osrm-backend/DataStructures/SearchEngine.h

417 lines
20 KiB
C++

/*
open source routing machine
Copyright (C) Dennis Luxen, others 2010
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU AFFERO General Public License as published by
the Free Software Foundation; either version 3 of the License, or
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
or see http://www.gnu.org/licenses/agpl.txt.
*/
#ifndef SEARCHENGINE_H_
#define SEARCHENGINE_H_
#include <climits>
#include <deque>
#include "SimpleStack.h"
#include <boost/thread.hpp>
#include "BinaryHeap.h"
#include "PhantomNodes.h"
#include "../Util/StringUtil.h"
#include "../typedefs.h"
struct _HeapData {
NodeID parent;
_HeapData( NodeID p ) : parent(p) { }
};
struct _ViaHeapData {
NodeID parent;
NodeID sourceNode;
_ViaHeapData(NodeID id) :parent(id), sourceNode(id) { }
};
typedef boost::thread_specific_ptr<BinaryHeap< NodeID, NodeID, int, _HeapData, UnorderedMapStorage<NodeID, int> > > HeapPtr;
typedef boost::thread_specific_ptr<BinaryHeap< NodeID, NodeID, int, _ViaHeapData, UnorderedMapStorage<NodeID, int> > > ViaHeapPtr;
template<class EdgeData, class GraphT>
class SearchEngine {
private:
const GraphT * _graph;
NodeInformationHelpDesk * nodeHelpDesk;
std::vector<string> * _names;
static HeapPtr _forwardHeap;
static HeapPtr _backwardHeap;
static ViaHeapPtr _forwardViaHeap;
static ViaHeapPtr _backwardViaHeap;
inline double absDouble(double input) { if(input < 0) return input*(-1); else return input;}
public:
SearchEngine(GraphT * g, NodeInformationHelpDesk * nh, std::vector<string> * n = new std::vector<string>()) : _graph(g), nodeHelpDesk(nh), _names(n) {}
~SearchEngine() {}
inline const void GetCoordinatesForNodeID(NodeID id, _Coordinate& result) const {
result.lat = nodeHelpDesk->getLatitudeOfNode(id);
result.lon = nodeHelpDesk->getLongitudeOfNode(id);
}
inline void InitializeThreadLocalStorageIfNecessary() {
if(!_forwardHeap.get()) {
_forwardHeap.reset(new BinaryHeap< NodeID, NodeID, int, _HeapData, UnorderedMapStorage<NodeID, int> >(nodeHelpDesk->getNumberOfNodes()));
}
else
_forwardHeap->Clear();
if(!_backwardHeap.get()) {
_backwardHeap.reset(new BinaryHeap< NodeID, NodeID, int, _HeapData, UnorderedMapStorage<NodeID, int> >(nodeHelpDesk->getNumberOfNodes()));
}
else
_backwardHeap->Clear();
}
inline void InitializeThreadLocalViaStorageIfNecessary() {
if(!_forwardViaHeap.get()) {
_forwardViaHeap.reset(new BinaryHeap< NodeID, NodeID, int, _ViaHeapData, UnorderedMapStorage<NodeID, int> >(nodeHelpDesk->getNumberOfNodes()));
}
else
_forwardViaHeap->Clear();
if(!_backwardViaHeap.get()) {
_backwardViaHeap.reset(new BinaryHeap< NodeID, NodeID, int, _ViaHeapData, UnorderedMapStorage<NodeID, int> >(nodeHelpDesk->getNumberOfNodes()));
}
else
_backwardViaHeap->Clear();
}
int ComputeViaRoute(std::vector<PhantomNodes> & phantomNodesVector, std::vector<_PathData> & unpackedPath) {
BOOST_FOREACH(PhantomNodes & phantomNodePair, phantomNodesVector) {
if(!phantomNodePair.AtLeastOnePhantomNodeIsUINTMAX())
return INT_MAX;
}
int distance1 = 0;
int distance2 = 0;
std::deque<NodeID> packedPath1;
std::deque<NodeID> packedPath2;
//Get distance to next pair of target nodes.
