Currently route results are annotated with additional path information, such as geometries, turn-by-turn steps and other metadata. These annotations are generated if they are not requested or returned in the response. Datasets needed to generate these annotations are loaded and available to the OSRM process even when unused. This commit is a first step towards making the loading of these datasets optional. We refactor the code so that route annotations are only generated if explicitly requested and needed in the response. Specifically, we change the following annotations to be lazily generated: - Turn-by-turn steps - Route Overview geometry - Route segment metadata For example. a /route/v1 request with steps=false&overview=false&annotations=false would no longer call the following data facade methods: - GetOSMNodeIDOfNode - GetTurnInstructionForEdgeID - GetNameIndex - GetNameForID - GetRefForID - GetTurnInstructionForEdgeID - GetClassData - IsLeftHandDriving - GetTravelMode - IsSegregated - PreTurnBearing - PostTurnBearing - HasLaneData - GetLaneData - GetEntryClass Requests that include segment metadata and/or overview geometry but not turn-by-turn instructions will also benefit from this, although there is some interdependency with the step instructions - a call to GetTurnInstructionForEdgeID is still required. Requests for OSM annotations will understandably still need to call GetOSMNodeIDOfNode. Making these changes unlocks the optional loading of data contained in the following OSRM files: - osrm.names - osrm.icd - osrm.nbg_nodes (partial) - osrm.ebg_nodes (partial) - osrm.edges
411 lines
16 KiB
C++
411 lines
16 KiB
C++
#ifndef OSRM_ENGINE_ROUTING_BASE_HPP
|
|
#define OSRM_ENGINE_ROUTING_BASE_HPP
|
|
|
|
#include "guidance/turn_bearing.hpp"
|
|
#include "guidance/turn_instruction.hpp"
|
|
|
|
#include "engine/algorithm.hpp"
|
|
#include "engine/datafacade.hpp"
|
|
#include "engine/internal_route_result.hpp"
|
|
#include "engine/phantom_node.hpp"
|
|
#include "engine/search_engine_data.hpp"
|
|
|
|
#include "util/coordinate_calculation.hpp"
|
|
#include "util/typedefs.hpp"
|
|
|
|
#include <boost/assert.hpp>
|
|
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
|
|
#include <algorithm>
|
|
#include <functional>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <numeric>
|
|
#include <stack>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
namespace osrm
|
|
{
|
|
namespace engine
|
|
{
|
|
|
|
namespace routing_algorithms
|
|
{
|
|
static constexpr bool FORWARD_DIRECTION = true;
|
|
static constexpr bool REVERSE_DIRECTION = false;
|
|
static constexpr bool DO_NOT_FORCE_LOOPS = false;
|
|
|
|
bool needsLoopForward(const PhantomNode &source_phantom, const PhantomNode &target_phantom);
|
|
bool needsLoopBackwards(const PhantomNode &source_phantom, const PhantomNode &target_phantom);
|
|
|
|
bool needsLoopForward(const PhantomNodes &phantoms);
|
|
bool needsLoopBackwards(const PhantomNodes &phantoms);
|
|
|
|
template <typename Heap>
|
|
void insertNodesInHeaps(Heap &forward_heap, Heap &reverse_heap, const PhantomNodes &nodes)
|
|
{
|
|
const auto &source = nodes.source_phantom;
|
|
if (source.IsValidForwardSource())
|
|
{
|
|
forward_heap.Insert(source.forward_segment_id.id,
|
|
-source.GetForwardWeightPlusOffset(),
|
|
source.forward_segment_id.id);
|
|
}
|
|
|
|
if (source.IsValidReverseSource())
|
|
{
|
|
forward_heap.Insert(source.reverse_segment_id.id,
|
|
-source.GetReverseWeightPlusOffset(),
|
|
source.reverse_segment_id.id);
|
|
}
|
|
|
|
const auto &target = nodes.target_phantom;
|
|
if (target.IsValidForwardTarget())
|
|
{
|
|
reverse_heap.Insert(target.forward_segment_id.id,
