271 lines
12 KiB
C++
271 lines
12 KiB
C++
/*
|
|
open source routing machine
|
|
Copyright (C) Dennis Luxen, others 2010
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU AFFERO General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Affero General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
or see http://www.gnu.org/licenses/agpl.txt.
|
|
*/
|
|
|
|
#ifndef SEARCHENGINE_H_
|
|
#define SEARCHENGINE_H_
|
|
|
|
#include <climits>
|
|
#include <deque>
|
|
|
|
#include "BinaryHeap.h"
|
|
#include "../DataStructures/PhantomNodes.h"
|
|
#include "../typedefs.h"
|
|
|
|
struct _HeapData {
|
|
NodeID parent;
|
|
_HeapData( NodeID p ) : parent(p) { }
|
|
};
|
|
|
|
typedef BinaryHeap< NodeID, int, int, _HeapData, DenseStorage< NodeID, unsigned > > _Heap;
|
|
|
|
template<typename EdgeData, typename GraphT, typename NodeHelperT = NodeInformationHelpDesk>
|
|
class SearchEngine {
|
|
private:
|
|
const GraphT * _graph;
|
|
inline double absDouble(double input) { if(input < 0) return input*(-1); else return input;}
|
|
public:
|
|
SearchEngine(GraphT * g, NodeHelperT * nh) : _graph(g), nodeHelpDesk(nh) {}
|
|
~SearchEngine() {}
|
|
|
|
inline const void getNodeInfo(NodeID id, _Coordinate& result) const
|
|
{
|
|
result.lat = nodeHelpDesk->getLatitudeOfNode(id);
|
|
result.lon = nodeHelpDesk->getLongitudeOfNode(id);
|
|
}
|
|
|
|
unsigned int numberOfNodes() const
|
|
{
|
|
return nodeHelpDesk->getNumberOfNodes();
|
|
}
|
|
|
|
unsigned int ComputeRoute(PhantomNodes * phantomNodes, vector<NodeID> * path, _Coordinate& startCoord, _Coordinate& targetCoord)
|
|
{
|
|
bool onSameEdge = false;
|
|
_Heap * _forwardHeap = new _Heap(nodeHelpDesk->getNumberOfNodes());
|
|
_Heap * _backwardHeap = new _Heap(nodeHelpDesk->getNumberOfNodes());
|
|
NodeID middle = ( NodeID ) 0;
|
|
unsigned int _upperbound = std::numeric_limits<unsigned int>::max();
|
|
|
|
if(phantomNodes->startNode1 == UINT_MAX || phantomNodes->startNode2 == UINT_MAX)
|
|
return _upperbound;
|
|
|
|
if( (phantomNodes->startNode1 == phantomNodes->targetNode1 && phantomNodes->startNode2 == phantomNodes->targetNode2 ) )
|
|
{
|
|
EdgeID currentEdge = _graph->FindEdge( phantomNodes->startNode1, phantomNodes->startNode2 );
|
|
if(currentEdge == UINT_MAX)
|
|
currentEdge = _graph->FindEdge( phantomNodes->startNode2, phantomNodes->startNode1 );
|
|
if(currentEdge != UINT_MAX && _graph->GetEdgeData(currentEdge).forward && phantomNodes->startRatio < phantomNodes->targetRatio)
|
|
{ //upperbound auf kantenlänge setzen
|
|
// cout << "start and target on same edge" << endl;
|
|
onSameEdge = true;
|
|
_upperbound = 10 * ApproximateDistance(phantomNodes->startCoord.lat, phantomNodes->startCoord.lon, phantomNodes->targetCoord.lat, phantomNodes->targetCoord.lon);
|
|
} else if (currentEdge != UINT_MAX && !_graph->GetEdgeData(currentEdge).backward) {
|
|
EdgeWeight w = _graph->GetEdgeData( currentEdge ).distance;
|
|
_forwardHeap->Insert(phantomNodes->startNode2, absDouble(w*phantomNodes->startRatio), phantomNodes->startNode2);
|
|
_backwardHeap->Insert(phantomNodes->startNode1, absDouble(w-w*phantomNodes->startRatio), phantomNodes->startNode1);
|
|
} else if (currentEdge != UINT_MAX && _graph->GetEdgeData(currentEdge).backward)
|
|
{
|
|
onSameEdge = true;
|
|
_upperbound = 10 * ApproximateDistance(phantomNodes->startCoord.lat, phantomNodes->startCoord.lon, phantomNodes->targetCoord.lat, phantomNodes->targetCoord.lon);
|
|
}
|
|
} else {
|
|
if(phantomNodes->startNode1 != UINT_MAX)
