This change takes the existing typedefs for weight, duration and distance, and makes them proper types, using the existing Alias functionality. Primarily this is to prevent bugs where the metrics are switched, but it also adds additional documentation. For example, it now makes it clear (despite the naming of variables) that most of the trip algorithm is running on the duration metric. I've not made any changes to the casts performed between metrics and numeric types, they now just more explicit.
429 lines
17 KiB
C++
429 lines
17 KiB
C++
#ifndef OSRM_ENGINE_ROUTING_BASE_HPP
|
|
#define OSRM_ENGINE_ROUTING_BASE_HPP
|
|
|
|
#include "guidance/turn_bearing.hpp"
|
|
#include "guidance/turn_instruction.hpp"
|
|
|
|
#include "engine/algorithm.hpp"
|
|
#include "engine/datafacade.hpp"
|
|
#include "engine/internal_route_result.hpp"
|
|
#include "engine/phantom_node.hpp"
|
|
#include "engine/search_engine_data.hpp"
|
|
|
|
#include "util/coordinate_calculation.hpp"
|
|
#include "util/typedefs.hpp"
|
|
|
|
#include <boost/assert.hpp>
|
|
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
|
|
#include <algorithm>
|
|
#include <functional>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <numeric>
|
|
#include <stack>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
namespace osrm
|
|
{
|
|
namespace engine
|
|
{
|
|
|
|
namespace routing_algorithms
|
|
{
|
|
|
|
namespace details
|
|
{
|
|
template <typename Heap>
|
|
void insertSourceInForwardHeap(Heap &forward_heap, const PhantomNode &source)
|
|
{
|
|
if (source.IsValidForwardSource())
|
|
{
|
|
forward_heap.Insert(source.forward_segment_id.id,
|
|
EdgeWeight{0} - source.GetForwardWeightPlusOffset(),
|
|
source.forward_segment_id.id);
|
|
}
|
|
|
|
if (source.IsValidReverseSource())
|
|
{
|
|
forward_heap.Insert(source.reverse_segment_id.id,
|
|
EdgeWeight{0} - source.GetReverseWeightPlusOffset(),
|
|
source.reverse_segment_id.id);
|
|
}
|
|
}
|
|
|
|
template <typename Heap>
|
|
void insertTargetInReverseHeap(Heap &reverse_heap, const PhantomNode &target)
|
|
{
|
|
if (target.IsValidForwardTarget())
|
|
{
|
|
reverse_heap.Insert(target.forward_segment_id.id,
|
|
target.GetForwardWeightPlusOffset(),
|
|
target.forward_segment_id.id);
|
|
}
|
|
|
|
if (target.IsValidReverseTarget())
|
|
{
|
|
reverse_heap.Insert(target.reverse_segment_id.id,
|
|
target.GetReverseWeightPlusOffset(),
|
|
target.reverse_segment_id.id);
|
|
}
|
|
}
|
|
} // namespace details
|
|
static constexpr bool FORWARD_DIRECTION = true;
|
|
static constexpr bool REVERSE_DIRECTION = false;
|
|
|
|
// Identify nodes in the forward(reverse) search direction that will require loop forcing
|
|
// e.g. if source and destination nodes are on the same segment.
|
|
std::vector<NodeID> getForwardLoopNodes(const PhantomEndpointCandidates &candidates);
|
|
std::vector<NodeID> getForwardLoopNodes(const PhantomCandidatesToTarget &candidates);
|
|
std::vector<NodeID> getBackwardLoopNodes(const PhantomEndpointCandidates &candidates);
|
|
std::vector<NodeID> getBackwardLoopNodes(const PhantomCandidatesToTarget &candidates);
|
|
|
|
// Find the specific phantom node endpoints for a given path from a list of candidates.