|
|
target.GetForwardWeightPlusOffset(),
|
|
target.forward_segment_id.id);
|
|
}
|
|
|
|
if (target.IsValidReverseTarget())
|
|
{
|
|
reverse_heap.Insert(target.reverse_segment_id.id,
|
|
target.GetReverseWeightPlusOffset(),
|
|
target.reverse_segment_id.id);
|
|
}
|
|
}
|
|
|
|
template <typename ManyToManyQueryHeap>
|
|
void insertSourceInHeap(ManyToManyQueryHeap &heap, const PhantomNode &phantom_node)
|
|
{
|
|
if (phantom_node.IsValidForwardSource())
|
|
{
|
|
heap.Insert(phantom_node.forward_segment_id.id,
|
|
-phantom_node.GetForwardWeightPlusOffset(),
|
|
{phantom_node.forward_segment_id.id,
|
|
-phantom_node.GetForwardDuration(),
|
|
-phantom_node.GetForwardDistance()});
|
|
}
|
|
if (phantom_node.IsValidReverseSource())
|
|
{
|
|
heap.Insert(phantom_node.reverse_segment_id.id,
|
|
-phantom_node.GetReverseWeightPlusOffset(),
|
|
{phantom_node.reverse_segment_id.id,
|
|
-phantom_node.GetReverseDuration(),
|
|
-phantom_node.GetReverseDistance()});
|
|
}
|
|
}
|
|
|
|
template <typename ManyToManyQueryHeap>
|
|
void insertTargetInHeap(ManyToManyQueryHeap &heap, const PhantomNode &phantom_node)
|
|
{
|
|
if (phantom_node.IsValidForwardTarget())
|
|
{
|
|
heap.Insert(phantom_node.forward_segment_id.id,
|
|
phantom_node.GetForwardWeightPlusOffset(),
|
|
{phantom_node.forward_segment_id.id,
|
|
phantom_node.GetForwardDuration(),
|
|
phantom_node.GetForwardDistance()});
|
|
}
|
|
if (phantom_node.IsValidReverseTarget())
|
|
{
|
|
heap.Insert(phantom_node.reverse_segment_id.id,
|
|
phantom_node.GetReverseWeightPlusOffset(),
|
|
{phantom_node.reverse_segment_id.id,
|
|
phantom_node.GetReverseDuration(),
|
|
phantom_node.GetReverseDistance()});
|
|
}
|
|
}
|
|
|
|
template <typename FacadeT>
|
|
void annotatePath(const FacadeT &facade,
|
|
const PhantomNodes &phantom_node_pair,
|
|
const std::vector<NodeID> &unpacked_nodes,
|
|
const std::vector<EdgeID> &unpacked_edges,
|
|
std::vector<PathData> &unpacked_path)
|
|
{
|
|
BOOST_ASSERT(!unpacked_nodes.empty());
|
|
BOOST_ASSERT(unpacked_nodes.size() == unpacked_edges.size() + 1);
|
|
|
|
const auto source_node_id = unpacked_nodes.front();
|
|
const auto target_node_id = unpacked_nodes.back();
|
|
const bool start_traversed_in_reverse =
|
|
phantom_node_pair.source_phantom.forward_segment_id.id != source_node_id;
|
|
const bool target_traversed_in_reverse =
|
|
phantom_node_pair.target_phantom.forward_segment_id.id != target_node_id;
|
|
|
|
BOOST_ASSERT(phantom_node_pair.source_phantom.forward_segment_id.id == source_node_id ||
|
|
phantom_node_pair.source_phantom.reverse_segment_id.id == source_node_id);
|
|
BOOST_ASSERT(phantom_node_pair.target_phantom.forward_segment_id.id == target_node_id ||
|
|
phantom_node_pair.target_phantom.reverse_segment_id.id == target_node_id);
|
|
|
|
// datastructures to hold extracted data from geometry
|
|
std::vector<NodeID> id_vector;
|
|
std::vector<SegmentWeight> weight_vector;
|
|
std::vector<SegmentDuration> duration_vector;
|
|
std::vector<DatasourceID> datasource_vector;
|
|
|
|
const auto get_segment_geometry = [&](const auto geometry_index) {
|
|
const auto copy = [](auto &vector, const auto range) {
|
|
vector.resize(range.size());
|
|
std::copy(range.begin(), range.end(), vector.begin());
|
|
};
|
|
|
|
if (geometry_index.forward)
|
|
{
|
|
copy(id_vector, facade.GetUncompressedForwardGeometry(geometry_index.id));
|
|
copy(weight_vector, facade.GetUncompressedForwardWeights(geometry_index.id));
|
|
copy(duration_vector, facade.GetUncompressedForwardDurations(geometry_index.id));
|
|
copy(datasource_vector, facade.GetUncompressedForwardDatasources(geometry_index.id));
