osrm-backend/include/engine/plugins/plugin_base.hpp
2022-12-20 18:00:11 +01:00

327 lines
13 KiB
C++

#ifndef BASE_PLUGIN_HPP
#define BASE_PLUGIN_HPP
#include "engine/api/base_parameters.hpp"
#include "engine/api/base_result.hpp"
#include "engine/api/flatbuffers/fbresult_generated.h"
#include "engine/datafacade/datafacade_base.hpp"
#include "engine/phantom_node.hpp"
#include "engine/routing_algorithms.hpp"
#include "engine/status.hpp"
#include "util/coordinate.hpp"
#include "util/coordinate_calculation.hpp"
#include "util/integer_range.hpp"
#include "util/json_container.hpp"
#include <algorithm>
#include <iterator>
#include <string>
#include <vector>
#include <util/log.hpp>
namespace osrm::engine::plugins
{
class BasePlugin
{
protected:
bool CheckAllCoordinates(const std::vector<util::Coordinate> &coordinates) const
{
return !std::any_of(
std::begin(coordinates), std::end(coordinates), [](const util::Coordinate coordinate) {
return !coordinate.IsValid();
});
}
bool CheckAlgorithms(const api::BaseParameters &params,
const RoutingAlgorithmsInterface &algorithms,
osrm::engine::api::ResultT &result) const
{
if (algorithms.IsValid())
{
return true;
}
if (!algorithms.HasExcludeFlags() && !params.exclude.empty())
{
Error("NotImplemented", "This algorithm does not support exclude flags.", result);
return false;
}
if (algorithms.HasExcludeFlags() && !params.exclude.empty())
{
Error("InvalidValue", "Exclude flag combination is not supported.", result);
return false;
}
BOOST_ASSERT_MSG(false,
"There are only two reasons why the algorithm interface can be invalid.");
return false;
}
struct ErrorRenderer
{
std::string code;
std::string message;
ErrorRenderer(std::string code, std::string message)
: code(std::move(code)), message(std::move(message)){};
void operator()(util::json::Object &json_result)
{
json_result.values["code"] = code;
json_result.values["message"] = message;
};
void operator()(flatbuffers::FlatBufferBuilder &fb_result)
{
auto error = api::fbresult::CreateErrorDirect(fb_result, code.c_str(), message.c_str());
api::fbresult::FBResultBuilder response(fb_result);
response.add_error(true);
response.add_code(error);
fb_result.Finish(response.Finish());
};
void operator()(std::string &str_result)
{
str_result = str(boost::format("code=%1% message=%2%") % code % message);
};
};
Status Error(const std::string &code,
const std::string &message,
osrm::engine::api::ResultT &result) const
{
mapbox::util::apply_visitor(ErrorRenderer(code, message), result);
return Status::Error;
}
// Decides whether to use the phantom candidates from big or small components if both are found.
std::vector<PhantomNodeCandidates>
SnapPhantomNodes(std::vector<PhantomCandidateAlternatives> alternatives_list) const
{
// are all phantoms from a tiny cc?
const auto all_in_same_tiny_component =
[](const std::vector<PhantomCandidateAlternatives> &alts_list) {
return std::any_of(
alts_list.front().first.begin(),
alts_list.front().first.end(),
// For each of the first possible phantoms, check if all other
// positions in the list have a phantom from the same small component.
[&](const PhantomNode &phantom) {
if (!phantom.component.is_tiny)
{
return false;
}
const auto component_id = phantom.component.id;
return std::all_of(
std::next(alts_list.begin()),
std::end(alts_list),
[component_id](const PhantomCandidateAlternatives &alternatives) {
return candidatesHaveComponent(alternatives.first, component_id);
});
});
};
// Move the alternative into the final list
const auto fallback_to_big_component = [](PhantomCandidateAlternatives &alternatives) {
auto no_big_alternative = alternatives.second.empty();
return no_big_alternative ? std::move(alternatives.first)
: std::move(alternatives.second);
};
// Move the alternative into the final list
const auto use_closed_phantom = [](PhantomCandidateAlternatives &alternatives) {
return std::move(alternatives.first);
};
const auto no_alternatives =
std::all_of(alternatives_list.begin(),
alternatives_list.end(),
[](const PhantomCandidateAlternatives &alternatives) {
return alternatives.second.empty();
});
std::vector<PhantomNodeCandidates> snapped_phantoms;
snapped_phantoms.reserve(alternatives_list.size());
// The only case we don't snap to the big component if all phantoms are in the same small
// component
if (no_alternatives || all_in_same_tiny_component(alternatives_list))
{
std::transform(alternatives_list.begin(),
alternatives_list.end(),
std::back_inserter(snapped_phantoms),
use_closed_phantom);
}
else
{
std::transform(alternatives_list.begin(),
alternatives_list.end(),
std::back_inserter(snapped_phantoms),
fallback_to_big_component);
}
return snapped_phantoms;
}
// Falls back to default_radius for non-set radii
std::vector<std::vector<PhantomNodeWithDistance>>
GetPhantomNodesInRange(const datafacade::BaseDataFacade &facade,
const api::BaseParameters &parameters,
const std::vector<double> &radiuses,
bool use_all_edges = false) const
{
std::vector<std::vector<PhantomNodeWithDistance>> phantom_nodes(
parameters.coordinates.size());