BOOST_FOREACH(PhantomNodes & phantomNodePair, phantomNodesVector) {
InitializeThreadLocalViaStorageIfNecessary();
NodeID middle1 = ( NodeID ) UINT_MAX;
NodeID middle2 = ( NodeID ) UINT_MAX;
int _upperbound1 = INT_MAX;
int _upperbound2 = INT_MAX;
assert(INT_MAX != distance1);
_forwardViaHeap->Clear();
//insert new starting nodes into forward heap, adjusted by previous distances.
_forwardViaHeap->Insert(phantomNodePair.startPhantom.edgeBasedNode, distance1-phantomNodePair.startPhantom.weight1, phantomNodePair.startPhantom.edgeBasedNode);
if(phantomNodePair.startPhantom.isBidirected() ) {
_forwardViaHeap->Insert(phantomNodePair.startPhantom.edgeBasedNode+1, distance1-phantomNodePair.startPhantom.weight2, phantomNodePair.startPhantom.edgeBasedNode+1);
}
_backwardViaHeap->Clear();
//insert new backward nodes into backward heap, unadjusted.
_backwardViaHeap->Insert(phantomNodePair.targetPhantom.edgeBasedNode, phantomNodePair.targetPhantom.weight1, phantomNodePair.targetPhantom.edgeBasedNode);
if(phantomNodePair.targetPhantom.isBidirected() ) {
_backwardViaHeap->Insert(phantomNodePair.targetPhantom.edgeBasedNode+1, phantomNodePair.targetPhantom.weight2, phantomNodePair.targetPhantom.edgeBasedNode+1);
}
int offset = (phantomNodePair.startPhantom.isBidirected() ? std::max(phantomNodePair.startPhantom.weight1, phantomNodePair.startPhantom.weight2) : phantomNodePair.startPhantom.weight1) ;
offset += (phantomNodePair.targetPhantom.isBidirected() ? std::max(phantomNodePair.targetPhantom.weight1, phantomNodePair.targetPhantom.weight2) : phantomNodePair.targetPhantom.weight1) ;
//run two-Target Dijkstra routing step.
//TODO
//No path found for both target nodes?
if(INT_MAX == _upperbound1 && INT_MAX == _upperbound2) {
return INT_MAX;
}
//Add distance of segments to current sums
if(INT_MAX == distance1 || INT_MAX == _upperbound1)
distance1 = 0;
distance1 += _upperbound1;
if(INT_MAX == distance2 || INT_MAX == _upperbound2)
distance2 = 0;
distance2 += _upperbound2;
if(INT_MAX == distance1)
packedPath1.clear();
if(INT_MAX == distance2)
packedPath2.clear();
//Was one of the previous segments empty?
bool empty1 = (INT_MAX != distance1 && 0 == packedPath1.size() && 0 != packedPath2.size());
bool empty2 = (INT_MAX != distance2 && 0 == packedPath2.size() && 0 != packedPath1.size());
assert(!(empty1 && empty2));
if(empty1)
packedPath1.insert(packedPath1.begin(), packedPath2.begin(), packedPath2.end());
if(empty2)
packedPath2.insert(packedPath2.begin(), packedPath1.begin(), packedPath2.end());
//set packed paths to current paths.