|
|
}
|
|
else
|
|
{
|
|
copy(id_vector, facade.GetUncompressedReverseGeometry(geometry_index.id));
|
|
copy(weight_vector, facade.GetUncompressedReverseWeights(geometry_index.id));
|
|
copy(duration_vector, facade.GetUncompressedReverseDurations(geometry_index.id));
|
|
copy(datasource_vector, facade.GetUncompressedReverseDatasources(geometry_index.id));
|
|
}
|
|
};
|
|
|
|
auto node_from = unpacked_nodes.begin(), node_last = std::prev(unpacked_nodes.end());
|
|
for (auto edge = unpacked_edges.begin(); node_from != node_last; ++node_from, ++edge)
|
|
{
|
|
const auto &edge_data = facade.GetEdgeData(*edge);
|
|
const auto turn_id = edge_data.turn_id; // edge-based graph edge index
|
|
const auto node_id = *node_from; // edge-based graph node index
|
|
|
|
const auto geometry_index = facade.GetGeometryIndex(node_id);
|
|
get_segment_geometry(geometry_index);
|
|
|
|
BOOST_ASSERT(id_vector.size() > 0);
|
|
BOOST_ASSERT(datasource_vector.size() > 0);
|
|
BOOST_ASSERT(weight_vector.size() + 1 == id_vector.size());
|
|
BOOST_ASSERT(duration_vector.size() + 1 == id_vector.size());
|
|
|
|
const bool is_first_segment = unpacked_path.empty();
|
|
|
|
std::size_t start_index = 0;
|
|
if (is_first_segment)
|
|
{
|
|
unsigned short segment_position = phantom_node_pair.source_phantom.fwd_segment_position;
|
|
if (start_traversed_in_reverse)
|
|
{
|
|
segment_position = weight_vector.size() -
|
|
phantom_node_pair.source_phantom.fwd_segment_position - 1;
|
|
}
|
|
BOOST_ASSERT(segment_position >= 0);
|
|
start_index = static_cast<std::size_t>(segment_position);
|
|
}
|
|
const std::size_t end_index = weight_vector.size();
|
|
|
|
BOOST_ASSERT(start_index < end_index);
|
|
for (std::size_t segment_idx = start_index; segment_idx < end_index; ++segment_idx)
|
|
{
|
|
unpacked_path.push_back(
|
|
PathData{node_id,
|
|
id_vector[segment_idx + 1],
|
|
static_cast<EdgeWeight>(weight_vector[segment_idx]),
|
|
0,
|
|
static_cast<EdgeDuration>(duration_vector[segment_idx]),
|
|
0,
|
|
datasource_vector[segment_idx],
|
|
boost::none});
|
|
}
|
|
BOOST_ASSERT(unpacked_path.size() > 0);
|
|
|
|
const auto turn_duration = facade.GetDurationPenaltyForEdgeID(turn_id);
|
|
const auto turn_weight = facade.GetWeightPenaltyForEdgeID(turn_id);
|
|
|
|
unpacked_path.back().duration_until_turn += turn_duration;
|
|
unpacked_path.back().duration_of_turn = turn_duration;
|
|
unpacked_path.back().weight_until_turn += turn_weight;
|
|
unpacked_path.back().weight_of_turn = turn_weight;
|
|
unpacked_path.back().turn_edge = turn_id;
|
|
}
|
|
|
|
std::size_t start_index = 0, end_index = 0;
|
|
const auto source_geometry_id = facade.GetGeometryIndex(source_node_id).id;
|
|
const auto target_geometry = facade.GetGeometryIndex(target_node_id);
|
|
const auto is_local_path = source_geometry_id == target_geometry.id && unpacked_path.empty();
|
|
|
|
get_segment_geometry(target_geometry);
|
|
|
|
if (target_traversed_in_reverse)
|
|
{
|
|
if (is_local_path)
|
|
{
|
|
start_index =
|
|
weight_vector.size() - phantom_node_pair.source_phantom.fwd_segment_position - 1;
|
|
}
|
|
end_index =
|
|
weight_vector.size() - phantom_node_pair.target_phantom.fwd_segment_position - 1;
|
|
}
|
|
else
|
|
{
|
|
if (is_local_path)
|
|
{
|
|
start_index = phantom_node_pair.source_phantom.fwd_segment_position;
|
|
}
|
|
end_index = phantom_node_pair.target_phantom.fwd_segment_position;
|
|
}
|
|
|
|
// Given the following compressed geometry:
|
|
// U---v---w---x---y---Z
|
|
// s t
|
|
// s: fwd_segment 0
|
|
// t: fwd_segment 3
|
|
// -> (U, v), (v, w), (w, x)
|
|
// note that (x, t) is _not_ included but needs to be added later.
