osrm-backend/include/extractor/guidance/toolkit.hpp
2016-04-27 23:20:10 +02:00

444 lines
18 KiB
C++

#ifndef OSRM_GUIDANCE_TOOLKIT_HPP_
#define OSRM_GUIDANCE_TOOLKIT_HPP_
#include "util/bearing.hpp"
#include "util/coordinate.hpp"
#include "util/coordinate_calculation.hpp"
#include "util/guidance/toolkit.hpp"
#include "extractor/compressed_edge_container.hpp"
#include "extractor/query_node.hpp"
#include "extractor/suffix_table.hpp"
#include "extractor/guidance/classification_data.hpp"
#include "extractor/guidance/discrete_angle.hpp"
#include "extractor/guidance/intersection.hpp"
#include "extractor/guidance/turn_instruction.hpp"
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <map>
#include <string>
#include <boost/algorithm/string.hpp>
#include <boost/algorithm/string/predicate.hpp>
namespace osrm
{
namespace extractor
{
namespace guidance
{
using util::guidance::angularDeviation;
namespace detail
{
const constexpr double DESIRED_SEGMENT_LENGTH = 10.0;
const constexpr bool shiftable_ccw[] = {false, true, true, false, false, true, true, false};
const constexpr bool shiftable_cw[] = {false, false, true, true, false, false, true, true};
const constexpr std::uint8_t modifier_bounds[detail::num_direction_modifiers] = {
0, 36, 93, 121, 136, 163, 220, 255};
const constexpr double discrete_angle_step_size = 360. / 256.;
template <typename IteratorType>
util::Coordinate
getCoordinateFromCompressedRange(util::Coordinate current_coordinate,
const IteratorType compressed_geometry_begin,
const IteratorType compressed_geometry_end,
const util::Coordinate final_coordinate,
const std::vector<extractor::QueryNode> &query_nodes)
{
const auto extractCoordinateFromNode =
[](const extractor::QueryNode &node) -> util::Coordinate {
return {node.lon, node.lat};
};
double distance_to_current_coordinate = 0;
double distance_to_next_coordinate = 0;
// get the length that is missing from the current segment to reach DESIRED_SEGMENT_LENGTH
const auto getFactor = [](const double first_distance, const double second_distance) {
BOOST_ASSERT(first_distance < detail::DESIRED_SEGMENT_LENGTH);
double segment_length = second_distance - first_distance;
BOOST_ASSERT(segment_length > 0);
BOOST_ASSERT(second_distance >= detail::DESIRED_SEGMENT_LENGTH);
double missing_distance = detail::DESIRED_SEGMENT_LENGTH - first_distance;
return std::max(0., std::min(missing_distance / segment_length, 1.0));
};
for (auto compressed_geometry_itr = compressed_geometry_begin;
compressed_geometry_itr != compressed_geometry_end; ++compressed_geometry_itr)
{
const auto next_coordinate =
extractCoordinateFromNode(query_nodes[compressed_geometry_itr->node_id]);
distance_to_next_coordinate =
distance_to_current_coordinate +
util::coordinate_calculation::haversineDistance(current_coordinate, next_coordinate);
// reached point where coordinates switch between
if (distance_to_next_coordinate >= detail::DESIRED_SEGMENT_LENGTH)
return util::coordinate_calculation::interpolateLinear(
getFactor(distance_to_current_coordinate, distance_to_next_coordinate),
current_coordinate, next_coordinate);
// prepare for next iteration
current_coordinate = next_coordinate;
distance_to_current_coordinate = distance_to_next_coordinate;
}
distance_to_next_coordinate =
distance_to_current_coordinate +
util::coordinate_calculation::haversineDistance(current_coordinate, final_coordinate);
// reached point where coordinates switch between
if (distance_to_current_coordinate < detail::DESIRED_SEGMENT_LENGTH &&
