477 lines
26 KiB
C++
477 lines
26 KiB
C++
/*
|
|
open source routing machine
|
|
Copyright (C) Dennis Luxen, others 2010
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU AFFERO General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Affero General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
or see http://www.gnu.org/licenses/agpl.txt.
|
|
*/
|
|
|
|
#ifndef ALTERNATIVEROUTES_H_
|
|
#define ALTERNATIVEROUTES_H_
|
|
|
|
#include <cmath>
|
|
|
|
#include "BasicRoutingInterface.h"
|
|
|
|
const double VIAPATH_ALPHA = 0.25;
|
|
const double VIAPATH_EPSILON = 0.25;
|
|
const double VIAPATH_GAMMA = 0.80;
|
|
|
|
template<class QueryDataT>
|
|
class AlternativeRouting : private BasicRoutingInterface<QueryDataT>{
|
|
typedef BasicRoutingInterface<QueryDataT> super;
|
|
typedef std::pair<NodeID, int> PreselectedNode;
|
|
typedef typename QueryDataT::HeapPtr HeapPtr;
|
|
typedef std::pair<NodeID, NodeID> UnpackEdge;
|
|
|
|
struct RankedCandidateNode {
|
|
RankedCandidateNode(NodeID n, int l, int s) : node(n), length(l), sharing(s) {}
|
|
NodeID node;
|
|
int length;
|
|
int sharing;
|
|
bool operator<(const RankedCandidateNode& other) const {
|
|
return (2*length + sharing) < (2*other.length + other.sharing);
|
|
}
|
|
};
|
|
public:
|
|
|
|
AlternativeRouting(QueryDataT & qd) : super(qd) { }
|
|
|
|
~AlternativeRouting() {}
|
|
|
|
void operator()(const PhantomNodes & phantomNodePair, RawRouteData & rawRouteData) {
|
|
if(!phantomNodePair.AtLeastOnePhantomNodeIsUINTMAX()) {
|
|
rawRouteData.lengthOfShortestPath = rawRouteData.lengthOfAlternativePath = INT_MAX;
|
|
return;
|
|
}
|
|
std::vector<NodeID> alternativePath;
|
|
std::vector<NodeID> viaNodeCandidates;
|
|
std::deque <NodeID> packedShortestPath;
|
|
std::vector<PreselectedNode> nodesThatPassPreselection;
|
|
|
|
HeapPtr & forwardHeap = super::_queryData.forwardHeap;
|
|
HeapPtr & backwardHeap = super::_queryData.backwardHeap;
|
|
HeapPtr & forwardHeap2 = super::_queryData.forwardHeap2;
|
|
HeapPtr & backwardHeap2 = super::_queryData.backwardHeap2;
|
|
|
|
//Initialize Queues
|
|
super::_queryData.InitializeOrClearFirstThreadLocalStorage();
|
|
int _upperBound = INT_MAX;
|
|
NodeID middle = UINT_MAX;
|
|
forwardHeap->Insert(phantomNodePair.startPhantom.edgeBasedNode, -phantomNodePair.startPhantom.weight1, phantomNodePair.startPhantom.edgeBasedNode);
|
|
if(phantomNodePair.startPhantom.isBidirected() ) {
|
|
forwardHeap->Insert(phantomNodePair.startPhantom.edgeBasedNode+1, -phantomNodePair.startPhantom.weight2, phantomNodePair.startPhantom.edgeBasedNode+1);
|
|
}
|
|
backwardHeap->Insert(phantomNodePair.targetPhantom.edgeBasedNode, phantomNodePair.targetPhantom.weight1, phantomNodePair.targetPhantom.edgeBasedNode);
|
|
if(phantomNodePair.targetPhantom.isBidirected() ) {
|
|
backwardHeap->Insert(phantomNodePair.targetPhantom.edgeBasedNode+1, phantomNodePair.targetPhantom.weight2, phantomNodePair.targetPhantom.edgeBasedNode+1);
|
|
}
|
|
|
|
const int offset = (phantomNodePair.startPhantom.isBidirected() ? std::max(phantomNodePair.startPhantom.weight1, phantomNodePair.startPhantom.weight2) : phantomNodePair.startPhantom.weight1)
|
|
+ (phantomNodePair.targetPhantom.isBidirected() ? std::max(phantomNodePair.targetPhantom.weight1, phantomNodePair.targetPhantom.weight2) : phantomNodePair.targetPhantom.weight1);
|
|
|
|
//exploration dijkstra from nodes s and t until deletemin/(1+epsilon) > _lengthOfShortestPath
|
|
while(forwardHeap->Size() + backwardHeap->Size() > 0){
|
|
if(forwardHeap->Size() > 0){
|
|
AlternativeRoutingStep(forwardHeap, backwardHeap, &middle, &_upperBound, 2*offset, true, viaNodeCandidates);
|
|
}
|
|
if(backwardHeap->Size() > 0){
|
|
AlternativeRoutingStep(backwardHeap, forwardHeap, &middle, &_upperBound, 2*offset, false, viaNodeCandidates);
|
|
}
|
|
}
|
|
std::sort(viaNodeCandidates.begin(), viaNodeCandidates.end());
|
|
int size = std::unique(viaNodeCandidates.begin(), viaNodeCandidates.end())- viaNodeCandidates.begin();
|
|
viaNodeCandidates.resize(size);
|
|
|
|
//save (packed) shortest path of shortest path and keep it for later use.