NodeID pathNode = middle1;
std::deque<NodeID> temporaryPackedPath;
while(phantomNodePair.startPhantom.edgeBasedNode != pathNode && (!phantomNodePair.startPhantom.isBidirected() || phantomNodePair.startPhantom.edgeBasedNode+1 != pathNode) ) {
pathNode = _forwardHeap->GetData(pathNode).parent;
temporaryPackedPath.push_front(pathNode);
}
temporaryPackedPath.push_back(middle1);
pathNode = middle1;
while(phantomNodePair.targetPhantom.edgeBasedNode != pathNode && (!phantomNodePair.targetPhantom.isBidirected() || phantomNodePair.targetPhantom.edgeBasedNode+1 != pathNode)) {
pathNode = _backwardHeap->GetData(pathNode).parent;
temporaryPackedPath.push_back(pathNode);
}
packedPath1.insert(packedPath1.end(), temporaryPackedPath.begin(), temporaryPackedPath.end());
//TODO: add via node turn instruction
pathNode = middle2;
temporaryPackedPath.clear();
while(phantomNodePair.startPhantom.edgeBasedNode != pathNode && (!phantomNodePair.startPhantom.isBidirected() || phantomNodePair.startPhantom.edgeBasedNode+1 != pathNode) ) {
pathNode = _forwardHeap->GetData(pathNode).parent;
temporaryPackedPath.push_front(pathNode);
}
temporaryPackedPath.push_back(middle2);
pathNode = middle2;
while(phantomNodePair.targetPhantom.edgeBasedNode != pathNode && (!phantomNodePair.targetPhantom.isBidirected() || phantomNodePair.targetPhantom.edgeBasedNode+1 != pathNode)) {
pathNode = _backwardHeap->GetData(pathNode).parent;
temporaryPackedPath.push_back(pathNode);
}
//TODO: add via node turn instruction
packedPath2.insert(packedPath2.end(), temporaryPackedPath.begin(), temporaryPackedPath.end());
}
if(distance1 < distance2) {
_UnpackPath(packedPath1, unpackedPath);
} else {
_UnpackPath(packedPath2, unpackedPath);
}
return std::min(distance1, distance2);
}
int ComputeRoute(PhantomNodes & phantomNodes, std::vector<_PathData> & path) {
int _upperbound = INT_MAX;
if(!phantomNodes.AtLeastOnePhantomNodeIsUINTMAX())
return _upperbound;
InitializeThreadLocalStorageIfNecessary();
NodeID middle = ( NodeID ) UINT_MAX;
//insert start and/or target node of start edge
_forwardHeap->Insert(phantomNodes.startPhantom.edgeBasedNode, -phantomNodes.startPhantom.weight1, phantomNodes.startPhantom.edgeBasedNode);
// INFO("a) forw insert " << phantomNodes.startPhantom.edgeBasedNode << ", weight: " << -phantomNodes.startPhantom.weight1);
if(phantomNodes.startPhantom.isBidirected() ) {
// INFO("b) forw insert " << phantomNodes.startPhantom.edgeBasedNode+1 << ", weight: " << -phantomNodes.startPhantom.weight2);
_forwardHeap->Insert(phantomNodes.startPhantom.edgeBasedNode+1, -phantomNodes.startPhantom.weight2, phantomNodes.startPhantom.edgeBasedNode+1);
}
//insert start and/or target node of target edge id
_backwardHeap->Insert(phantomNodes.targetPhantom.edgeBasedNode, phantomNodes.targetPhantom.weight1, phantomNodes.targetPhantom.edgeBasedNode);
// INFO("c) back insert " << phantomNodes.targetPhantom.edgeBasedNode << ", weight: " << phantomNodes.targetPhantom.weight1);
if(phantomNodes.targetPhantom.isBidirected() ) {
_backwardHeap->Insert(phantomNodes.targetPhantom.edgeBasedNode+1, phantomNodes.targetPhantom.weight2, phantomNodes.targetPhantom.edgeBasedNode+1);
// INFO("d) back insert " << phantomNodes.targetPhantom.edgeBasedNode+1 << ", weight: " << phantomNodes.targetPhantom.weight2);
}
int offset = (phantomNodes.startPhantom.isBidirected() ? std::max(phantomNodes.startPhantom.weight1, phantomNodes.startPhantom.weight2) : phantomNodes.startPhantom.weight1) ;
