osrm-backend/include/engine/plugins/tile.hpp

350 lines
12 KiB
C++

#ifndef TILEPLUGIN_HPP
#define TILEPLUGIN_HPP
#include "engine/plugins/plugin_base.hpp"
#include "osrm/json_container.hpp"
#include "util/tile_bbox.hpp"
#include <protozero/varint.hpp>
#include <protozero/pbf_writer.hpp>
#include <string>
#include <cmath>
/*
* This plugin generates Mapbox Vector tiles that show the internal
* routing geometry and speed values on all road segments.
* You can use this along with a vector-tile viewer, like Mapbox GL,
* to display maps that show the exact road network that
* OSRM is routing. This is very useful for debugging routing
* errors
*/
namespace osrm
{
namespace engine
{
namespace plugins
{
// from mapnik/well_known_srs.hpp
static const double EARTH_RADIUS = 6378137.0;
static const double EARTH_DIAMETER = EARTH_RADIUS * 2.0;
static const double EARTH_CIRCUMFERENCE = EARTH_DIAMETER * M_PI;
static const double MAXEXTENT = EARTH_CIRCUMFERENCE / 2.0;
static const double M_PI_by2 = M_PI / 2.0;
static const double D2R = M_PI / 180.0;
static const double R2D = 180.0 / M_PI;
static const double M_PIby360 = M_PI / 360.0;
static const double MAXEXTENTby180 = MAXEXTENT / 180.0;
static const double MAX_LATITUDE = R2D * (2.0 * std::atan(std::exp(180.0 * D2R)) - M_PI_by2);
// from mapnik-vector-tile
namespace detail_pbf {
inline unsigned encode_length(unsigned len)
{
return (len << 3u) | 2u;
}
}
inline void lonlat2merc(double & x, double & y)
{
if (x > 180) x = 180;
else if (x < -180) x = -180;
if (y > MAX_LATITUDE) y = MAX_LATITUDE;
else if (y < -MAX_LATITUDE) y = -MAX_LATITUDE;
x = x * MAXEXTENTby180;
y = std::log(std::tan((90 + y) * M_PIby360)) * R2D;
y = y * MAXEXTENTby180;
}
const static double tile_size_ = 256.0;
void from_pixels(double shift, double & x, double & y)
{
double b = shift/2.0;
x = (x - b)/(shift/360.0);
double g = (y - b)/-(shift/(2 * M_PI));
y = R2D * (2.0 * std::atan(std::exp(g)) - M_PI_by2);
}
void xyz(int x,
int y,
int z,
double & minx,
double & miny,
double & maxx,
double & maxy)
{
minx = x * tile_size_;
miny = (y + 1.0) * tile_size_;
maxx = (x + 1.0) * tile_size_;
maxy = y * tile_size_;
double shift = std::pow(2.0,z) * tile_size_;
from_pixels(shift,minx,miny);
from_pixels(shift,maxx,maxy);
lonlat2merc(minx,miny);
lonlat2merc(maxx,maxy);
}
void xyz2wsg84(int x,
int y,
int z,
double & minx,
double & miny,
double & maxx,
double & maxy)
{
minx = x * tile_size_;
miny = (y + 1.0) * tile_size_;
maxx = (x + 1.0) * tile_size_;
maxy = y * tile_size_;
double shift = std::pow(2.0,z) * tile_size_;
from_pixels(shift,minx,miny);
from_pixels(shift,maxx,maxy);
}
// emulates mapbox::box2d
class bbox {
public:
double minx;
double miny;
double maxx;
double maxy;
bbox(double _minx,double _miny,double _maxx,double _maxy) :
minx(_minx),
miny(_miny),
maxx(_maxx),
maxy(_maxy) { }
double width() const {
return maxx - minx;
}
double height() const {
return maxy - miny;
}
};
// should start using core geometry class across mapnik, osrm, mapbox-gl-native
class point_type_d {
public:
double x;
double y;
point_type_d(double _x, double _y) :
x(_x),
y(_y) {
}
};
class point_type_i {
public:
std::int64_t x;