|
|
//we need it during the checks and dont want to recompute it always
|
|
super::RetrievePackedPathFromHeap(forwardHeap, backwardHeap, middle, packedShortestPath);
|
|
|
|
//ch-pruning of via nodes in both search spaces
|
|
BOOST_FOREACH(const NodeID node, viaNodeCandidates) {
|
|
if(node == middle) //subpath optimality tells us that this case is just the shortest path
|
|
continue;
|
|
|
|
int sharing = approximateAmountOfSharing(node, forwardHeap, backwardHeap, packedShortestPath);
|
|
int length1 = forwardHeap->GetKey(node);
|
|
int length2 = backwardHeap->GetKey(node);
|
|
bool lengthPassed = (length1+length2 < _upperBound*(1+VIAPATH_EPSILON));
|
|
bool sharingPassed = (sharing <= _upperBound*VIAPATH_GAMMA);
|
|
bool stretchPassed = length1+length2 - sharing < (1.+VIAPATH_EPSILON)*(_upperBound-sharing);
|
|
|
|
if(lengthPassed && sharingPassed && stretchPassed)
|
|
nodesThatPassPreselection.push_back(std::make_pair(node, length1+length2));
|
|
}
|
|
|
|
std::vector<RankedCandidateNode > rankedCandidates;
|
|
|
|
//prioritizing via nodes for deep inspection
|
|
BOOST_FOREACH(const PreselectedNode node, nodesThatPassPreselection) {
|
|
int lengthOfViaPath = 0, sharingOfViaPath = 0;
|
|
|
|
computeLengthAndSharingOfViaPath(node, &lengthOfViaPath, &sharingOfViaPath, offset, packedShortestPath);
|
|
if(sharingOfViaPath <= VIAPATH_GAMMA*_upperBound)
|
|
rankedCandidates.push_back(RankedCandidateNode(node.first, lengthOfViaPath, sharingOfViaPath));
|
|
}
|
|
|
|
std::sort(rankedCandidates.begin(), rankedCandidates.end());
|
|
|
|
NodeID selectedViaNode = UINT_MAX;
|
|
int lengthOfViaPath = INT_MAX;
|
|
NodeID s_v_middle = UINT_MAX, v_t_middle = UINT_MAX;
|
|
BOOST_FOREACH(const RankedCandidateNode candidate, rankedCandidates){
|
|
if(viaNodeCandidatePasses_T_Test(forwardHeap, backwardHeap, forwardHeap2, backwardHeap2, candidate, offset, _upperBound, &lengthOfViaPath, &s_v_middle, &v_t_middle)) {
|
|
// select first admissable
|
|
selectedViaNode = candidate.node;
|
|
break;
|
|
}
|
|
}
|
|
|
|
//Unpack shortest path and alternative, if they exist
|
|
if(INT_MAX != _upperBound) {
|
|
super::UnpackPath(packedShortestPath, rawRouteData.computedShortestPath);
|
|
rawRouteData.lengthOfShortestPath = _upperBound;
|
|
} else {
|
|
rawRouteData.lengthOfShortestPath = INT_MAX;
|
|
}
|
|
|
|
if(selectedViaNode != UINT_MAX) {
|
|
retrievePackedViaPath(forwardHeap, backwardHeap, forwardHeap2, backwardHeap2, s_v_middle, v_t_middle, rawRouteData.computedAlternativePath);
|
|
rawRouteData.lengthOfAlternativePath = lengthOfViaPath;
|
|
} else {
|
|
rawRouteData.lengthOfAlternativePath = INT_MAX;
|
|
}
|
|
}
|
|
|
|
private:
|
|
//unpack <s,..,v,..,t> by exploring search spaces from v
|
|
inline void retrievePackedViaPath(const HeapPtr & _forwardHeap1, const HeapPtr & _backwardHeap1, const HeapPtr & _forwardHeap2, const HeapPtr & _backwardHeap2,
|
|
const NodeID s_v_middle, const NodeID v_t_middle, std::vector<_PathData> & unpackedPath) {