offset += (phantomNodes.targetPhantom.isBidirected() ? std::max(phantomNodes.targetPhantom.weight1, phantomNodes.targetPhantom.weight2) : phantomNodes.targetPhantom.weight1) ;
while(_forwardHeap->Size() + _backwardHeap->Size() > 0){
if(_forwardHeap->Size() > 0){
_RoutingStep(_forwardHeap, _backwardHeap, true, &middle, &_upperbound, 2*offset);
}
if(_backwardHeap->Size() > 0){
_RoutingStep(_backwardHeap, _forwardHeap, false, &middle, &_upperbound, 2*offset);
}
}
// INFO("-> dist " << _upperbound);
if ( _upperbound == INT_MAX ) {
return _upperbound;
}
NodeID pathNode = middle;
deque<NodeID> packedPath;
while(phantomNodes.startPhantom.edgeBasedNode != pathNode && (!phantomNodes.startPhantom.isBidirected() || phantomNodes.startPhantom.edgeBasedNode+1 != pathNode) ) {
pathNode = _forwardHeap->GetData(pathNode).parent;
packedPath.push_front(pathNode);
}
packedPath.push_back(middle);
pathNode = middle;
while(phantomNodes.targetPhantom.edgeBasedNode != pathNode && (!phantomNodes.targetPhantom.isBidirected() || phantomNodes.targetPhantom.edgeBasedNode+1 != pathNode)) {
pathNode = _backwardHeap->GetData(pathNode).parent;
packedPath.push_back(pathNode);
}
_UnpackPath(packedPath, path);
return _upperbound;
}
inline void FindRoutingStarts(const _Coordinate & start, const _Coordinate & target, PhantomNodes & routingStarts) const {
nodeHelpDesk->FindRoutingStarts(start, target, routingStarts);
}
inline void FindPhantomNodeForCoordinate(const _Coordinate & location, PhantomNode & result) const {
nodeHelpDesk->FindPhantomNodeForCoordinate(location, result);
}
inline NodeID GetNameIDForOriginDestinationNodeID(NodeID s, NodeID t) const {
if(s == t)
return 0;
EdgeID e = _graph->FindEdge(s, t);
if(e == UINT_MAX)
e = _graph->FindEdge( t, s );
if(UINT_MAX == e) {
return 0;
}
assert(e != UINT_MAX);
const EdgeData ed = _graph->GetEdgeData(e);
return ed.via;
}
inline std::string GetEscapedNameForNameID(const NodeID nameID) const {
return ((nameID >= _names->size() || nameID == 0) ? std::string("") : HTMLEntitize(_names->at(nameID)));
}
inline std::string GetEscapedNameForEdgeBasedEdgeID(const unsigned edgeID) const {
const unsigned nameID = _graph->GetEdgeData(edgeID).nameID1;
return GetEscapedNameForNameID(nameID);
}
private:
inline void _RoutingStep(HeapPtr & _forwardHeap, HeapPtr & _backwardHeap, const bool & forwardDirection, NodeID *middle, int *_upperbound, const int edgeBasedOffset) const {
const NodeID node = _forwardHeap->DeleteMin();
const int distance = _forwardHeap->GetKey(node);
// INFO((forwardDirection ? "[forw]" : "[back]") << " settled node " << node << " at distance " << distance);
if(_backwardHeap->WasInserted(node) ){
// INFO((forwardDirection ? "[forw]" : "[back]") << " scanned node " << node << " in both directions");
const int newDistance = _backwardHeap->GetKey(node) + distance;
if(newDistance < *_upperbound ){
if(newDistance>=0 ) {
// INFO((forwardDirection ? "[forw]" : "[back]") << " -> node " << node << " is new middle at total distance " << newDistance);
*middle = node;
*_upperbound = newDistance;
} else {
// INFO((forwardDirection ? "[forw]" : "[back]") << " -> ignored " << node << " as new middle at total distance " << newDistance);
}
}
}
if(distance-edgeBasedOffset > *_upperbound){
_forwardHeap->DeleteAll();
return;
}
for ( typename GraphT::EdgeIterator edge = _graph->BeginEdges( node ); edge < _graph->EndEdges(node); edge++ ) {
const EdgeData & data = _graph->GetEdgeData(edge);
bool backwardDirectionFlag = (!forwardDirection) ? data.forward : data.backward;
if(backwardDirectionFlag) {
const NodeID to = _graph->GetTarget(edge);
