osrm-backend/include/engine/guidance/assemble_geometry.hpp
Michael Bell 972a848094
Lazily generate optional route path data (#6045)
Currently route results are annotated with additional path information,
such as geometries, turn-by-turn steps and other metadata.

These annotations are generated if they are not requested or returned
in the response.
Datasets needed to generate these annotations are loaded and available
to the OSRM process even when unused.

This commit is a first step towards making the loading of these datasets
optional. We refactor the code so that route annotations are only
generated if explicitly requested and needed in the response.

Specifically, we change the following annotations to be lazily generated:
- Turn-by-turn steps
- Route Overview geometry
- Route segment metadata

For example. a /route/v1 request with
steps=false&overview=false&annotations=false
would no longer call the following data facade methods:
- GetOSMNodeIDOfNode
- GetTurnInstructionForEdgeID
- GetNameIndex
- GetNameForID
- GetRefForID
- GetTurnInstructionForEdgeID
- GetClassData
- IsLeftHandDriving
- GetTravelMode
- IsSegregated
- PreTurnBearing
- PostTurnBearing
- HasLaneData
- GetLaneData
- GetEntryClass

Requests that include segment metadata and/or overview geometry
but not turn-by-turn instructions will also benefit from this,
although there is some interdependency with the step instructions
- a call to GetTurnInstructionForEdgeID is still required.
Requests for OSM annotations will understandably still need to
call GetOSMNodeIDOfNode.

Making these changes unlocks the optional loading of data contained in
the following OSRM files:
- osrm.names
- osrm.icd
- osrm.nbg_nodes (partial)
- osrm.ebg_nodes (partial)
- osrm.edges
2022-08-22 12:59:20 +01:00