|
|
PhantomEndpoints endpointsFromCandidates(const PhantomEndpointCandidates &candidates,
|
|
const std::vector<NodeID> &path);
|
|
|
|
template <typename HeapNodeT>
|
|
inline bool force_loop(const std::vector<NodeID> &force_nodes, const HeapNodeT &heap_node)
|
|
{
|
|
// if loops are forced, they are so at the source
|
|
return !force_nodes.empty() &&
|
|
std::find(force_nodes.begin(), force_nodes.end(), heap_node.node) != force_nodes.end() &&
|
|
heap_node.data.parent == heap_node.node;
|
|
}
|
|
|
|
template <typename Heap>
|
|
void insertNodesInHeaps(Heap &forward_heap, Heap &reverse_heap, const PhantomEndpoints &endpoints)
|
|
{
|
|
details::insertSourceInForwardHeap(forward_heap, endpoints.source_phantom);
|
|
details::insertTargetInReverseHeap(reverse_heap, endpoints.target_phantom);
|
|
}
|
|
|
|
template <typename Heap>
|
|
void insertNodesInHeaps(Heap &forward_heap,
|
|
Heap &reverse_heap,
|
|
const PhantomEndpointCandidates &endpoint_candidates)
|
|
{
|
|
for (const auto &source : endpoint_candidates.source_phantoms)
|
|
{
|
|
details::insertSourceInForwardHeap(forward_heap, source);
|
|
}
|
|
|
|
for (const auto &target : endpoint_candidates.target_phantoms)
|
|
{
|
|
details::insertTargetInReverseHeap(reverse_heap, target);
|
|
}
|
|
}
|
|
|
|
template <typename ManyToManyQueryHeap>
|
|
void insertSourceInHeap(ManyToManyQueryHeap &heap, const PhantomNodeCandidates &source_candidates)
|
|
{
|
|
for (const auto &phantom_node : source_candidates)
|
|
{
|
|
if (phantom_node.IsValidForwardSource())
|
|
{
|
|
heap.Insert(phantom_node.forward_segment_id.id,
|
|
EdgeWeight{0} - phantom_node.GetForwardWeightPlusOffset(),
|
|
{phantom_node.forward_segment_id.id,
|
|
EdgeDuration{0} - phantom_node.GetForwardDuration(),
|
|
EdgeDistance{0} - phantom_node.GetForwardDistance()});
|
|
}
|
|
if (phantom_node.IsValidReverseSource())
|
|
{
|
|
heap.Insert(phantom_node.reverse_segment_id.id,
|
|
EdgeWeight{0} - phantom_node.GetReverseWeightPlusOffset(),
|
|
{phantom_node.reverse_segment_id.id,
|
|
EdgeDuration{0} - phantom_node.GetReverseDuration(),
|
|
EdgeDistance{0} - phantom_node.GetReverseDistance()});
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename ManyToManyQueryHeap>
|
|
void insertTargetInHeap(ManyToManyQueryHeap &heap, const PhantomNodeCandidates &target_candidates)
|
|
{
|
|
for (const auto &phantom_node : target_candidates)
|
|
{
|
|
if (phantom_node.IsValidForwardTarget())
|
|
{
|
|
heap.Insert(phantom_node.forward_segment_id.id,
|
|
phantom_node.GetForwardWeightPlusOffset(),
|
|
{phantom_node.forward_segment_id.id,
|
|
phantom_node.GetForwardDuration(),
|
|
phantom_node.GetForwardDistance()});
|
|
}
|
|
if (phantom_node.IsValidReverseTarget())
|
|
{
|
|
heap.Insert(phantom_node.reverse_segment_id.id,
|
|
phantom_node.GetReverseWeightPlusOffset(),
|
|
{phantom_node.reverse_segment_id.id,
|
|
phantom_node.GetReverseDuration(),
|
|
phantom_node.GetReverseDistance()});
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename FacadeT>
|
|
void annotatePath(const FacadeT &facade,
|
|
const PhantomEndpoints &endpoints,
|
|
const std::vector<NodeID> &unpacked_nodes,
|
|
const std::vector<EdgeID> &unpacked_edges,
|
|
std::vector<PathData> &unpacked_path)
|
|
{
|
|
BOOST_ASSERT(!unpacked_nodes.empty());
|
|
BOOST_ASSERT(unpacked_nodes.size() == unpacked_edges.size() + 1);
