osrm-backend/unit_tests/extractor/intersection_analysis_tests.cpp
Michael Bell b17cbb4c47
Support OSM traffic signal directions (#6153)
Currently OSRM parses traffic signal nodes without consideration
for the direction in which the signal applies. This can lead
to duplicated routing penalties, especially when a forward and backward
signal are in close proximity on a way.

This commit adds support for directed signals to the extraction and
graph creation. Signal penalties are only applied in the direction
specified by the OSM tag.

We add the assignment of traffic directions to the lua scripts,
maintaining backwards compatibility with the existing boolean
traffic states.

As part of the changes to the internal structures used for tracking
traffic signals during extraction, we stop serialising/deserialising
signals to the `.osrm` file. The traffic signals are only used by
`osrm-extract` so whilst this is a data format change, it will not
break any existing user processes.
2022-08-30 10:36:49 +01:00

320 lines
13 KiB
C++

#include "extractor/intersection/intersection_analysis.hpp"
#include "extractor/graph_compressor.hpp"
#include "../common/range_tools.hpp"
#include "../unit_tests/mocks/mock_scripting_environment.hpp"
#include <boost/test/unit_test.hpp>
BOOST_AUTO_TEST_SUITE(intersection_analysis_tests)
using namespace osrm;
using namespace osrm::guidance;
using namespace osrm::extractor;
using namespace osrm::extractor::intersection;
using InputEdge = util::NodeBasedDynamicGraph::InputEdge;
using Graph = util::NodeBasedDynamicGraph;
BOOST_AUTO_TEST_CASE(simple_intersection_connectivity)
{
std::unordered_set<NodeID> barrier_nodes{6};
TrafficSignals traffic_lights;
std::vector<NodeBasedEdgeAnnotation> annotations{
{EMPTY_NAMEID, 0, INAVLID_CLASS_DATA, TRAVEL_MODE_DRIVING, false},
{EMPTY_NAMEID, 1, INAVLID_CLASS_DATA, TRAVEL_MODE_DRIVING, false}};
std::vector<TurnRestriction> restrictions{TurnRestriction{{ViaNodePath{0, 2, 1}}, false}};
CompressedEdgeContainer container;
test::MockScriptingEnvironment scripting_environment;
std::vector<UnresolvedManeuverOverride> maneuver_overrides;
TurnLanesIndexedArray turn_lanes_data{{0, 0, 3},
{TurnLaneType::uturn | TurnLaneType::left,
TurnLaneType::straight,
TurnLaneType::straight | TurnLaneType::right}};
// Graph with an additional turn restriction 0→2→1 and bollard at 6
// 0→5↔6↔7
// ↕
// 1↔2←3
// ↓
// 4
const auto unit_edge =
[](const NodeID from, const NodeID to, bool allowed, AnnotationID annotation) {
return InputEdge{from,
to,
1,
1,
1,
GeometryID{0, false},
!allowed,
NodeBasedEdgeClassification(),
annotation};
};
std::vector<InputEdge> edges = {unit_edge(0, 2, true, 1),
unit_edge(0, 5, true, 0),
unit_edge(1, 2, true, 0),
unit_edge(2, 0, true, 0),
unit_edge(2, 1, true, 0),
unit_edge(2, 3, false, 0),
unit_edge(2, 4, true, 0),
unit_edge(3, 2, true, 0),
unit_edge(4, 2, false, 0),
unit_edge(5, 0, false, 0),
unit_edge(5, 6, true, 0),
unit_edge(6, 5, true, 0),
unit_edge(6, 7, true, 0),
unit_edge(7, 6, true, 0)};
IntersectionEdgeGeometries edge_geometries{
{0, 180, 180, 10.}, // 0→2
{1, 90, 90, 10.}, // 0→5
{2, 90, 90, 10.}, // 1→2
{3, 0, 0, 10.}, // 2→0
{4, 270, 270, 10.}, // 2→1
{5, 90, 90, 10.}, // 2→3
{6, 180, 180, 10.}, // 2→4
{7, 270, 270, 10.}, // 3→2