distance_to_next_coordinate >= detail::DESIRED_SEGMENT_LENGTH)
return util::coordinate_calculation::interpolateLinear(
getFactor(distance_to_current_coordinate, distance_to_next_coordinate),
current_coordinate, final_coordinate);
else
return final_coordinate;
}
} // namespace detail
// Finds a (potentially inteprolated) coordinate that is DESIRED_SEGMENT_LENGTH away
// from the start of an edge
inline util::Coordinate
getRepresentativeCoordinate(const NodeID from_node,
const NodeID to_node,
const EdgeID via_edge_id,
const bool traverse_in_reverse,
const extractor::CompressedEdgeContainer &compressed_geometries,
const std::vector<extractor::QueryNode> &query_nodes)
{
const auto extractCoordinateFromNode =
[](const extractor::QueryNode &node) -> util::Coordinate {
return {node.lon, node.lat};
};
// Uncompressed roads are simple, return the coordinate at the end
if (!compressed_geometries.HasEntryForID(via_edge_id))
{
return extractCoordinateFromNode(traverse_in_reverse ? query_nodes[from_node]
: query_nodes[to_node]);
}
else
{
const auto &geometry = compressed_geometries.GetBucketReference(via_edge_id);
const auto base_node_id = (traverse_in_reverse) ? to_node : from_node;
const auto base_coordinate = extractCoordinateFromNode(query_nodes[base_node_id]);
const auto final_node = (traverse_in_reverse) ? from_node : to_node;
const auto final_coordinate = extractCoordinateFromNode(query_nodes[final_node]);
if (traverse_in_reverse)
return detail::getCoordinateFromCompressedRange(
base_coordinate, geometry.rbegin(), geometry.rend(), final_coordinate, query_nodes);
else
return detail::getCoordinateFromCompressedRange(
base_coordinate, geometry.begin(), geometry.end(), final_coordinate, query_nodes);
}
}
// shift an instruction around the degree circle in CCW order
inline DirectionModifier forcedShiftCCW(const DirectionModifier modifier)
{
return static_cast<DirectionModifier>((static_cast<std::uint32_t>(modifier) + 1) %
detail::num_direction_modifiers);
}
inline DirectionModifier shiftCCW(const DirectionModifier modifier)
{
if (detail::shiftable_ccw[static_cast<int>(modifier)])
return forcedShiftCCW(modifier);
else
return modifier;
}
// shift an instruction around the degree circle in CW order
inline DirectionModifier forcedShiftCW(const DirectionModifier modifier)
{
return static_cast<DirectionModifier>(
(static_cast<std::uint32_t>(modifier) + detail::num_direction_modifiers - 1) %
detail::num_direction_modifiers);
}
inline DirectionModifier shiftCW(const DirectionModifier modifier)
{
if (detail::shiftable_cw[static_cast<int>(modifier)])
return forcedShiftCW(modifier);
else
return modifier;
}
inline bool isBasic(const TurnType type)
{
return type == TurnType::Turn || type == TurnType::EndOfRoad;
}
inline bool isUturn(const TurnInstruction instruction)
{
return isBasic(instruction.type) && instruction.direction_modifier == DirectionModifier::UTurn;
}
inline bool resolve(TurnInstruction &to_resolve, const TurnInstruction neighbor, bool resolve_cw)
{
const auto shifted_turn = resolve_cw ? shiftCW(to_resolve.direction_modifier)
: shiftCCW(to_resolve.direction_modifier);
if (shifted_turn == neighbor.direction_modifier ||
shifted_turn == to_resolve.direction_modifier)
return false;
to_resolve.direction_modifier = shifted_turn;
return true;
}
inline bool resolveTransitive(TurnInstruction &first,
TurnInstruction &second,
const TurnInstruction third,
bool resolve_cw)
{
if (resolve(second, third, resolve_cw))
{
first.direction_modifier =
resolve_cw ? shiftCW(first.direction_modifier) : shiftCCW(first.direction_modifier);