|
|
|
|
const auto source_node_id = unpacked_nodes.front();
|
|
const auto target_node_id = unpacked_nodes.back();
|
|
const bool start_traversed_in_reverse =
|
|
endpoints.source_phantom.forward_segment_id.id != source_node_id;
|
|
const bool target_traversed_in_reverse =
|
|
endpoints.target_phantom.forward_segment_id.id != target_node_id;
|
|
|
|
BOOST_ASSERT(endpoints.source_phantom.forward_segment_id.id == source_node_id ||
|
|
endpoints.source_phantom.reverse_segment_id.id == source_node_id);
|
|
BOOST_ASSERT(endpoints.target_phantom.forward_segment_id.id == target_node_id ||
|
|
endpoints.target_phantom.reverse_segment_id.id == target_node_id);
|
|
|
|
// datastructures to hold extracted data from geometry
|
|
std::vector<NodeID> id_vector;
|
|
std::vector<SegmentWeight> weight_vector;
|
|
std::vector<SegmentDuration> duration_vector;
|
|
std::vector<DatasourceID> datasource_vector;
|
|
|
|
const auto get_segment_geometry = [&](const auto geometry_index) {
|
|
const auto copy = [](auto &vector, const auto range) {
|
|
vector.resize(range.size());
|
|
std::copy(range.begin(), range.end(), vector.begin());
|
|
};
|
|
|
|
if (geometry_index.forward)
|
|
{
|
|
copy(id_vector, facade.GetUncompressedForwardGeometry(geometry_index.id));
|
|
copy(weight_vector, facade.GetUncompressedForwardWeights(geometry_index.id));
|
|
copy(duration_vector, facade.GetUncompressedForwardDurations(geometry_index.id));
|
|
copy(datasource_vector, facade.GetUncompressedForwardDatasources(geometry_index.id));
|
|
}
|
|
else
|
|
{
|
|
copy(id_vector, facade.GetUncompressedReverseGeometry(geometry_index.id));
|
|
copy(weight_vector, facade.GetUncompressedReverseWeights(geometry_index.id));
|
|
copy(duration_vector, facade.GetUncompressedReverseDurations(geometry_index.id));
|
|
copy(datasource_vector, facade.GetUncompressedReverseDatasources(geometry_index.id));
|
|
}
|
|
};
|
|
|
|
auto node_from = unpacked_nodes.begin(), node_last = std::prev(unpacked_nodes.end());
|
|
for (auto edge = unpacked_edges.begin(); node_from != node_last; ++node_from, ++edge)
|
|
{
|
|
const auto &edge_data = facade.GetEdgeData(*edge);
|
|
const auto turn_id = edge_data.turn_id; // edge-based graph edge index
|
|
const auto node_id = *node_from; // edge-based graph node index
|
|
|
|
const auto geometry_index = facade.GetGeometryIndex(node_id);
|
|
get_segment_geometry(geometry_index);
|
|
|
|
BOOST_ASSERT(!id_vector.empty());
|
|
BOOST_ASSERT(!datasource_vector.empty());
|
|
BOOST_ASSERT(weight_vector.size() + 1 == id_vector.size());
|
|
BOOST_ASSERT(duration_vector.size() + 1 == id_vector.size());
|
|
|
|
const bool is_first_segment = unpacked_path.empty();
|
|
|
|
std::size_t start_index = 0;
|
|
if (is_first_segment)
|
|
{
|
|
unsigned short segment_position = endpoints.source_phantom.fwd_segment_position;
|
|
if (start_traversed_in_reverse)
|
|
{
|
|
segment_position =
|
|
weight_vector.size() - endpoints.source_phantom.fwd_segment_position - 1;
|
|
}
|
|
BOOST_ASSERT(segment_position >= 0);
|
|
start_index = static_cast<std::size_t>(segment_position);
|
|
}
|
|
const std::size_t end_index = weight_vector.size();
|
|
|
|
BOOST_ASSERT(start_index < end_index);
|
|
for (std::size_t segment_idx = start_index; segment_idx < end_index; ++segment_idx)
|
|
{
|
|
unpacked_path.push_back(PathData{node_id,
