE && !intersection[index].entry_allowed);
|
|
};
|
|
|
|
const bool distinct_to_left = isDistinct(left_index, left_deviation);
|
|
const bool distinct_to_right = isDistinct(right_index, right_deviation);
|
|
// Well distinct turn that is nearly straight
|
|
if ((distinct_to_left || obvious_to_left) && (distinct_to_right || obvious_to_right))
|
|
return best_option;
|
|
}
|
|
else
|
|
{
|
|
const auto &continue_data = node_based_graph.GetEdgeData(intersection[best_continue].eid);
|
|
if (std::abs(best_continue_deviation) < 1)
|
|
return best_continue;
|
|
|
|
// check if any other similar best continues exist
|
|
std::size_t i, last = intersection.size();
|
|
for (i = 1; i < last; ++i)
|
|
{
|
|
if (i == best_continue || !intersection[i].entry_allowed)
|
|
continue;
|
|
|
|
const auto &turn_data = node_based_graph.GetEdgeData(intersection[i].eid);
|
|
const bool is_obvious_by_road_class =
|
|
obviousByRoadClass(in_way_data.road_classification,
|
|
continue_data.road_classification,
|
|
turn_data.road_classification);
|
|
|
|
// if the main road is obvious by class, we ignore the current road as a potential
|
|
// prevention of obviousness
|
|
if (is_obvious_by_road_class)
|
|
continue;
|
|
|
|
// continuation could be grouped with a straight turn and the turning road is a ramp
|
|
if (turn_data.road_classification.IsRampClass() &&
|
|
best_continue_deviation < GROUP_ANGLE &&
|
|
!continue_data.road_classification.IsRampClass())
|
|
continue;
|
|
|
|
// perfectly straight turns prevent obviousness
|
|
const auto turn_deviation = angularDeviation(intersection[i].angle, STRAIGHT_ANGLE);
|
|
if (turn_deviation < FUZZY_ANGLE_DIFFERENCE)
|
|
return 0;
|
|
|
|
const auto deviation_ratio = turn_deviation / best_continue_deviation;
|
|
|
|
// in comparison to normal deviations, a continue road can offer a smaller distinction
|
|
// ratio. Other roads close to the turn angle are not as obvious, if one road continues.
|
|
if (deviation_ratio < DISTINCTION_RATIO / 1.5)
|
|
return 0;
|
|
|
|
/* in comparison to another continuing road, we need a better distinction. This prevents
|
|
situations where the turn is probably less obvious. An example are places that have a
|
|
road with the same name entering/exiting:
|
|
|
|
d
|
|
/
|
|
/
|
|
a -- b
|
|
\
|
|
\
|
|
c
|
|
*/
|
|
|
|
const auto same_name = !util::guidance::requiresNameAnnounced(
|
|
turn_data.name_id, continue_data.name_id, name_table, street_name_suffix_table);
|
|
|
|
if (same_name && deviation_ratio < 1.5 * DISTINCTION_RATIO)
|
|
return 0;
|
|
}
|
|
|
|
// Segregated intersections can result in us finding an obvious turn, even though its only
|
|
// obvious due to a very short segment in between. So if the segment coming in is very
|
|
// short, we check the previous intersection for other continues in the opposite bearing.
|
|
const auto node_at_intersection = node_based_graph.GetTarget(via_edge);
|
|
|
|
const double constexpr MAX_COLLAPSE_DISTANCE = 30;
|
|
const auto distance_at_u_turn = intersection[0].segment_length;
|
|
if (distance_at_u_turn < MAX_COLLAPSE_DISTANCE)
|
|
{
|
|
// this request here actually goes against the direction of the ingoing edgeid. This can
|
|
// even reverse the direction. Since we don't want to compute actual turns but simply
|
|
// try to find whether there is a turn going to the opposite direction of our obvious
|
|
// turn, this should be alright.
|
|
const auto previous_intersection = [&]() -> IntersectionView {
|
|
const auto parameters = intersection_generator.SkipDegreeTwoNodes(
|
|
node_at_intersection, intersection[0].eid);
|
|
if (node_based_graph.GetTarget(parameters.via_eid) == node_at_intersection)
|
|
return {};
|
|
return intersection_generator.GetConnectedRoads(parameters.nid, parameters.via_eid);
|
|
}();
|
|
|
|
if (!previous_intersection.empty())
|
|
{
|
|
const auto continue_road = intersection[best_continue];
|
|
for (const auto &comparison_road : previous_intersection)
|
|
{
|
|
// since we look at the intersection in the wrong direction, a similar angle
|
|
// actually represents a near 180 degree different in bearings between the two
|
|
// roads. So if there is a road that is enterable in the opposite direction just
|
|
// prior, a turn is not obvious
|
|
const auto &turn_data = node_based_graph.GetEdgeData(comparison_road.eid);
|
|
if (angularDeviation(comparison_road.angle, STRAIGHT_ANGLE) > GROUP_ANGLE &&
|
|
angularDeviation(comparison_road.angle, continue_road.angle) <
|
|
FUZZY_ANGLE_DIFFERENCE &&
|
|
!turn_data.reversed && continue_data.CanCombineWith(turn_data))
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
return best_continue;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
} // namespace guidance
|
|
} // namespace extractor
|
|
} // namespace osrm
|
|
|
|
#endif /*OSRM_EXTRACTOR_GUIDANCE_INTERSECTION_HANDLER_HPP_*/
|