osrm-backend/Contractor/EdgeBasedGraphFactory.cpp
2013-06-26 09:32:03 -04:00

413 lines
20 KiB
C++

/*
open source routing machine
Copyright (C) Dennis Luxen, others 2010
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU AFFERO General Public License as published by
the Free Software Foundation; either version 3 of the License, or
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
or see http://www.gnu.org/licenses/agpl.txt.
*/
#include "EdgeBasedGraphFactory.h"
template<>
EdgeBasedGraphFactory::EdgeBasedGraphFactory(int nodes, std::vector<NodeBasedEdge> & inputEdges, std::vector<NodeID> & bn, std::vector<NodeID> & tl, std::vector<_Restriction> & irs, std::vector<NodeInfo> & nI, SpeedProfileProperties sp) : speedProfile(sp), inputNodeInfoList(nI), numberOfTurnRestrictions(irs.size()) {
BOOST_FOREACH(const _Restriction & restriction, irs) {
std::pair<NodeID, NodeID> restrictionSource = std::make_pair(restriction.fromNode, restriction.viaNode);
unsigned index;
RestrictionMap::iterator restrIter = _restrictionMap.find(restrictionSource);
if(restrIter == _restrictionMap.end()) {
index = _restrictionBucketVector.size();
_restrictionBucketVector.resize(index+1);
_restrictionMap[restrictionSource] = index;
} else {
index = restrIter->second;
//Map already contains an is_only_*-restriction
if(_restrictionBucketVector.at(index).begin()->second)
continue;
else if(restriction.flags.isOnly){
//We are going to insert an is_only_*-restriction. There can be only one.
_restrictionBucketVector.at(index).clear();
}
}
_restrictionBucketVector.at(index).push_back(std::make_pair(restriction.toNode, restriction.flags.isOnly));
}
_barrierNodes.insert(bn.begin(), bn.end());
_trafficLights.insert(tl.begin(), tl.end());
DeallocatingVector< _NodeBasedEdge > edges;
_NodeBasedEdge edge;
for ( std::vector< NodeBasedEdge >::const_iterator i = inputEdges.begin(); i != inputEdges.end(); ++i ) {
if(!i->isForward()) {
edge.source = i->target();
edge.target = i->source();
edge.data.backward = i->isForward();
edge.data.forward = i->isBackward();
} else {
edge.source = i->source();
edge.target = i->target();
edge.data.forward = i->isForward();
edge.data.backward = i->isBackward();
}
if(edge.source == edge.target) {
continue;
}
edge.data.distance = (std::max)((int)i->weight(), 1 );
assert( edge.data.distance > 0 );
edge.data.shortcut = false;
edge.data.roundabout = i->isRoundabout();
edge.data.ignoreInGrid = i->ignoreInGrid();
edge.data.nameID = i->name();
edge.data.type = i->type();
edge.data.isAccessRestricted = i->isAccessRestricted();
edge.data.edgeBasedNodeID = edges.size();
edge.data.contraFlow = i->isContraFlow();
edges.push_back( edge );
if( edge.data.backward ) {
std::swap( edge.source, edge.target );
edge.data.forward = i->isBackward();
edge.data.backward = i->isForward();
edge.data.edgeBasedNodeID = edges.size();
edges.push_back( edge );
}
}
std::vector<NodeBasedEdge>().swap(inputEdges);
std::sort( edges.begin(), edges.end() );
_nodeBasedGraph = boost::make_shared<_NodeBasedDynamicGraph>( nodes, edges );
}
void EdgeBasedGraphFactory::GetEdgeBasedEdges(DeallocatingVector< EdgeBasedEdge >& outputEdgeList ) {
BOOST_ASSERT_MSG(
0 == outputEdgeList.size(),
"Vector is not empty"
);
edgeBasedEdges.swap(outputEdgeList);
}
void EdgeBasedGraphFactory::GetEdgeBasedNodes( std::vector<EdgeBasedNode> & nodes) {
#ifndef NDEBUG
BOOST_FOREACH(EdgeBasedNode & node, edgeBasedNodes){
assert(node.lat1 != INT_MAX); assert(node.lon1 != INT_MAX);
assert(node.lat2 != INT_MAX); assert(node.lon2 != INT_MAX);
}
#endif
nodes.swap(edgeBasedNodes);
}
NodeID EdgeBasedGraphFactory::CheckForEmanatingIsOnlyTurn(const NodeID u, const NodeID v) const {
std::pair < NodeID, NodeID > restrictionSource = std::make_pair(u, v);
RestrictionMap::const_iterator restrIter = _restrictionMap.find(restrictionSource);
if (restrIter != _restrictionMap.end()) {
unsigned index = restrIter->second;
BOOST_FOREACH(const RestrictionSource & restrictionTarget, _restrictionBucketVector.at(index)) {
if(restrictionTarget.second) {
return restrictionTarget.first;
}
}
}
return UINT_MAX;
}
bool EdgeBasedGraphFactory::CheckIfTurnIsRestricted(const NodeID u, const NodeID v, const NodeID w) const {
//only add an edge if turn is not a U-turn except it is the end of dead-end street.