{8, 0, 0, 10.}, // 4→2
{9, 270, 270, 10.}, // 5→0
{10, 90, 90, 10.}, // 5→6
{11, 270, 270, 10.}, // 6→5
{12, 90, 90, 10.}, // 6→7
{13, 270, 270, 10.} // 7→6
};
Graph graph(8, edges);
GraphCompressor().Compress(barrier_nodes,
traffic_lights,
scripting_environment,
restrictions,
maneuver_overrides,
graph,
annotations,
container);
REQUIRE_SIZE_RANGE(getIncomingEdges(graph, 2), 3);
REQUIRE_SIZE_RANGE(getOutgoingEdges(graph, 2), 4);
EdgeBasedNodeDataContainer node_data_container(
std::vector<EdgeBasedNode>(graph.GetNumberOfEdges()), annotations);
RestrictionGraph restriction_graph = constructRestrictionGraph(restrictions);
RestrictionMap restriction_map(restriction_graph);
const auto connectivity_matrix = [&](NodeID node) {
std::vector<bool> result;
const auto incoming_edges = getIncomingEdges(graph, node);
const auto outgoing_edges = getOutgoingEdges(graph, node);
for (const auto incoming_edge : incoming_edges)
{
for (const auto outgoing_edge : outgoing_edges)
{
result.push_back(isTurnAllowed(graph,
node_data_container,
restriction_map,
barrier_nodes,
edge_geometries,
turn_lanes_data,
incoming_edge,
outgoing_edge));
}
}
return result;
};
CHECK_EQUAL_RANGE(connectivity_matrix(0), 1, 1); // from node 2 allowed U-turn and to node 5
CHECK_EQUAL_RANGE(connectivity_matrix(1), 1); // from node 2 allowed U-turn
CHECK_EQUAL_RANGE(connectivity_matrix(2),
// clang-format off
1, 0, 0, 1, // from node 0 to node 4 and a U-turn at 2
1, 0, 0, 1, // from node 1 to nodes 0 and 4
1, 1, 0, 1 // from node 3 to nodes 0, 1 and 4
// clang-format on
);
REQUIRE_SIZE_RANGE(connectivity_matrix(3), 0); // no incoming edges, empty matrix
CHECK_EQUAL_RANGE(connectivity_matrix(4), 0); // from node 2 not allowed U-turn
CHECK_EQUAL_RANGE(connectivity_matrix(5),
// clang-format off
0, 1, // from node 0 to node 6
0, 1, // from node 6 a U-turn to node 6
// clang-format on
);
CHECK_EQUAL_RANGE(connectivity_matrix(6),
// clang-format off
1, 0, // from node 5 a U-turn to node 5
0, 1, // from node 7 a U-turn to node 7
// clang-format on
);
}
BOOST_AUTO_TEST_CASE(roundabout_intersection_connectivity)
{
std::unordered_set<NodeID> barrier_nodes;
TrafficSignals traffic_lights;
std::vector<NodeBasedEdgeAnnotation> annotations;
std::vector<TurnRestriction> restrictions;
CompressedEdgeContainer container;
test::MockScriptingEnvironment scripting_environment;
std::vector<UnresolvedManeuverOverride> maneuver_overrides;
TurnLanesIndexedArray turn_lanes_data;
// Graph with roundabout edges 5→0→2
// 1 2 3
// ↘ ↑ ↙
// 0
// ↙ ↑ ↘
// 4 5 6
const auto unit_edge = [](const NodeID from, const NodeID to, bool allowed, bool roundabout) {
return InputEdge{from,
to,
1,
1,
1,
GeometryID{0, false},
!allowed,
NodeBasedEdgeClassification{
true, false, false, roundabout, false, false, false, {}, 0, 0},
0};
};
std::vector<InputEdge> edges = {unit_edge(0, 1, false, false),
unit_edge(0, 2, true, true),
unit_edge(0, 3, false, false),
unit_edge(0, 4, true, false),
unit_edge(0, 5, false, true),
unit_edge(0, 6, true, false),
unit_edge(1, 0, true, false),
unit_edge(2, 0, false, true),
unit_edge(3, 0, true, false),
unit_edge(4, 0, false, false),
unit_edge(5, 0, true, true),
unit_edge(6, 0, false, false)};
IntersectionEdgeGeometries edge_geometries{
{0, 315, 315, 10}, // 0→1