return true;
}
return false;
}
inline bool isSlightTurn(const TurnInstruction turn)
{
return (isBasic(turn.type) || turn.type == TurnType::NoTurn) &&
(turn.direction_modifier == DirectionModifier::Straight ||
turn.direction_modifier == DirectionModifier::SlightRight ||
turn.direction_modifier == DirectionModifier::SlightLeft);
}
inline bool isSlightModifier(const DirectionModifier direction_modifier)
{
return (direction_modifier == DirectionModifier::Straight ||
direction_modifier == DirectionModifier::SlightRight ||
direction_modifier == DirectionModifier::SlightLeft);
}
inline bool isSharpTurn(const TurnInstruction turn)
{
return isBasic(turn.type) && (turn.direction_modifier == DirectionModifier::SharpLeft ||
turn.direction_modifier == DirectionModifier::SharpRight);
}
inline bool isStraight(const TurnInstruction turn)
{
return (isBasic(turn.type) || turn.type == TurnType::NoTurn) &&
turn.direction_modifier == DirectionModifier::Straight;
}
inline bool isConflict(const TurnInstruction first, const TurnInstruction second)
{
return (first.type == second.type && first.direction_modifier == second.direction_modifier) ||
(isStraight(first) && isStraight(second));
}
inline DiscreteAngle discretizeAngle(const double angle)
{
BOOST_ASSERT(angle >= 0. && angle <= 360.);
return DiscreteAngle(static_cast<std::uint8_t>(angle / detail::discrete_angle_step_size));
}
inline double angleFromDiscreteAngle(const DiscreteAngle angle)
{
return static_cast<double>(angle) * detail::discrete_angle_step_size;
}
inline double getAngularPenalty(const double angle, DirectionModifier modifier)
{
// these are not aligned with getTurnDirection but represent an ideal center
const double center[] = {0, 45, 90, 135, 180, 225, 270, 315};
return angularDeviation(center[static_cast<int>(modifier)], angle);
}
inline double getTurnConfidence(const double angle, TurnInstruction instruction)
{
// special handling of U-Turns and Roundabout
if (!isBasic(instruction.type) || instruction.direction_modifier == DirectionModifier::UTurn)
return 1.0;
const double deviations[] = {0, 45, 50, 30, 20, 30, 50, 45};
const double difference = getAngularPenalty(angle, instruction.direction_modifier);
const double max_deviation = deviations[static_cast<int>(instruction.direction_modifier)];
return 1.0 - (difference / max_deviation) * (difference / max_deviation);
}
// swaps left <-> right modifier types
inline DirectionModifier mirrorDirectionModifier(const DirectionModifier modifier)
{
const constexpr DirectionModifier results[] = {
DirectionModifier::UTurn, DirectionModifier::SharpLeft, DirectionModifier::Left,
DirectionModifier::SlightLeft, DirectionModifier::Straight, DirectionModifier::SlightRight,
DirectionModifier::Right, DirectionModifier::SharpRight};
return results[modifier];
}
inline bool canBeSuppressed(const TurnType type)
{
if (type == TurnType::Turn)
return true;
return false;
}
inline bool isLowPriorityRoadClass(const FunctionalRoadClass road_class)
{
return road_class == FunctionalRoadClass::LOW_PRIORITY_ROAD ||
road_class == FunctionalRoadClass::SERVICE;
}
inline bool isDistinct(const DirectionModifier first, const DirectionModifier second)
{
if ((first + 1) % detail::num_direction_modifiers == second)
return false;
if ((second + 1) % detail::num_direction_modifiers == first)
return false;
return true;
}
inline bool requiresNameAnnounced(const std::string &from,
const std::string &to,
const SuffixTable &suffix_table)
{
// FIXME, handle in profile to begin with?