|
|
id_vector[segment_idx + 1],
|
|
alias_cast<EdgeWeight>(weight_vector[segment_idx]),
|
|
{0},
|
|
alias_cast<EdgeDuration>(duration_vector[segment_idx]),
|
|
{0},
|
|
datasource_vector[segment_idx],
|
|
boost::none});
|
|
}
|
|
BOOST_ASSERT(!unpacked_path.empty());
|
|
|
|
const auto turn_duration = facade.GetDurationPenaltyForEdgeID(turn_id);
|
|
const auto turn_weight = facade.GetWeightPenaltyForEdgeID(turn_id);
|
|
|
|
unpacked_path.back().duration_until_turn += alias_cast<EdgeDuration>(turn_duration);
|
|
unpacked_path.back().duration_of_turn = alias_cast<EdgeDuration>(turn_duration);
|
|
unpacked_path.back().weight_until_turn += alias_cast<EdgeWeight>(turn_weight);
|
|
unpacked_path.back().weight_of_turn = alias_cast<EdgeWeight>(turn_weight);
|
|
unpacked_path.back().turn_edge = turn_id;
|
|
}
|
|
|
|
std::size_t start_index = 0, end_index = 0;
|
|
const auto source_geometry_id = facade.GetGeometryIndex(source_node_id).id;
|
|
const auto target_geometry = facade.GetGeometryIndex(target_node_id);
|
|
const auto is_local_path = source_geometry_id == target_geometry.id && unpacked_path.empty();
|
|
|
|
get_segment_geometry(target_geometry);
|
|
|
|
if (target_traversed_in_reverse)
|
|
{
|
|
if (is_local_path)
|
|
{
|
|
start_index = weight_vector.size() - endpoints.source_phantom.fwd_segment_position - 1;
|
|
}
|
|
end_index = weight_vector.size() - endpoints.target_phantom.fwd_segment_position - 1;
|
|
}
|
|
else
|
|
{
|
|
if (is_local_path)
|
|
{
|
|
start_index = endpoints.source_phantom.fwd_segment_position;
|
|
}
|
|
end_index = endpoints.target_phantom.fwd_segment_position;
|
|
}
|
|
|
|
// Given the following compressed geometry:
|
|
// U---v---w---x---y---Z
|
|
// s t
|
|
// s: fwd_segment 0
|
|
// t: fwd_segment 3
|
|
// -> (U, v), (v, w), (w, x)
|
|
// note that (x, t) is _not_ included but needs to be added later.
|
|
for (std::size_t segment_idx = start_index; segment_idx != end_index;
|
|
(start_index < end_index ? ++segment_idx : --segment_idx))
|
|
{
|
|
BOOST_ASSERT(segment_idx < static_cast<std::size_t>(id_vector.size() - 1));
|
|
unpacked_path.push_back(
|
|
PathData{target_node_id,
|
|
id_vector[start_index < end_index ? segment_idx + 1 : segment_idx - 1],
|
|
alias_cast<EdgeWeight>(weight_vector[segment_idx]),
|
|
{0},
|
|
alias_cast<EdgeDuration>(duration_vector[segment_idx]),
|
|
{0},
|
|
datasource_vector[segment_idx],
|
|
boost::none});
|
|
}
|
|
|
|
if (!unpacked_path.empty())
|
|
{
|
|
const auto source_weight = start_traversed_in_reverse
|
|
? endpoints.source_phantom.reverse_weight
|
|
: endpoints.source_phantom.forward_weight;
|
|
const auto source_duration = start_traversed_in_reverse
|
|
? endpoints.source_phantom.reverse_duration
|
|
: endpoints.source_phantom.forward_duration;
|
|
// The above code will create segments for (v, w), (w,x), (x, y) and (y, Z).
|
|
// However the first segment duration needs to be adjusted to the fact that the source
|
|
// phantom is in the middle of the segment. We do this by subtracting v--s from the
|
|
// duration.
|
|
|
|
// Since it's possible duration_until_turn can be less than source_weight here if
|
|
// a negative enough turn penalty is used to modify this edge weight during
|
|
// osrm-contract, we clamp to 0 here so as not to return a negative duration
|
|
// for this segment.