std::int64_t y;
point_type_i(std::int64_t _x, std::int64_t _y) :
x(_x),
y(_y) {
}
};
using line_type = std::vector<point_type_i>;
using line_typed = std::vector<point_type_d>;
// from mapnik-vector-tile
inline bool encode_linestring(line_type line,
protozero::packed_field_uint32 & geometry,
int32_t & start_x,
int32_t & start_y) {
std::size_t line_size = line.size();
//line_size -= detail_pbf::repeated_point_count(line);
if (line_size < 2)
{
return false;
}
unsigned line_to_length = static_cast<unsigned>(line_size) - 1;
auto pt = line.begin();
geometry.add_element(9); // move_to | (1 << 3)
geometry.add_element(protozero::encode_zigzag32(pt->x - start_x));
geometry.add_element(protozero::encode_zigzag32(pt->y - start_y));
start_x = pt->x;
start_y = pt->y;
geometry.add_element(detail_pbf::encode_length(line_to_length));
for (++pt; pt != line.end(); ++pt)
{
int32_t dx = pt->x - start_x;
int32_t dy = pt->y - start_y;
/*if (dx == 0 && dy == 0)
{
continue;
}*/
geometry.add_element(protozero::encode_zigzag32(dx));
geometry.add_element(protozero::encode_zigzag32(dy));
start_x = pt->x;
start_y = pt->y;
}
return true;
}
template <class DataFacadeT> class TilePlugin final : public BasePlugin
{
public:
explicit TilePlugin(DataFacadeT *facade) : facade(facade), descriptor_string("tile") {}
const std::string GetDescriptor() const override final { return descriptor_string; }
Status HandleRequest(const RouteParameters &route_parameters,
util::json::Object &json_result) override final
{
const double tile_extent = 4096.0;
double min_lon, min_lat, max_lon, max_lat;
xyz2wsg84(route_parameters.x, route_parameters.y, route_parameters.z, min_lon, min_lat, max_lon, max_lat);
FixedPointCoordinate southwest = { static_cast<int32_t>(min_lat * COORDINATE_PRECISION), static_cast<int32_t>(min_lon * COORDINATE_PRECISION) };
FixedPointCoordinate northeast = { static_cast<int32_t>(max_lat * COORDINATE_PRECISION), static_cast<int32_t>(max_lon * COORDINATE_PRECISION) };
auto edges = facade->GetEdgesInBox(southwest, northeast);
xyz(route_parameters.x, route_parameters.y, route_parameters.z, min_lon, min_lat, max_lon, max_lat);
bbox tile_bbox(min_lon, min_lat, max_lon, max_lat);
std::string buffer;
protozero::pbf_writer tile_writer(buffer);
{
protozero::pbf_writer layer_writer(tile_writer,3);
// TODO: don't write a layer if there are no features
layer_writer.add_uint32(15,2); // version
layer_writer.add_string(1,"speeds"); // name
layer_writer.add_uint32(5,4096); // extent
std::vector<double> speeds;
std::vector<bool> is_smalls;
{
unsigned id = 1;
for (const auto & edge : edges)
{
const auto a = facade->GetCoordinateOfNode(edge.u);
const auto b = facade->GetCoordinateOfNode(edge.v);
double length = osrm::util::coordinate_calculation::haversineDistance( a.lon, a.lat, b.lon, b.lat );
if (edge.forward_weight != 0 && edge.forward_edge_based_node_id != SPECIAL_NODEID) {
std::int32_t start_x = 0;
std::int32_t start_y = 0;
line_typed geo_line;
geo_line.emplace_back(a.lon / COORDINATE_PRECISION, a.lat / COORDINATE_PRECISION);
geo_line.emplace_back(b.lon / COORDINATE_PRECISION, b.lat / COORDINATE_PRECISION);