std::pair < NodeID, NodeID > restrictionSource = std::make_pair(u, v);
RestrictionMap::const_iterator restrIter = _restrictionMap.find(restrictionSource);
if (restrIter != _restrictionMap.end()) {
unsigned index = restrIter->second;
BOOST_FOREACH(RestrictionTarget restrictionTarget, _restrictionBucketVector.at(index)) {
if(w == restrictionTarget.first)
return true;
}
}
return false;
}
void EdgeBasedGraphFactory::InsertEdgeBasedNode(
_NodeBasedDynamicGraph::EdgeIterator e1,
_NodeBasedDynamicGraph::NodeIterator u,
_NodeBasedDynamicGraph::NodeIterator v,
bool belongsToTinyComponent) {
_NodeBasedDynamicGraph::EdgeData & data = _nodeBasedGraph->GetEdgeData(e1);
EdgeBasedNode currentNode;
currentNode.nameID = data.nameID;
currentNode.lat1 = inputNodeInfoList[u].lat;
currentNode.lon1 = inputNodeInfoList[u].lon;
currentNode.lat2 = inputNodeInfoList[v].lat;
currentNode.lon2 = inputNodeInfoList[v].lon;
currentNode.belongsToTinyComponent = belongsToTinyComponent;
currentNode.id = data.edgeBasedNodeID;
currentNode.ignoreInGrid = data.ignoreInGrid;
currentNode.weight = data.distance;
edgeBasedNodes.push_back(currentNode);
}
void EdgeBasedGraphFactory::Run(const char * originalEdgeDataFilename, lua_State *myLuaState) {
Percent p(_nodeBasedGraph->GetNumberOfNodes());
int numberOfSkippedTurns(0);
int nodeBasedEdgeCounter(0);
unsigned numberOfOriginalEdges(0);
std::ofstream originalEdgeDataOutFile(originalEdgeDataFilename, std::ios::binary);
originalEdgeDataOutFile.write((char*)&numberOfOriginalEdges, sizeof(unsigned));
INFO("Identifying small components");
//Run a BFS on the undirected graph and identify small components
std::queue<std::pair<NodeID, NodeID> > bfsQueue;
std::vector<unsigned> componentsIndex(_nodeBasedGraph->GetNumberOfNodes(), UINT_MAX);
std::vector<NodeID> vectorOfComponentSizes;
unsigned currentComponent = 0, sizeOfCurrentComponent = 0;
//put unexplorered node with parent pointer into queue
for(NodeID node = 0, endNodes = _nodeBasedGraph->GetNumberOfNodes(); node < endNodes; ++node) {
if(UINT_MAX == componentsIndex[node]) {
bfsQueue.push(std::make_pair(node, node));
//mark node as read
componentsIndex[node] = currentComponent;
p.printIncrement();
while(!bfsQueue.empty()) {
//fetch element from BFS queue
std::pair<NodeID, NodeID> currentQueueItem = bfsQueue.front();
bfsQueue.pop();
// INFO("sizeof queue: " << bfsQueue.size() << ", sizeOfCurrentComponents: " << sizeOfCurrentComponent << ", settled nodes: " << settledNodes++ << ", max: " << endNodes);
const NodeID v = currentQueueItem.first; //current node
const NodeID u = currentQueueItem.second; //parent
//increment size counter of current component
++sizeOfCurrentComponent;
const bool isBollardNode = (_barrierNodes.find(v) != _barrierNodes.end());
if(!isBollardNode) {
const NodeID onlyToNode = CheckForEmanatingIsOnlyTurn(u, v);
//relaxieren edge outgoing edge like below where edge-expanded graph
for(_NodeBasedDynamicGraph::EdgeIterator e2 = _nodeBasedGraph->BeginEdges(v); e2 < _nodeBasedGraph->EndEdges(v); ++e2) {
_NodeBasedDynamicGraph::NodeIterator w = _nodeBasedGraph->GetTarget(e2);
if(onlyToNode != UINT_MAX && w != onlyToNode) { //We are at an only_-restriction but not at the right turn.