175 lines
7.6 KiB
C++

#ifndef ENGINE_GUIDANCE_ASSEMBLE_GEOMETRY_HPP
#define ENGINE_GUIDANCE_ASSEMBLE_GEOMETRY_HPP
#include "extractor/travel_mode.hpp"
#include "guidance/turn_instruction.hpp"
#include "engine/datafacade/datafacade_base.hpp"
#include "engine/guidance/leg_geometry.hpp"
#include "engine/guidance/route_step.hpp"
#include "engine/internal_route_result.hpp"
#include "engine/phantom_node.hpp"
#include "util/coordinate.hpp"
#include "util/coordinate_calculation.hpp"
#include <algorithm>
#include <cmath>
#include <utility>
#include <vector>
namespace osrm
{
namespace engine
{
namespace guidance
{
// Extracts the geometry for each segment and calculates the traveled distance
// Combines the geometry form the phantom node with the PathData
// to the full route geometry.
//
// turn 0 1 2 3 4
// s...x...y...z...t
// |---|segment 0
// |---| segment 1
// |---| segment 2
// |---| segment 3
inline LegGeometry assembleGeometry(const datafacade::BaseDataFacade &facade,
const std::vector<PathData> &leg_data,
const PhantomNode &source_node,
const PhantomNode &target_node,
const bool reversed_source,
const bool reversed_target)
{
LegGeometry geometry;
// segment 0 first and last
geometry.segment_offsets.push_back(0);
geometry.locations.push_back(source_node.location);
// u * v
// 0 -- 1 -- 2 -- 3
// fwd_segment_position: 1
// source node fwd: 1 1 -> 2 -> 3
// source node rev: 2 0 <- 1 <- 2
const auto source_segment_start_coordinate =
source_node.fwd_segment_position + (reversed_source ? 1 : 0);
const auto source_node_id =
reversed_source ? source_node.reverse_segment_id.id : source_node.forward_segment_id.id;
const auto source_geometry_id = facade.GetGeometryIndex(source_node_id).id;
const auto source_geometry = facade.GetUncompressedForwardGeometry(source_geometry_id);
geometry.node_ids.push_back(source_geometry(source_segment_start_coordinate));
auto cumulative_distance = 0.;
auto current_distance = 0.;
auto prev_coordinate = geometry.locations.front();
for (const auto &path_point : leg_data)
{
auto coordinate = facade.GetCoordinateOfNode(path_point.turn_via_node);
current_distance =
util::coordinate_calculation::greatCircleDistance(prev_coordinate, coordinate);
cumulative_distance += current_distance;
// all changes to this check have to be matched with assemble_steps
auto turn_instruction = path_point.turn_edge
? facade.GetTurnInstructionForEdgeID(*path_point.turn_edge)
: osrm::guidance::TurnInstruction::NO_TURN();
if (turn_instruction.type != osrm::guidance::TurnType::NoTurn)
{
geometry.segment_distances.push_back(cumulative_distance);
geometry.segment_offsets.push_back(geometry.locations.size());
cumulative_distance = 0.;
}
prev_coordinate = coordinate;
const auto node_id = path_point.turn_via_node;
if (node_id != geometry.node_ids.back() ||
turn_instruction.type != osrm::guidance::TurnType::NoTurn)
{
geometry.annotations.emplace_back(LegGeometry::Annotation{
current_distance,
// NOTE: we want annotations to include only the duration/weight
// of the segment itself. For segments immediately before
// a turn, the duration_until_turn/weight_until_turn values
// include the turn cost. To counter this, we subtract
// the duration_of_turn/weight_of_turn value, which is 0 for
// non-preceeding-turn segments, but contains the turn value
// for segments before a turn.
(path_point.duration_until_turn - path_point.duration_of_turn) / 10.,
(path_point.weight_until_turn - path_point.weight_of_turn) /
facade.GetWeightMultiplier(),
path_point.datasource_id});
geometry.locations.push_back(std::move(coordinate));
geometry.node_ids.push_back(node_id);
}
}
current_distance =
util::coordinate_calculation::greatCircleDistance(prev_coordinate, target_node.location);
cumulative_distance += current_distance;
// segment leading to the target node
geometry.segment_distances.push_back(cumulative_distance);
const auto target_node_id =
reversed_target ? target_node.reverse_segment_id.id : target_node.forward_segment_id.id;
const auto target_geometry_id = facade.GetGeometryIndex(target_node_id).id;
const auto forward_datasources = facade.GetUncompressedForwardDatasources(target_geometry_id);
// This happens when the source/target are on the same edge-based-node
// There will be no entries in the unpacked path, thus no annotations.
// We will need to calculate the lone annotation by looking at the position
// of the source/target nodes, and calculating their differences.
if (geometry.annotations.empty())
{
auto duration =
std::abs(
(reversed_target ? target_node.reverse_duration : target_node.forward_duration) -
(reversed_source ? source_node.reverse_duration : source_node.forward_duration)) /
10.;
BOOST_ASSERT(duration >= 0);
auto weight =
std::abs((reversed_target ? target_node.reverse_weight : target_node.forward_weight) -
(reversed_source ? source_node.reverse_weight : source_node.forward_weight)) /
facade.GetWeightMultiplier();
BOOST_ASSERT(weight >= 0);
geometry.annotations.emplace_back(
LegGeometry::Annotation{current_distance,
duration,
weight,
forward_datasources(target_node.fwd_segment_position)});
}
else
{
geometry.annotations.emplace_back(LegGeometry::Annotation{
current_distance,
(reversed_target ? target_node.reverse_duration : target_node.forward_duration) / 10.,
(reversed_target ? target_node.reverse_weight : target_node.forward_weight) /
facade.GetWeightMultiplier(),
forward_datasources(target_node.fwd_segment_position)});
}
geometry.segment_offsets.push_back(geometry.locations.size());
geometry.locations.push_back(target_node.location);
// u * v
// 0 -- 1 -- 2 -- 3
// fwd_segment_position: 1
// target node fwd: 2 0 -> 1 -> 2
// target node rev: 1 1 <- 2 <- 3
const auto target_segment_end_coordinate =
target_node.fwd_segment_position + (reversed_target ? 0 : 1);
const auto target_geometry = facade.GetUncompressedForwardGeometry(target_geometry_id);
geometry.node_ids.push_back(target_geometry(target_segment_end_coordinate));
BOOST_ASSERT(geometry.segment_distances.size() == geometry.segment_offsets.size() - 1);
BOOST_ASSERT(geometry.locations.size() > geometry.segment_distances.size());
BOOST_ASSERT(geometry.annotations.size() == geometry.locations.size() - 1);
return geometry;
}
} // namespace guidance
} // namespace engine
} // namespace osrm
#endif