// this uses the encoding of references in the profile, which is very BAD
// Input for this function should be a struct separating streetname, suffix (e.g. road,
// boulevard, North, West ...), and a list of references
std::string from_name;
std::string from_ref;
std::string to_name;
std::string to_ref;
// Split from the format "{name} ({ref})" -> name, ref
auto split = [](const std::string &name, std::string &out_name, std::string &out_ref) {
const auto ref_begin = name.find_first_of('(');
if (ref_begin != std::string::npos)
{
if (ref_begin != 0)
out_name = name.substr(0, ref_begin - 1);
const auto ref_end = name.find_first_of(')');
out_ref = name.substr(ref_begin + 1, ref_end - ref_begin - 1);
}
else
{
out_name = name;
}
};
const auto getCommonLength = [](const std::string &first, const std::string &second) {
BOOST_ASSERT(first.size() <= second.size());
const auto mismatch_result = std::mismatch(first.begin(), first.end(), second.begin());
return std::distance(first.begin(), mismatch_result.first);
};
split(from, from_name, from_ref);
split(to, to_name, to_ref);
// check similarity of names
const auto names_are_empty = from_name.empty() && to_name.empty();
const auto name_is_contained =
boost::starts_with(from_name, to_name) || boost::starts_with(to_name, from_name);
const auto names_are_equal = from_name == to_name || name_is_contained;
const auto name_is_removed = !from_name.empty() && to_name.empty();
// references are contained in one another
const auto refs_are_empty = from_ref.empty() && to_ref.empty();
const auto ref_is_contained =
from_ref.empty() || to_ref.empty() ||
(from_ref.find(to_ref) != std::string::npos || to_ref.find(from_ref) != std::string::npos);
const auto ref_is_removed = !from_ref.empty() && to_ref.empty();
const auto checkForSuffixChange = [](const std::size_t common_length, const std::string &first,
const std::string &second,
const SuffixTable &suffix_table) {
if (0 == common_length)
return false;
const auto endsOnSuffix = [](const std::size_t trim_length,
const std::string &string_with_possible_suffix,
const SuffixTable &suffix_table) {
auto suffix =
string_with_possible_suffix.size() > trim_length
? string_with_possible_suffix.substr(
trim_length + (string_with_possible_suffix[trim_length] == ' ' ? 1 : 0))
: " ";
boost::algorithm::to_lower(suffix);
return suffix.empty() || suffix_table.isSuffix(suffix);
};
const auto first_delta_is_suffix = endsOnSuffix(common_length, first, suffix_table);
const auto second_delta_is_suffix = endsOnSuffix(common_length, second, suffix_table);
return first_delta_is_suffix && second_delta_is_suffix;
};
const auto common_length = from_name.size() < to_name.size()
? getCommonLength(from_name, to_name)
: getCommonLength(to_name, from_name);
const auto is_suffix_change =
checkForSuffixChange(common_length, from_name, to_name, suffix_table);
const auto obvious_change = (names_are_empty && refs_are_empty) ||
(names_are_equal && ref_is_contained) ||
(names_are_equal && refs_are_empty) || name_is_removed ||
ref_is_removed || is_suffix_change;
return !obvious_change;
}
inline int getPriority(const FunctionalRoadClass road_class)
{
// The road priorities indicate which roads can bee seen as more or less equal.
// They are used in Fork-Discovery. Possibly should be moved to profiles post v5?
// A fork can happen between road types that are at most 1 priority apart from each other
const constexpr int road_priority[] = {10, 0, 10, 2, 10, 4, 10, 6,
10, 8, 10, 11, 10, 12, 10, 14};
return road_priority[static_cast<int>(road_class)];
}
inline bool canBeSeenAsFork(const FunctionalRoadClass first, const FunctionalRoadClass second)
{
// forks require similar road categories
// Based on the priorities assigned above, we can set forks only if the road priorities match
// closely.
// Potentially we could include features like number of lanes here and others?
// Should also be moved to profiles
return std::abs(getPriority(first) - getPriority(second)) <= 1;
}
// To simplify handling of Left/Right hand turns, we can mirror turns and write an intersection
// handler only for one side. The mirror function turns a left-hand turn in a equivalent right-hand
// turn and vice versa.
inline ConnectedRoad mirror(ConnectedRoad road)
{
const constexpr DirectionModifier mirrored_modifiers[] = {
DirectionModifier::UTurn, DirectionModifier::SharpLeft, DirectionModifier::Left,
DirectionModifier::SlightLeft, DirectionModifier::Straight, DirectionModifier::SlightRight,
DirectionModifier::Right, DirectionModifier::SharpRight};
if (angularDeviation(road.turn.angle, 0) > std::numeric_limits<double>::epsilon())
{
road.turn.angle = 360 - road.turn.angle;
road.turn.instruction.direction_modifier =
mirrored_modifiers[road.turn.instruction.direction_modifier];
}
return road;
}
} // namespace guidance
} // namespace extractor
} // namespace osrm
#endif // OSRM_GUIDANCE_TOOLKIT_HPP_