osrm-backend/include/engine/guidance/assemble_geometry.hpp
Michael Krasnyk 988b6e3311 Split intersection analysis and guidance code
Intersection analysis occupy in osrm::extractor::intersection namespace
and guidance code osrm::guidance
2018-02-02 11:33:38 -05:00

150 lines
6.4 KiB
C++

#ifndef ENGINE_GUIDANCE_ASSEMBLE_GEOMETRY_HPP
#define ENGINE_GUIDANCE_ASSEMBLE_GEOMETRY_HPP
#include "extractor/travel_mode.hpp"
#include "guidance/turn_instruction.hpp"
#include "engine/datafacade/datafacade_base.hpp"
#include "engine/guidance/leg_geometry.hpp"
#include "engine/guidance/route_step.hpp"
#include "engine/internal_route_result.hpp"
#include "engine/phantom_node.hpp"
#include "util/coordinate.hpp"
#include "util/coordinate_calculation.hpp"
#include <algorithm>
#include <utility>
#include <vector>
namespace osrm
{
namespace engine
{
namespace guidance
{
// Extracts the geometry for each segment and calculates the traveled distance
// Combines the geometry form the phantom node with the PathData
// to the full route geometry.
//
// turn 0 1 2 3 4
// s...x...y...z...t
// |---|segment 0
// |---| segment 1
// |---| segment 2
// |---| segment 3
inline LegGeometry assembleGeometry(const datafacade::BaseDataFacade &facade,
const std::vector<PathData> &leg_data,
const PhantomNode &source_node,
const PhantomNode &target_node,
const bool reversed_source,
const bool reversed_target)
{
LegGeometry geometry;
// segment 0 first and last
geometry.segment_offsets.push_back(0);
geometry.locations.push_back(source_node.location);
// u * v
// 0 -- 1 -- 2 -- 3
// fwd_segment_position: 1
// source node fwd: 1 1 -> 2 -> 3
// source node rev: 2 0 <- 1 <- 2
const auto source_segment_start_coordinate =
source_node.fwd_segment_position + (reversed_source ? 1 : 0);
const auto source_node_id =
reversed_source ? source_node.reverse_segment_id.id : source_node.forward_segment_id.id;
const auto source_geometry_id = facade.GetGeometryIndex(source_node_id).id;
std::vector<NodeID> source_geometry = facade.GetUncompressedForwardGeometry(source_geometry_id);
geometry.osm_node_ids.push_back(
facade.GetOSMNodeIDOfNode(source_geometry[source_segment_start_coordinate]));
auto cumulative_distance = 0.;
auto current_distance = 0.;
auto prev_coordinate = geometry.locations.front();
for (const auto &path_point : leg_data)
{
auto coordinate = facade.GetCoordinateOfNode(path_point.turn_via_node);
current_distance =
util::coordinate_calculation::haversineDistance(prev_coordinate, coordinate);
cumulative_distance += current_distance;
// all changes to this check have to be matched with assemble_steps
if (path_point.turn_instruction.type != osrm::guidance::TurnType::NoTurn)
{
geometry.segment_distances.push_back(cumulative_distance);
geometry.segment_offsets.push_back(geometry.locations.size());
cumulative_distance = 0.;
}
prev_coordinate = coordinate;
const auto osm_node_id = facade.GetOSMNodeIDOfNode(path_point.turn_via_node);
if (osm_node_id != geometry.osm_node_ids.back())
{
geometry.annotations.emplace_back(LegGeometry::Annotation{
current_distance,
// NOTE: we want annotations to include only the duration/weight
// of the segment itself. For segments immediately before
// a turn, the duration_until_turn/weight_until_turn values
// include the turn cost. To counter this, we subtract
// the duration_of_turn/weight_of_turn value, which is 0 for
// non-preceeding-turn segments, but contains the turn value
// for segments before a turn.
(path_point.duration_until_turn - path_point.duration_of_turn) / 10.,
(path_point.weight_until_turn - path_point.weight_of_turn) /
facade.GetWeightMultiplier(),
path_point.datasource_id});
geometry.locations.push_back(std::move(coordinate));
geometry.osm_node_ids.push_back(osm_node_id);
}
}
current_distance =
util::coordinate_calculation::haversineDistance(prev_coordinate, target_node.location);
cumulative_distance += current_distance;
// segment leading to the target node
geometry.segment_distances.push_back(cumulative_distance);
const auto target_node_id =
reversed_target ? target_node.reverse_segment_id.id : target_node.forward_segment_id.id;
const auto target_geometry_id = facade.GetGeometryIndex(target_node_id).id;
const std::vector<DatasourceID> forward_datasources =
facade.GetUncompressedForwardDatasources(target_geometry_id);
// FIXME if source and target phantoms are on the same segment then duration and weight
// will be from one projected point till end of segment
// testbot/weight.feature:Start and target on the same and adjacent edge
geometry.annotations.emplace_back(LegGeometry::Annotation{
current_distance,
(reversed_target ? target_node.reverse_duration : target_node.forward_duration) / 10.,
(reversed_target ? target_node.reverse_weight : target_node.forward_weight) /
facade.GetWeightMultiplier(),
forward_datasources[target_node.fwd_segment_position]});
geometry.segment_offsets.push_back(geometry.locations.size());
geometry.locations.push_back(target_node.location);
// u * v
// 0 -- 1 -- 2 -- 3
// fwd_segment_position: 1
// target node fwd: 2 0 -> 1 -> 2
// target node rev: 1 1 <- 2 <- 3
const auto target_segment_end_coordinate =
target_node.fwd_segment_position + (reversed_target ? 0 : 1);
const std::vector<NodeID> target_geometry =
facade.GetUncompressedForwardGeometry(target_geometry_id);
geometry.osm_node_ids.push_back(
facade.GetOSMNodeIDOfNode(target_geometry[target_segment_end_coordinate]));
BOOST_ASSERT(geometry.segment_distances.size() == geometry.segment_offsets.size() - 1);
BOOST_ASSERT(geometry.locations.size() > geometry.segment_distances.size());
BOOST_ASSERT(geometry.annotations.size() == geometry.locations.size() - 1);
return geometry;
}
}
}
}
#endif