{1, 0, 0, 10}, // 0→2
{2, 45, 45, 10}, // 0→3
{3, 225, 225, 10}, // 0→4
{4, 180, 180, 10}, // 0→5
{5, 135, 135, 10}, // 0→6
{6, 135, 135, 10}, // 1→0
{7, 180, 180, 10}, // 2→0
{8, 225, 225, 10}, // 3→0
{9, 45, 45, 10}, // 4→0
{10, 0, 0, 10}, // 5→0
{11, 315, 315, 10} // 6→0
};
Graph graph(7, edges);
GraphCompressor().Compress(barrier_nodes,
traffic_lights,
scripting_environment,
restrictions,
maneuver_overrides,
graph,
annotations,
container);
REQUIRE_SIZE_RANGE(getIncomingEdges(graph, 0), 3);
REQUIRE_SIZE_RANGE(getOutgoingEdges(graph, 0), 6);
EdgeBasedNodeDataContainer node_data_container(
std::vector<EdgeBasedNode>(graph.GetNumberOfEdges()), annotations);
RestrictionGraph restriction_graph = constructRestrictionGraph(restrictions);
RestrictionMap restriction_map(restriction_graph);
const auto connectivity_matrix = [&](NodeID node) {
std::vector<bool> result;
const auto incoming_edges = getIncomingEdges(graph, node);
const auto outgoing_edges = getOutgoingEdges(graph, node);
for (const auto incoming_edge : incoming_edges)
{
for (const auto outgoing_edge : outgoing_edges)
{
result.push_back(isTurnAllowed(graph,
node_data_container,
restriction_map,
barrier_nodes,
edge_geometries,
turn_lanes_data,
incoming_edge,
outgoing_edge));
}
}
return result;
};
CHECK_EQUAL_RANGE(connectivity_matrix(0),
// clang-format off
0, 1, 0, 0, 0, 1, // from node 1 to nodes 2 and 6
0, 1, 0, 1, 0, 0, // from node 3 to nodes 2 and 4
0, 1, 0, 1, 0, 1 // from node 5 to nodes 2, 4 and 6
// clang-format on
);
}
BOOST_AUTO_TEST_CASE(skip_degree_two_nodes)
{
std::unordered_set<NodeID> barrier_nodes{1};
TrafficSignals traffic_lights = {{2}, {}};
std::vector<NodeBasedEdgeAnnotation> annotations(1);
std::vector<TurnRestriction> restrictions;
CompressedEdgeContainer container;
test::MockScriptingEnvironment scripting_environment;
std::vector<UnresolvedManeuverOverride> maneuver_overrides;
TurnLanesIndexedArray turn_lanes_data;
// Graph
//
// 0↔1→2↔3↔4→5 7
// ↑ ↕ ↕
// 6 8 ↔ 9
//
const auto unit_edge = [](const NodeID from, const NodeID to, bool allowed) {
return InputEdge{
from, to, 1, 1, 1, GeometryID{0, false}, !allowed, NodeBasedEdgeClassification{}, 0};
};
std::vector<InputEdge> edges = {unit_edge(0, 1, true), // 0
unit_edge(1, 0, true),
unit_edge(1, 2, true),
unit_edge(2, 1, false),
unit_edge(2, 3, true),
unit_edge(3, 2, true), // 5
unit_edge(3, 4, true),
unit_edge(4, 3, true),
unit_edge(4, 5, true),
unit_edge(4, 6, false),
unit_edge(5, 4, false), // 10
unit_edge(6, 4, true),
// Circle
unit_edge(7, 8, true), // 12
unit_edge(7, 9, true),
unit_edge(8, 7, true),
unit_edge(8, 9, true),
unit_edge(9, 7, true),
unit_edge(9, 8, true)};
Graph graph(10, edges);
GraphCompressor().Compress(barrier_nodes,
traffic_lights,
scripting_environment,
restrictions,
maneuver_overrides,
graph,
annotations,
container);
BOOST_CHECK_EQUAL(graph.GetTarget(skipDegreeTwoNodes(graph, {0, 0}).edge), 4);
BOOST_CHECK_EQUAL(graph.GetTarget(skipDegreeTwoNodes(graph, {4, 7}).edge), 0);
BOOST_CHECK_EQUAL(graph.GetTarget(skipDegreeTwoNodes(graph, {5, 10}).edge), 4);
BOOST_CHECK_EQUAL(graph.GetTarget(skipDegreeTwoNodes(graph, {6, 11}).edge), 4);
BOOST_CHECK_EQUAL(graph.GetTarget(skipDegreeTwoNodes(graph, {7, 12}).edge), 7);
}
BOOST_AUTO_TEST_SUITE_END()