continue;
}
if( u != w ) { //only add an edge if turn is not a U-turn except it is the end of dead-end street.
if (!CheckIfTurnIsRestricted(u, v, w) ) { //only add an edge if turn is not prohibited
//insert next (node, parent) only if w has not yet been explored
if(UINT_MAX == componentsIndex[w]) {
//mark node as read
componentsIndex[w] = currentComponent;
bfsQueue.push(std::make_pair(w,v));
p.printIncrement();
}
}
}
}
}
}
//push size into vector
vectorOfComponentSizes.push_back(sizeOfCurrentComponent);
//reset counters;
sizeOfCurrentComponent = 0;
++currentComponent;
}
}
INFO("identified: " << vectorOfComponentSizes.size() << " many components");
p.reinit(_nodeBasedGraph->GetNumberOfNodes());
//loop over all edges and generate new set of nodes.
for(_NodeBasedDynamicGraph::NodeIterator u = 0; u < _nodeBasedGraph->GetNumberOfNodes(); ++u ) {
for(_NodeBasedDynamicGraph::EdgeIterator e1 = _nodeBasedGraph->BeginEdges(u); e1 < _nodeBasedGraph->EndEdges(u); ++e1) {
_NodeBasedDynamicGraph::NodeIterator v = _nodeBasedGraph->GetTarget(e1);
if(_nodeBasedGraph->GetEdgeData(e1).type != SHRT_MAX) {
assert(e1 != UINT_MAX);
assert(u != UINT_MAX);
assert(v != UINT_MAX);
//edges that end on bollard nodes may actually be in two distinct components
InsertEdgeBasedNode(e1, u, v, (std::min(vectorOfComponentSizes[componentsIndex[u]], vectorOfComponentSizes[componentsIndex[v]]) < 1000) );
}
}
}
std::vector<NodeID>().swap(vectorOfComponentSizes);
std::vector<NodeID>().swap(componentsIndex);
std::vector<OriginalEdgeData> original_edge_data_vector;
original_edge_data_vector.reserve(10000);
//Loop over all turns and generate new set of edges.
//Three nested loop look super-linear, but we are dealing with a linear number of turns only.
for(_NodeBasedDynamicGraph::NodeIterator u = 0; u < _nodeBasedGraph->GetNumberOfNodes(); ++u ) {
for(_NodeBasedDynamicGraph::EdgeIterator e1 = _nodeBasedGraph->BeginEdges(u); e1 < _nodeBasedGraph->EndEdges(u); ++e1) {
++nodeBasedEdgeCounter;
_NodeBasedDynamicGraph::NodeIterator v = _nodeBasedGraph->GetTarget(e1);
bool isBollardNode = (_barrierNodes.find(v) != _barrierNodes.end());
//EdgeWeight heightPenalty = ComputeHeightPenalty(u, v);
NodeID onlyToNode = CheckForEmanatingIsOnlyTurn(u, v);
for(_NodeBasedDynamicGraph::EdgeIterator e2 = _nodeBasedGraph->BeginEdges(v); e2 < _nodeBasedGraph->EndEdges(v); ++e2) {
const _NodeBasedDynamicGraph::NodeIterator w = _nodeBasedGraph->GetTarget(e2);
if(onlyToNode != UINT_MAX && w != onlyToNode) { //We are at an only_-restriction but not at the right turn.