|
|
|
|
// TODO this creates a scenario where it's possible the duration from a phantom
|
|
// node to the first turn would be the same as from end to end of a segment,
|
|
// which is obviously incorrect and not ideal...
|
|
unpacked_path.front().weight_until_turn =
|
|
std::max(unpacked_path.front().weight_until_turn - source_weight, {0});
|
|
unpacked_path.front().duration_until_turn =
|
|
std::max(unpacked_path.front().duration_until_turn - source_duration, {0});
|
|
}
|
|
}
|
|
|
|
template <typename Algorithm>
|
|
double getPathDistance(const DataFacade<Algorithm> &facade,
|
|
const std::vector<PathData> &unpacked_path,
|
|
const PhantomNode &source_phantom,
|
|
const PhantomNode &target_phantom)
|
|
{
|
|
double distance = 0.0;
|
|
auto prev_coordinate = source_phantom.location;
|
|
|
|
for (const auto &p : unpacked_path)
|
|
{
|
|
const auto current_coordinate = facade.GetCoordinateOfNode(p.turn_via_node);
|
|
|
|
distance +=
|
|
util::coordinate_calculation::greatCircleDistance(prev_coordinate, current_coordinate);
|
|
|
|
prev_coordinate = current_coordinate;
|
|
}
|
|
|
|
distance +=
|
|
util::coordinate_calculation::greatCircleDistance(prev_coordinate, target_phantom.location);
|
|
|
|
return distance;
|
|
}
|
|
|
|
template <typename AlgorithmT>
|
|
InternalRouteResult extractRoute(const DataFacade<AlgorithmT> &facade,
|
|
const EdgeWeight weight,
|
|
const PhantomEndpointCandidates &endpoint_candidates,
|
|
const std::vector<NodeID> &unpacked_nodes,
|
|
const std::vector<EdgeID> &unpacked_edges)
|
|
{
|
|
InternalRouteResult raw_route_data;
|
|
|
|
// No path found for both target nodes?
|
|
if (INVALID_EDGE_WEIGHT == weight)
|
|
{
|
|
return raw_route_data;
|
|
}
|
|
|
|
auto phantom_endpoints = endpointsFromCandidates(endpoint_candidates, unpacked_nodes);
|
|
raw_route_data.leg_endpoints = {phantom_endpoints};
|
|
|
|
raw_route_data.shortest_path_weight = weight;
|
|
raw_route_data.unpacked_path_segments.resize(1);
|
|
raw_route_data.source_traversed_in_reverse.push_back(
|
|
(unpacked_nodes.front() != phantom_endpoints.source_phantom.forward_segment_id.id));
|
|
raw_route_data.target_traversed_in_reverse.push_back(
|
|
(unpacked_nodes.back() != phantom_endpoints.target_phantom.forward_segment_id.id));
|
|
|
|
annotatePath(facade,
|
|
phantom_endpoints,
|
|
unpacked_nodes,
|
|
unpacked_edges,
|
|
raw_route_data.unpacked_path_segments.front());
|
|
|
|
return raw_route_data;
|
|
}
|
|
|
|
template <typename FacadeT> EdgeDistance computeEdgeDistance(const FacadeT &facade, NodeID node_id)
|
|
{
|
|
const auto geometry_index = facade.GetGeometryIndex(node_id);
|
|
|
|
EdgeDistance total_distance = {0};
|
|
|
|
auto geometry_range = facade.GetUncompressedForwardGeometry(geometry_index.id);
|
|
for (auto current = geometry_range.begin(); current < geometry_range.end() - 1; ++current)
|
|
{
|
|
total_distance += util::coordinate_calculation::greatCircleDistance(
|
|
facade.GetCoordinateOfNode(*current), facade.GetCoordinateOfNode(*std::next(current)));
|
|
}
|
|
|
|
return total_distance;
|
|
}
|
|
|
|
} // namespace routing_algorithms
|
|
} // namespace engine
|
|
} // namespace osrm
|
|
|
|
#endif // OSRM_ENGINE_ROUTING_BASE_HPP
|