double speed = round(length / edge.forward_weight * 10 ) * 3.6;
speeds.push_back(speed);
is_smalls.push_back(edge.component.is_tiny);
line_type tile_line;
for (auto const & pt : geo_line) {
double px_merc = pt.x;
double py_merc = pt.y;
lonlat2merc(px_merc,py_merc);
// convert to integer tile coordinat
const auto px = std::round(((px_merc - tile_bbox.minx) * tile_extent/16.0 / static_cast<double>(tile_bbox.width()))*tile_extent/256.0);
const auto py = std::round(((tile_bbox.maxy - py_merc) * tile_extent/16.0 / static_cast<double>(tile_bbox.height()))*tile_extent/256.0);
tile_line.emplace_back(px,py);
}
protozero::pbf_writer feature_writer(layer_writer,2);
feature_writer.add_enum(3,2); // geometry type
feature_writer.add_uint64(1,id++); // id
{
protozero::packed_field_uint32 field(feature_writer, 2);
field.add_element(0); // "speed" tag key offset
field.add_element((speeds.size()-1)*2); // "speed" tag value offset
field.add_element(1); // "is_small" tag key offset
field.add_element((is_smalls.size()-1)*2+1); // "is_small" tag value offset
}
{
protozero::packed_field_uint32 geometry(feature_writer,4);
encode_linestring(tile_line,geometry,start_x,start_y);
}
}
if (edge.reverse_weight != 0 && edge.reverse_edge_based_node_id != SPECIAL_NODEID) {
std::int32_t start_x = 0;
std::int32_t start_y = 0;
line_typed geo_line;
geo_line.emplace_back(b.lon / COORDINATE_PRECISION, b.lat / COORDINATE_PRECISION);
geo_line.emplace_back(a.lon / COORDINATE_PRECISION, a.lat / COORDINATE_PRECISION);
double speed = round(length / edge.reverse_weight * 10 ) * 3.6;
speeds.push_back(speed);
is_smalls.push_back(edge.component.is_tiny);
line_type tile_line;
for (auto const & pt : geo_line) {
double px_merc = pt.x;
double py_merc = pt.y;
lonlat2merc(px_merc,py_merc);
// convert to integer tile coordinat
const auto px = std::round(((px_merc - tile_bbox.minx) * tile_extent/16.0 / static_cast<double>(tile_bbox.width()))*tile_extent/256.0);
const auto py = std::round(((tile_bbox.maxy - py_merc) * tile_extent/16.0 / static_cast<double>(tile_bbox.height()))*tile_extent/256.0);
tile_line.emplace_back(px,py);
}
protozero::pbf_writer feature_writer(layer_writer,2);
feature_writer.add_enum(3,2); // geometry type
feature_writer.add_uint64(1,id++); // id
{
protozero::packed_field_uint32 field(feature_writer, 2);
field.add_element(0); // "speed" tag key offset
field.add_element((speeds.size()-1)*2); // "speed" tag value offset
field.add_element(1); // "is_small" tag key offset
field.add_element((is_smalls.size()-1)*2+1); // "is_small" tag value offset
}
{
protozero::packed_field_uint32 geometry(feature_writer,4);
encode_linestring(tile_line,geometry,start_x,start_y);
}
}
}
}
layer_writer.add_string(3,"speed");
layer_writer.add_string(3,"is_small");
for (size_t i=0; i<speeds.size(); i++) {
{
protozero::pbf_writer values_writer(layer_writer,4);
values_writer.add_double(3, speeds[i]);
}
{
protozero::pbf_writer values_writer(layer_writer,4);
values_writer.add_bool(7, is_smalls[i]);
}
}
}
json_result.values["pbf"] = osrm::util::json::Buffer(buffer);
return Status::Ok;
}
private:
DataFacadeT *facade;
std::string descriptor_string;
};
}
}
}
#endif /* TILEPLUGIN_HPP */