++numberOfSkippedTurns;
continue;
}
if(u == w && 1 != _nodeBasedGraph->GetOutDegree(v) ) {
continue;
}
if( !isBollardNode ) { //only add an edge if turn is not a U-turn except it is the end of dead-end street.
if (!CheckIfTurnIsRestricted(u, v, w) || (onlyToNode != UINT_MAX && w == onlyToNode)) { //only add an edge if turn is not prohibited
const _NodeBasedDynamicGraph::EdgeData edgeData1 = _nodeBasedGraph->GetEdgeData(e1);
const _NodeBasedDynamicGraph::EdgeData edgeData2 = _nodeBasedGraph->GetEdgeData(e2);
assert(edgeData1.edgeBasedNodeID < _nodeBasedGraph->GetNumberOfEdges());
assert(edgeData2.edgeBasedNodeID < _nodeBasedGraph->GetNumberOfEdges());
if(!edgeData1.forward || !edgeData2.forward) {
continue;
}
unsigned distance = edgeData1.distance;
if(_trafficLights.find(v) != _trafficLights.end()) {
distance += speedProfile.trafficSignalPenalty;
}
unsigned penalty = 0;
TurnInstruction turnInstruction = AnalyzeTurn(u, v, w, penalty, myLuaState);
if(turnInstruction == TurnInstructions.UTurn)
distance += speedProfile.uTurnPenalty;
// if(!edgeData1.isAccessRestricted && edgeData2.isAccessRestricted) {
// distance += TurnInstructions.AccessRestrictionPenalty;
// turnInstruction |= TurnInstructions.AccessRestrictionFlag;
// }
distance += penalty;
//distance += heightPenalty;
//distance += ComputeTurnPenalty(u, v, w);
assert(edgeData1.edgeBasedNodeID != edgeData2.edgeBasedNodeID);
OriginalEdgeData oed(v,edgeData2.nameID, turnInstruction);
original_edge_data_vector.push_back(oed);
++numberOfOriginalEdges;
if(original_edge_data_vector.size() > 100000) {
originalEdgeDataOutFile.write((char*)&(original_edge_data_vector[0]), original_edge_data_vector.size()*sizeof(OriginalEdgeData));
original_edge_data_vector.clear();
}
EdgeBasedEdge newEdge(edgeData1.edgeBasedNodeID, edgeData2.edgeBasedNodeID, edgeBasedEdges.size(), distance, true, false );
edgeBasedEdges.push_back(newEdge);
} else {
++numberOfSkippedTurns;
}
}
}
}
p.printIncrement();
}
originalEdgeDataOutFile.write((char*)&(original_edge_data_vector[0]), original_edge_data_vector.size()*sizeof(OriginalEdgeData));
originalEdgeDataOutFile.seekp(std::ios::beg);
originalEdgeDataOutFile.write((char*)&numberOfOriginalEdges, sizeof(unsigned));
originalEdgeDataOutFile.close();
// INFO("Sorting edge-based Nodes");
// std::sort(edgeBasedNodes.begin(), edgeBasedNodes.end());
// INFO("Removing duplicate nodes (if any)");
// edgeBasedNodes.erase( std::unique(edgeBasedNodes.begin(), edgeBasedNodes.end()), edgeBasedNodes.end() );
// INFO("Applying vector self-swap trick to free up memory");
// INFO("size: " << edgeBasedNodes.size() << ", cap: " << edgeBasedNodes.capacity());
// std::vector<EdgeBasedNode>(edgeBasedNodes).swap(edgeBasedNodes);
// INFO("size: " << edgeBasedNodes.size() << ", cap: " << edgeBasedNodes.capacity());
INFO("Node-based graph contains " << nodeBasedEdgeCounter << " edges");
INFO("Edge-based graph contains " << edgeBasedEdges.size() << " edges");
// INFO("Edge-based graph contains " << edgeBasedEdges.size() << " edges, blowup is " << 2*((double)edgeBasedEdges.size()/(double)nodeBasedEdgeCounter));