BOOST_ASSERT(radiuses.size() == parameters.coordinates.size());
const bool use_hints = !parameters.hints.empty();
const bool use_bearings = !parameters.bearings.empty();
const bool use_approaches = !parameters.approaches.empty();
for (const auto i : util::irange<std::size_t>(0UL, parameters.coordinates.size()))
{
if (use_hints && parameters.hints[i] && !parameters.hints[i]->segment_hints.empty() &&
parameters.hints[i]->IsValid(parameters.coordinates[i], facade))
{
for (const auto &seg_hint : parameters.hints[i]->segment_hints)
{
phantom_nodes[i].push_back(PhantomNodeWithDistance{
seg_hint.phantom,
util::coordinate_calculation::greatCircleDistance(
parameters.coordinates[i], seg_hint.phantom.location)});
}
continue;
}
phantom_nodes[i] = facade.NearestPhantomNodesInRange(
parameters.coordinates[i],
radiuses[i],
use_bearings ? parameters.bearings[i] : boost::none,
use_approaches && parameters.approaches[i] ? parameters.approaches[i].get()
: engine::Approach::UNRESTRICTED,
use_all_edges);
}
return phantom_nodes;
}
std::vector<std::vector<PhantomNodeWithDistance>>
GetPhantomNodes(const datafacade::BaseDataFacade &facade,
const api::BaseParameters &parameters,
size_t number_of_results) const
{
std::vector<std::vector<PhantomNodeWithDistance>> phantom_nodes(
parameters.coordinates.size());
const bool use_hints = !parameters.hints.empty();
const bool use_bearings = !parameters.bearings.empty();
const bool use_radiuses = !parameters.radiuses.empty();
const bool use_approaches = !parameters.approaches.empty();
BOOST_ASSERT(parameters.IsValid());
for (const auto i : util::irange<std::size_t>(0UL, parameters.coordinates.size()))
{
if (use_hints && parameters.hints[i] && !parameters.hints[i]->segment_hints.empty() &&
parameters.hints[i]->IsValid(parameters.coordinates[i], facade))
{
for (const auto &seg_hint : parameters.hints[i]->segment_hints)
{
phantom_nodes[i].push_back(PhantomNodeWithDistance{
seg_hint.phantom,
util::coordinate_calculation::greatCircleDistance(
parameters.coordinates[i], seg_hint.phantom.location)});
}
continue;
}
phantom_nodes[i] = facade.NearestPhantomNodes(
parameters.coordinates[i],
number_of_results,
use_radiuses ? parameters.radiuses[i] : boost::none,
use_bearings ? parameters.bearings[i] : boost::none,
use_approaches && parameters.approaches[i] ? parameters.approaches[i].get()
: engine::Approach::UNRESTRICTED);
// we didn't find a fitting node, return error
if (phantom_nodes[i].empty())
{
break;
}
}
return phantom_nodes;
}
std::vector<PhantomCandidateAlternatives>
GetPhantomNodes(const datafacade::BaseDataFacade &facade,
const api::BaseParameters &parameters) const
{
std::vector<PhantomCandidateAlternatives> alternatives(parameters.coordinates.size());
const bool use_hints = !parameters.hints.empty();
const bool use_bearings = !parameters.bearings.empty();
const bool use_radiuses = !parameters.radiuses.empty();
const bool use_approaches = !parameters.approaches.empty();
const bool use_all_edges = parameters.snapping == api::BaseParameters::SnappingType::Any;
BOOST_ASSERT(parameters.IsValid());
for (const auto i : util::irange<std::size_t>(0UL, parameters.coordinates.size()))
{
if (use_hints && parameters.hints[i] && !parameters.hints[i]->segment_hints.empty() &&
parameters.hints[i]->IsValid(parameters.coordinates[i], facade))
{
std::transform(parameters.hints[i]->segment_hints.begin(),
parameters.hints[i]->segment_hints.end(),
std::back_inserter(alternatives[i].first),
[](const auto &seg_hint) { return seg_hint.phantom; });
// we don't set the second one - it will be marked as invalid
continue;
}
alternatives[i] = facade.NearestCandidatesWithAlternativeFromBigComponent(
parameters.coordinates[i],
use_radiuses ? parameters.radiuses[i] : boost::none,
use_bearings ? parameters.bearings[i] : boost::none,
use_approaches && parameters.approaches[i] ? parameters.approaches[i].get()
: engine::Approach::UNRESTRICTED,
use_all_edges);
// we didn't find a fitting node, return error
if (alternatives[i].first.empty())
{
// This ensures the list of phantom nodes only consists of valid nodes.
// We can use this on the call-site to detect an error.
alternatives.pop_back();
break;
}
BOOST_ASSERT(!alternatives[i].first.empty());
}
return alternatives;
}
std::string
MissingPhantomErrorMessage(const std::vector<PhantomCandidateAlternatives> &alternatives,
const std::vector<util::Coordinate> &coordinates) const
{
BOOST_ASSERT(alternatives.size() < coordinates.size());
auto mismatch =
std::mismatch(alternatives.begin(),
alternatives.end(),
coordinates.begin(),
coordinates.end(),
[](const auto &candidates_pair, const auto &coordinate) {
return std::any_of(candidates_pair.first.begin(),
candidates_pair.first.end(),
[&](const auto &phantom) {
return phantom.input_location == coordinate;
});
});
std::size_t missing_index = std::distance(alternatives.begin(), mismatch.first);
return std::string("Could not find a matching segment for coordinate ") +
std::to_string(missing_index);
}
};
} // namespace osrm::engine::plugins
#endif /* BASE_PLUGIN_HPP */