|
|
{
|
|
EdgeID forwardEdge = _graph->FindEdge( phantomNodes->startNode1, phantomNodes->startNode2);
|
|
if(forwardEdge == UINT_MAX)
|
|
forwardEdge = _graph->FindEdge( phantomNodes->startNode2, phantomNodes->startNode1 );
|
|
if(forwardEdge != UINT_MAX && _graph->GetEdgeData(forwardEdge).forward )
|
|
{ //insert forward edge (coord, s1) in forward heap;
|
|
EdgeWeight w = _graph->GetEdgeData(forwardEdge ).distance;
|
|
_forwardHeap->Insert(phantomNodes->startNode1, absDouble(w*phantomNodes->startRatio), phantomNodes->startNode1);
|
|
}
|
|
EdgeID backEdge = _graph->FindEdge( phantomNodes->startNode2, phantomNodes->startNode1);
|
|
if(backEdge == UINT_MAX)
|
|
backEdge = _graph->FindEdge( phantomNodes->startNode1, phantomNodes->startNode2 );
|
|
if(backEdge != UINT_MAX && _graph->GetEdgeData(backEdge).backward )
|
|
{ //insert forward edge (coord, s2) in forward heap;
|
|
EdgeWeight w = _graph->GetEdgeData( backEdge ).distance;
|
|
_forwardHeap->Insert(phantomNodes->startNode2, absDouble(w-w*phantomNodes->startRatio), phantomNodes->startNode2);
|
|
}
|
|
}
|
|
if(phantomNodes->targetNode1 != UINT_MAX)
|
|
{
|
|
EdgeID forwardEdge = _graph->FindEdge( phantomNodes->targetNode1, phantomNodes->targetNode2);
|
|
if(forwardEdge == UINT_MAX)
|
|
forwardEdge = _graph->FindEdge( phantomNodes->targetNode2, phantomNodes->targetNode1 );
|
|
|
|
if(forwardEdge != UINT_MAX && _graph->GetEdgeData(forwardEdge).forward )
|
|
{ //insert forward edge (coord, s1) in forward heap;
|
|
EdgeWeight w = _graph->GetEdgeData( forwardEdge ).distance;
|
|
_backwardHeap->Insert(phantomNodes->targetNode1, absDouble(w * phantomNodes->targetRatio), phantomNodes->targetNode1);
|
|
}
|
|
EdgeID backwardEdge = _graph->FindEdge( phantomNodes->targetNode2, phantomNodes->targetNode1);
|
|
if(backwardEdge == UINT_MAX)
|
|
backwardEdge = _graph->FindEdge( phantomNodes->targetNode1, phantomNodes->targetNode2 );
|
|
if(backwardEdge != UINT_MAX && _graph->GetEdgeData( backwardEdge ).backward )
|
|
{ //insert forward edge (coord, s2) in forward heap;
|
|
EdgeWeight w = _graph->GetEdgeData( backwardEdge ).distance;
|
|
_backwardHeap->Insert(phantomNodes->targetNode2, absDouble(w - w * phantomNodes->targetRatio), phantomNodes->targetNode2);
|
|
}
|
|
}
|
|
}
|
|
|
|
while(_forwardHeap->Size() + _backwardHeap->Size() > 0)
|
|
{
|
|
if ( _forwardHeap->Size() > 0 ) {
|
|
_RoutingStep( _forwardHeap, _backwardHeap, true, &middle, &_upperbound );
|
|
}
|
|
if ( _backwardHeap->Size() > 0 ) {
|
|
_RoutingStep( _backwardHeap, _forwardHeap, false, &middle, &_upperbound );
|
|
}
|
|
}
|
|
|
|
if ( _upperbound == std::numeric_limits< unsigned int >::max() || onSameEdge )
|
|
return _upperbound;
|
|
|
|
NodeID pathNode = middle;
|
|
deque< NodeID > packedPath;
|
|
|
|
while ( pathNode != phantomNodes->startNode1 && pathNode != phantomNodes->startNode2 ) {
|
|
pathNode = _forwardHeap->GetData( pathNode ).parent;
|
|
packedPath.push_front( pathNode );
|
|
}
|
|
|
|
packedPath.push_back( middle );
|
|
pathNode = middle;
|
|
|
|
while ( pathNode != phantomNodes->targetNode2 && pathNode != phantomNodes->targetNode1 ) {
|
|
pathNode = _backwardHeap->GetData( pathNode ).parent;
|
|
packedPath.push_back( pathNode );
|
|
}
|
|
|
|
// push start node explicitely
|
|
path->push_back(packedPath[0]);
|
|
for(deque<NodeID>::size_type i = 0; i < packedPath.size()-1; i++)
|
|
{
|
|
_UnpackEdge(packedPath[i], packedPath[i+1], path);
|
|
}
|
|
|
|
packedPath.clear();