INFO("Edge-based graph skipped " << numberOfSkippedTurns << " turns, defined by " << numberOfTurnRestrictions << " restrictions.");
INFO("Generated " << edgeBasedNodes.size() << " edge based nodes");
}
TurnInstruction EdgeBasedGraphFactory::AnalyzeTurn(const NodeID u, const NodeID v, const NodeID w, unsigned& penalty, lua_State *myLuaState) const {
const double angle = GetAngleBetweenTwoEdges(inputNodeInfoList[u], inputNodeInfoList[v], inputNodeInfoList[w]);
if( speedProfile.has_turn_penalty_function ) {
try {
//call lua profile to compute turn penalty
penalty = luabind::call_function<int>( myLuaState, "turn_function", 180-angle );
} catch (const luabind::error &er) {
std::cerr << er.what() << std::endl;
//TODO handle lua errors
}
} else {
penalty = 0;
}
if(u == w) {
return TurnInstructions.UTurn;
}
_NodeBasedDynamicGraph::EdgeIterator edge1 = _nodeBasedGraph->FindEdge(u, v);
_NodeBasedDynamicGraph::EdgeIterator edge2 = _nodeBasedGraph->FindEdge(v, w);
_NodeBasedDynamicGraph::EdgeData & data1 = _nodeBasedGraph->GetEdgeData(edge1);
_NodeBasedDynamicGraph::EdgeData & data2 = _nodeBasedGraph->GetEdgeData(edge2);
if(!data1.contraFlow && data2.contraFlow) {
return TurnInstructions.EnterAgainstAllowedDirection;
}
if(data1.contraFlow && !data2.contraFlow) {
return TurnInstructions.LeaveAgainstAllowedDirection;
}
//roundabouts need to be handled explicitely
if(data1.roundabout && data2.roundabout) {
//Is a turn possible? If yes, we stay on the roundabout!
if( 1 == (_nodeBasedGraph->EndEdges(v) - _nodeBasedGraph->BeginEdges(v)) ) {
//No turn possible.
return TurnInstructions.NoTurn;
}
return TurnInstructions.StayOnRoundAbout;
}
//Does turn start or end on roundabout?
if(data1.roundabout || data2.roundabout) {
//We are entering the roundabout
if( (!data1.roundabout) && data2.roundabout) {
return TurnInstructions.EnterRoundAbout;
}
//We are leaving the roundabout
if(data1.roundabout && (!data2.roundabout) ) {
return TurnInstructions.LeaveRoundAbout;
}
}
//If street names stay the same and if we are certain that it is not a roundabout, we skip it.
if( (data1.nameID == data2.nameID) && (0 != data1.nameID)) {
return TurnInstructions.NoTurn;
}
if( (data1.nameID == data2.nameID) && (0 == data1.nameID) && (_nodeBasedGraph->GetOutDegree(v) <= 2) ) {
return TurnInstructions.NoTurn;
}
return TurnInstructions.GetTurnDirectionOfInstruction(angle);
}
unsigned EdgeBasedGraphFactory::GetNumberOfNodes() const {
return _nodeBasedGraph->GetNumberOfEdges();
}
/* Get angle of line segment (A,C)->(C,B), atan2 magic, formerly cosine theorem*/
template<class CoordinateT>
double EdgeBasedGraphFactory::GetAngleBetweenTwoEdges(const CoordinateT& A, const CoordinateT& C, const CoordinateT& B) const {
const double v1x = (A.lon - C.lon)/100000.;
const double v1y = lat2y(A.lat/100000.) - lat2y(C.lat/100000.);
const double v2x = (B.lon - C.lon)/100000.;
const double v2y = lat2y(B.lat/100000.) - lat2y(C.lat/100000.);
double angle = (atan2(v2y,v2x) - atan2(v1y,v1x) )*180/M_PI;
while(angle < 0)
angle += 360;
return angle;
}