|
|
for (std::size_t segment_idx = start_index; segment_idx != end_index;
|
|
(start_index < end_index ? ++segment_idx : --segment_idx))
|
|
{
|
|
BOOST_ASSERT(segment_idx < static_cast<std::size_t>(id_vector.size() - 1));
|
|
unpacked_path.push_back(
|
|
PathData{target_node_id,
|
|
id_vector[start_index < end_index ? segment_idx + 1 : segment_idx - 1],
|
|
static_cast<EdgeWeight>(weight_vector[segment_idx]),
|
|
0,
|
|
static_cast<EdgeDuration>(duration_vector[segment_idx]),
|
|
0,
|
|
datasource_vector[segment_idx],
|
|
boost::none});
|
|
}
|
|
|
|
if (!unpacked_path.empty())
|
|
{
|
|
const auto source_weight = start_traversed_in_reverse
|
|
? phantom_node_pair.source_phantom.reverse_weight
|
|
: phantom_node_pair.source_phantom.forward_weight;
|
|
const auto source_duration = start_traversed_in_reverse
|
|
? phantom_node_pair.source_phantom.reverse_duration
|
|
: phantom_node_pair.source_phantom.forward_duration;
|
|
// The above code will create segments for (v, w), (w,x), (x, y) and (y, Z).
|
|
// However the first segment duration needs to be adjusted to the fact that the source
|
|
// phantom is in the middle of the segment. We do this by subtracting v--s from the
|
|
// duration.
|
|
|
|
// Since it's possible duration_until_turn can be less than source_weight here if
|
|
// a negative enough turn penalty is used to modify this edge weight during
|
|
// osrm-contract, we clamp to 0 here so as not to return a negative duration
|
|
// for this segment.
|
|
|
|
// TODO this creates a scenario where it's possible the duration from a phantom
|
|
// node to the first turn would be the same as from end to end of a segment,
|
|
// which is obviously incorrect and not ideal...
|
|
unpacked_path.front().weight_until_turn =
|
|
std::max(unpacked_path.front().weight_until_turn - source_weight, 0);
|
|
unpacked_path.front().duration_until_turn =
|
|
std::max(unpacked_path.front().duration_until_turn - source_duration, 0);
|
|
}
|
|
}
|
|
|
|
template <typename Algorithm>
|
|
double getPathDistance(const DataFacade<Algorithm> &facade,
|
|
const std::vector<PathData> &unpacked_path,
|
|
const PhantomNode &source_phantom,
|
|
const PhantomNode &target_phantom)
|
|
{
|
|
using util::coordinate_calculation::detail::DEGREE_TO_RAD;
|
|
using util::coordinate_calculation::detail::EARTH_RADIUS;
|
|
|
|
double distance = 0;
|
|
double prev_lat =
|
|
static_cast<double>(util::toFloating(source_phantom.location.lat)) * DEGREE_TO_RAD;
|
|
double prev_lon =
|
|
static_cast<double>(util::toFloating(source_phantom.location.lon)) * DEGREE_TO_RAD;
|
|
double prev_cos = std::cos(prev_lat);
|
|
for (const auto &p : unpacked_path)
|
|
{
|
|
const auto current_coordinate = facade.GetCoordinateOfNode(p.turn_via_node);
|
|
|
|
const double current_lat =
|
|
static_cast<double>(util::toFloating(current_coordinate.lat)) * DEGREE_TO_RAD;
|
|
const double current_lon =
|
|
static_cast<double>(util::toFloating(current_coordinate.lon)) * DEGREE_TO_RAD;
|
|
const double current_cos = std::cos(current_lat);