const int edgeWeight = data.distance;
assert( edgeWeight > 0 );
//Stalling
if(_forwardHeap->WasInserted( to )) {
if(_forwardHeap->GetKey( to ) + edgeWeight < distance) {
return;
}
}
}
}
for ( typename GraphT::EdgeIterator edge = _graph->BeginEdges( node ); edge < _graph->EndEdges(node); edge++ ) {
const EdgeData & data = _graph->GetEdgeData(edge);
bool forwardDirectionFlag = (forwardDirection ? data.forward : data.backward );
if(forwardDirectionFlag) {
const NodeID to = _graph->GetTarget(edge);
const int edgeWeight = data.distance;
assert( edgeWeight > 0 );
const int toDistance = distance + edgeWeight;
//New Node discovered -> Add to Heap + Node Info Storage
if ( !_forwardHeap->WasInserted( to ) ) {
// INFO((forwardDirection ? "[forw]" : "[back]") << " scanning edge (" << node << "," << to << ") with distance " << toDistance << ", edge length: " << data.distance);
_forwardHeap->Insert( to, toDistance, node );
}
//Found a shorter Path -> Update distance
else if ( toDistance < _forwardHeap->GetKey( to ) ) {
// INFO((forwardDirection ? "[forw]" : "[back]") << " decrease and scanning edge (" << node << "," << to << ") from " << _forwardHeap->GetKey(to) << "to " << toDistance << ", edge length: " << data.distance);
_forwardHeap->GetData( to ).parent = node;
_forwardHeap->DecreaseKey( to, toDistance );
//new parent
}
}
}
}
inline void _UnpackPath(std::deque<NodeID> & packedPath, std::vector<_PathData> & unpackedPath) const {
const unsigned sizeOfPackedPath = packedPath.size();
SimpleStack<std::pair<NodeID, NodeID> > recursionStack(sizeOfPackedPath);
//We have to push the path in reverse order onto the stack because it's LIFO.
for(unsigned i = sizeOfPackedPath-1; i > 0; --i){
recursionStack.push(std::make_pair(packedPath[i-1], packedPath[i]));
}
std::pair<NodeID, NodeID> edge;
while(!recursionStack.empty()) {
edge = recursionStack.top();
recursionStack.pop();
typename GraphT::EdgeIterator smallestEdge = SPECIAL_EDGEID;
int smallestWeight = INT_MAX;
for(typename GraphT::EdgeIterator eit = _graph->BeginEdges(edge.first);eit < _graph->EndEdges(edge.first);++eit){
const int weight = _graph->GetEdgeData(eit).distance;
if(_graph->GetTarget(eit) == edge.second && weight < smallestWeight && _graph->GetEdgeData(eit).forward){
smallestEdge = eit;
smallestWeight = weight;
}
}
if(smallestEdge == SPECIAL_EDGEID){
for(typename GraphT::EdgeIterator eit = _graph->BeginEdges(edge.second);eit < _graph->EndEdges(edge.second);++eit){
const int weight = _graph->GetEdgeData(eit).distance;
if(_graph->GetTarget(eit) == edge.first && weight < smallestWeight && _graph->GetEdgeData(eit).backward){
smallestEdge = eit;
smallestWeight = weight;
}
}
}
assert(smallestWeight != INT_MAX);
const EdgeData& ed = _graph->GetEdgeData(smallestEdge);
if(ed.shortcut) {//unpack
const NodeID middle = ed.via;
//again, we need to this in reversed order
recursionStack.push(std::make_pair(middle, edge.second));
recursionStack.push(std::make_pair(edge.first, middle));
} else {
assert(!ed.shortcut);
unpackedPath.push_back(_PathData(ed.via, ed.nameID, ed.turnInstruction, ed.distance) );
}
}
}
};
template<class EdgeData, class GraphT> HeapPtr SearchEngine<EdgeData, GraphT>::_forwardHeap;
template<class EdgeData, class GraphT> HeapPtr SearchEngine<EdgeData, GraphT>::_backwardHeap;
template<class EdgeData, class GraphT> ViaHeapPtr SearchEngine<EdgeData, GraphT>::_forwardViaHeap;
template<class EdgeData, class GraphT> ViaHeapPtr SearchEngine<EdgeData, GraphT>::_backwardViaHeap;
#endif /* SEARCHENGINE_H_ */