|
|
delete _forwardHeap;
|
|
delete _backwardHeap;
|
|
|
|
return _upperbound/10;
|
|
}
|
|
|
|
inline unsigned int findNearestNodeForLatLon(const _Coordinate& coord, _Coordinate& result) const
|
|
{
|
|
nodeHelpDesk->findNearestNodeIDForLatLon( coord, result );
|
|
}
|
|
|
|
inline bool FindRoutingStarts(const _Coordinate start, const _Coordinate target, PhantomNodes * routingStarts)
|
|
{
|
|
nodeHelpDesk->FindRoutingStarts(start, target, routingStarts);
|
|
}
|
|
private:
|
|
NodeHelperT * nodeHelpDesk;
|
|
|
|
void _RoutingStep(_Heap * _forwardHeap, _Heap *_backwardHeap, const bool& forwardDirection, NodeID * middle, unsigned int * _upperbound)
|
|
{
|
|
const NodeID node = _forwardHeap->DeleteMin();
|
|
const unsigned int distance = _forwardHeap->GetKey( node );
|
|
if ( _backwardHeap->WasInserted( node ) ) {
|
|
const unsigned int newDistance = _backwardHeap->GetKey( node ) + distance;
|
|
if ( newDistance < *_upperbound ) {
|
|
*middle = node;
|
|
*_upperbound = newDistance;
|
|
}
|
|
}
|
|
if ( distance > *_upperbound ) {
|
|
_forwardHeap->DeleteAll();
|
|
return;
|
|
}
|
|
for ( typename GraphT::EdgeIterator edge = _graph->BeginEdges( node ); edge < _graph->EndEdges(node); edge++ ) {
|
|
const NodeID to = _graph->GetTarget(edge);
|
|
const int edgeWeight = _graph->GetEdgeData(edge).distance;
|
|
|
|
assert( edgeWeight > 0 );
|
|
const int toDistance = distance + edgeWeight;
|
|
|
|
if(forwardDirection ? _graph->GetEdgeData(edge).forward : _graph->GetEdgeData(edge).backward )
|
|
{
|
|
//New Node discovered -> Add to Heap + Node Info Storage
|
|
if ( !_forwardHeap->WasInserted( to ) )
|
|
{
|
|
_forwardHeap->Insert( to, toDistance, node );
|
|
}
|
|
//Found a shorter Path -> Update distance
|
|
else if ( toDistance < _forwardHeap->GetKey( to ) ) {
|
|
_forwardHeap->GetData( to ).parent = node;
|
|
_forwardHeap->DecreaseKey( to, toDistance );
|
|
//new parent
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool _UnpackEdge( const NodeID source, const NodeID target, std::vector< NodeID >* path ) {
|
|
assert(source != target);
|
|
//find edge first.
|
|
typename GraphT::EdgeIterator smallestEdge = SPECIAL_EDGEID;
|
|
EdgeWeight smallestWeight = UINT_MAX;
|
|
for(typename GraphT::EdgeIterator eit = _graph->BeginEdges(source); eit < _graph->EndEdges(source); eit++)
|
|
{
|
|
const EdgeWeight weight = _graph->GetEdgeData(eit).distance;
|
|
{
|
|
if(_graph->GetTarget(eit) == target && weight < smallestWeight && _graph->GetEdgeData(eit).forward)
|
|
{
|
|
smallestEdge = eit; smallestWeight = weight;
|
|
}
|
|
}
|
|
}
|
|
if(smallestEdge == SPECIAL_EDGEID)
|
|
{
|
|
for(typename GraphT::EdgeIterator eit = _graph->BeginEdges(target); eit < _graph->EndEdges(target); eit++)
|
|
{
|
|
const EdgeWeight weight = _graph->GetEdgeData(eit).distance;
|
|
{
|
|
if(_graph->GetTarget(eit) == source && weight < smallestWeight && _graph->GetEdgeData(eit).backward)
|
|
{
|
|
smallestEdge = eit; smallestWeight = weight;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(smallestWeight != SPECIAL_EDGEID); //no edge found. This should not happen at all!
|
|
|
|
const EdgeData ed = _graph->GetEdgeData(smallestEdge);
|
|
if(ed.shortcut)
|
|
{//unpack
|
|
const NodeID middle = ed.middle;
|
|
_UnpackEdge(source, middle, path);
|
|
_UnpackEdge(middle, target, path);
|
|
return false;
|
|
} else {
|
|
assert(!ed.shortcut);
|
|
path->push_back(target);
|
|
return true;
|
|
}
|
|
}
|
|
};
|
|
|
|
#endif /* SEARCHENGINE_H_ */
|