osrm-backend/algorithms/geospatial_query.hpp
2015-12-09 23:37:06 +01:00

181 lines
7.4 KiB
C++

#ifndef GEOSPATIAL_QUERY_HPP
#define GEOSPATIAL_QUERY_HPP
#include "coordinate_calculation.hpp"
#include "../typedefs.h"
#include "../data_structures/phantom_node.hpp"
#include "../util/bearing.hpp"
#include <osrm/coordinate.hpp>
#include <vector>
#include <memory>
#include <algorithm>
// Implements complex queries on top of an RTree and builds PhantomNodes from it.
//
// Only holds a weak reference on the RTree!
template <typename RTreeT> class GeospatialQuery
{
using EdgeData = typename RTreeT::EdgeData;
using CoordinateList = typename RTreeT::CoordinateList;
public:
GeospatialQuery(RTreeT &rtree_, std::shared_ptr<CoordinateList> coordinates_)
: rtree(rtree_), coordinates(coordinates_)
{
}
// Returns nearest PhantomNodes in the given bearing range within max_distance.
// Does not filter by small/big component!
std::vector<PhantomNodeWithDistance>
NearestPhantomNodesInRange(const FixedPointCoordinate &input_coordinate,
const float max_distance,
const int bearing = 0,
const int bearing_range = 180)
{
auto results =
rtree.Nearest(input_coordinate,
[this, bearing, bearing_range, max_distance](const EdgeData &data)
{
return checkSegmentBearing(data, bearing, bearing_range);
},
[max_distance](const std::size_t, const float min_dist)
{
return min_dist > max_distance;
});
return MakePhantomNodes(input_coordinate, results);
}
// Returns max_results nearest PhantomNodes in the given bearing range.
// Does not filter by small/big component!
std::vector<PhantomNodeWithDistance>
NearestPhantomNodes(const FixedPointCoordinate &input_coordinate,
const unsigned max_results,
const int bearing = 0,
const int bearing_range = 180)
{
auto results = rtree.Nearest(input_coordinate,
[this, bearing, bearing_range](const EdgeData &data)
{
return checkSegmentBearing(data, bearing, bearing_range);
},
[max_results](const std::size_t num_results, const float)
{
return num_results >= max_results;
});
return MakePhantomNodes(input_coordinate, results);
}
// Returns the nearest phantom node. If this phantom node is not from a big component
// a second phantom node is return that is the nearest coordinate in a big component.
std::pair<PhantomNode, PhantomNode>
NearestPhantomNodeWithAlternativeFromBigComponent(const FixedPointCoordinate &input_coordinate,
const int bearing = 0,
const int bearing_range = 180)
{
bool has_small_component = false;
bool has_big_component = false;
auto results = rtree.Nearest(
input_coordinate,
[this, bearing, bearing_range, &has_big_component,
&has_small_component](const EdgeData &data)
{
auto use_segment =
(!has_small_component || (!has_big_component && !data.component.is_tiny));
auto use_directions = std::make_pair(use_segment, use_segment);
if (use_segment)
{
use_directions = checkSegmentBearing(data, bearing, bearing_range);
if (use_directions.first || use_directions.second)
{
has_big_component = has_big_component || !data.component.is_tiny;
has_small_component = has_small_component || data.component.is_tiny;
}
}
return use_directions;
},
[&has_big_component](const std::size_t num_results, const float)
{
return num_results > 0 && has_big_component;
});
if (results.size() == 0)
{
return std::make_pair(PhantomNode{}, PhantomNode{});
}
BOOST_ASSERT(results.size() > 0);
return std::make_pair(MakePhantomNode(input_coordinate, results.front()).phantom_node,
MakePhantomNode(input_coordinate, results.back()).phantom_node);
}
private:
std::vector<PhantomNodeWithDistance>
MakePhantomNodes(const FixedPointCoordinate &input_coordinate,
const std::vector<EdgeData> &results) const
{
std::vector<PhantomNodeWithDistance> distance_and_phantoms(results.size());
std::transform(results.begin(), results.end(), distance_and_phantoms.begin(),
[this, &input_coordinate](const EdgeData &data)
{
return MakePhantomNode(input_coordinate, data);
});
return distance_and_phantoms;
}
PhantomNodeWithDistance MakePhantomNode(const FixedPointCoordinate &input_coordinate,
const EdgeData &data) const
{
FixedPointCoordinate point_on_segment;
float ratio;
const auto current_perpendicular_distance = coordinate_calculation::perpendicular_distance(
coordinates->at(data.u), coordinates->at(data.v), input_coordinate, point_on_segment,
ratio);
auto transformed =
PhantomNodeWithDistance { PhantomNode{data, point_on_segment}, current_perpendicular_distance };
ratio = std::min(1.f, std::max(0.f, ratio));
if (SPECIAL_NODEID != transformed.phantom_node.forward_node_id)
{
transformed.phantom_node.forward_weight *= ratio;
}
if (SPECIAL_NODEID != transformed.phantom_node.reverse_node_id)
{
transformed.phantom_node.reverse_weight *= 1.f - ratio;
}
return transformed;
}
std::pair<bool, bool> checkSegmentBearing(const EdgeData &segment,
const float filter_bearing,
const float filter_bearing_range)
{
const float forward_edge_bearing =
coordinate_calculation::bearing(coordinates->at(segment.u), coordinates->at(segment.v));
const float backward_edge_bearing = (forward_edge_bearing + 180) > 360
? (forward_edge_bearing - 180)
: (forward_edge_bearing + 180);
const bool forward_bearing_valid =
bearing::CheckInBounds(forward_edge_bearing, filter_bearing, filter_bearing_range) &&
segment.forward_edge_based_node_id != SPECIAL_NODEID;
const bool backward_bearing_valid =
bearing::CheckInBounds(backward_edge_bearing, filter_bearing, filter_bearing_range) &&
segment.reverse_edge_based_node_id != SPECIAL_NODEID;
return std::make_pair(forward_bearing_valid, backward_bearing_valid);
}
RTreeT &rtree;
const std::shared_ptr<CoordinateList> coordinates;
};
#endif