|
|
|
|
const double sin_dlon = std::sin((prev_lon - current_lon) / 2.0);
|
|
const double sin_dlat = std::sin((prev_lat - current_lat) / 2.0);
|
|
|
|
const double aharv = sin_dlat * sin_dlat + prev_cos * current_cos * sin_dlon * sin_dlon;
|
|
const double charv = 2. * std::atan2(std::sqrt(aharv), std::sqrt(1.0 - aharv));
|
|
distance += EARTH_RADIUS * charv;
|
|
|
|
prev_lat = current_lat;
|
|
prev_lon = current_lon;
|
|
prev_cos = current_cos;
|
|
}
|
|
|
|
const double current_lat =
|
|
static_cast<double>(util::toFloating(target_phantom.location.lat)) * DEGREE_TO_RAD;
|
|
const double current_lon =
|
|
static_cast<double>(util::toFloating(target_phantom.location.lon)) * DEGREE_TO_RAD;
|
|
const double current_cos = std::cos(current_lat);
|
|
|
|
const double sin_dlon = std::sin((prev_lon - current_lon) / 2.0);
|
|
const double sin_dlat = std::sin((prev_lat - current_lat) / 2.0);
|
|
|
|
const double aharv = sin_dlat * sin_dlat + prev_cos * current_cos * sin_dlon * sin_dlon;
|
|
const double charv = 2. * std::atan2(std::sqrt(aharv), std::sqrt(1.0 - aharv));
|
|
distance += EARTH_RADIUS * charv;
|
|
|
|
return distance;
|
|
}
|
|
|
|
template <typename AlgorithmT>
|
|
InternalRouteResult extractRoute(const DataFacade<AlgorithmT> &facade,
|
|
const EdgeWeight weight,
|
|
const PhantomNodes &phantom_nodes,
|
|
const std::vector<NodeID> &unpacked_nodes,
|
|
const std::vector<EdgeID> &unpacked_edges)
|
|
{
|
|
InternalRouteResult raw_route_data;
|
|
raw_route_data.segment_end_coordinates = {phantom_nodes};
|
|
|
|
// No path found for both target nodes?
|
|
if (INVALID_EDGE_WEIGHT == weight)
|
|
{
|
|
return raw_route_data;
|
|
}
|
|
|
|
raw_route_data.shortest_path_weight = weight;
|
|
raw_route_data.unpacked_path_segments.resize(1);
|
|
raw_route_data.source_traversed_in_reverse.push_back(
|
|
(unpacked_nodes.front() != phantom_nodes.source_phantom.forward_segment_id.id));
|
|
raw_route_data.target_traversed_in_reverse.push_back(
|
|
(unpacked_nodes.back() != phantom_nodes.target_phantom.forward_segment_id.id));
|
|
|
|
annotatePath(facade,
|
|
phantom_nodes,
|
|
unpacked_nodes,
|
|
unpacked_edges,
|
|
raw_route_data.unpacked_path_segments.front());
|
|
|
|
return raw_route_data;
|
|
}
|
|
|
|
template <typename FacadeT> EdgeDistance computeEdgeDistance(const FacadeT &facade, NodeID node_id)
|
|
{
|
|
const auto geometry_index = facade.GetGeometryIndex(node_id);
|
|
|
|
EdgeDistance total_distance = 0.0;
|
|
|
|
auto geometry_range = facade.GetUncompressedForwardGeometry(geometry_index.id);
|
|
for (auto current = geometry_range.begin(); current < geometry_range.end() - 1; ++current)
|
|
{
|
|
total_distance += util::coordinate_calculation::greatCircleDistance(
|
|
facade.GetCoordinateOfNode(*current), facade.GetCoordinateOfNode(*std::next(current)));
|
|
}
|
|
|
|
return total_distance;
|
|
}
|
|
|
|
} // namespace routing_algorithms
|
|
} // namespace engine
|
|
} // namespace osrm
|
|
|
|
#endif // OSRM_ENGINE_ROUTING_BASE_HPP
|