|
|
//unpack [s,v)
|
|
std::deque<NodeID> packed_s_v_path, packed_v_t_path;
|
|
super::RetrievePackedPathFromHeap(_forwardHeap1, _backwardHeap2, s_v_middle, packed_s_v_path);
|
|
packed_s_v_path.resize(packed_s_v_path.size()-1);
|
|
//unpack [v,t]
|
|
super::RetrievePackedPathFromHeap(_forwardHeap2, _backwardHeap1, v_t_middle, packed_v_t_path);
|
|
packed_s_v_path.insert(packed_s_v_path.end(),packed_v_t_path.begin(), packed_v_t_path.end() );
|
|
super::UnpackPath(packed_s_v_path, unpackedPath);
|
|
}
|
|
|
|
inline void computeLengthAndSharingOfViaPath(const PreselectedNode& node, int *lengthOfViaPath, int *sharingOfViaPath,
|
|
const int offset, const std::deque<NodeID> & packedShortestPath) {
|
|
//compute and unpack <s,..,v> and <v,..,t> by exploring search spaces from v and intersecting against queues
|
|
//only half-searches have to be done at this stage
|
|
super::_queryData.InitializeOrClearSecondThreadLocalStorage();
|
|
|
|
HeapPtr & existingForwardHeap = super::_queryData.forwardHeap;
|
|
HeapPtr & existingBackwardHeap = super::_queryData.backwardHeap;
|
|
HeapPtr & newForwardHeap = super::_queryData.forwardHeap2;
|
|
HeapPtr & newBackwardHeap = super::_queryData.backwardHeap2;
|
|
|
|
std::deque < NodeID > packed_s_v_path;
|
|
std::deque < NodeID > packed_v_t_path;
|
|
|
|
std::vector<NodeID> partiallyUnpackedShortestPath;
|
|
std::vector<NodeID> partiallyUnpackedViaPath;
|
|
|
|
NodeID s_v_middle = UINT_MAX;
|
|
int upperBoundFor_s_v_Path = INT_MAX;//compute path <s,..,v> by reusing forward search from s
|
|
newBackwardHeap->Insert(node.first, 0, node.first);
|
|
while (newBackwardHeap->Size() > 0) {
|
|
super::RoutingStep(newBackwardHeap, existingForwardHeap, &s_v_middle, &upperBoundFor_s_v_Path, 2 * offset, false);
|
|
}
|
|
//compute path <v,..,t> by reusing backward search from node t
|
|
NodeID v_t_middle = UINT_MAX;
|
|
int upperBoundFor_v_t_Path = INT_MAX;
|
|
newForwardHeap->Insert(node.first, 0, node.first);
|
|
while (newForwardHeap->Size() > 0) {
|
|
super::RoutingStep(newForwardHeap, existingBackwardHeap, &v_t_middle, &upperBoundFor_v_t_Path, 2 * offset, true);
|
|
}
|
|
*lengthOfViaPath = upperBoundFor_s_v_Path + upperBoundFor_v_t_Path;
|
|
|
|
if(UINT_MAX == s_v_middle || UINT_MAX == v_t_middle)
|
|
return;
|
|
|
|
//retrieve packed paths
|
|
super::RetrievePackedPathFromHeap(existingForwardHeap, newBackwardHeap, s_v_middle, packed_s_v_path);
|
|
super::RetrievePackedPathFromHeap(newForwardHeap, existingBackwardHeap, v_t_middle, packed_v_t_path);
|
|
|
|
//partial unpacking, compute sharing
|
|
//First partially unpack s-->v until paths deviate, note length of common path.
|
|
for (unsigned i = 0, lengthOfPackedPath = std::min( packed_s_v_path.size(), packedShortestPath.size()) - 1; (i < lengthOfPackedPath); ++i) {
|
|
if (packed_s_v_path[i] == packedShortestPath[i] && packed_s_v_path[i + 1] == packedShortestPath[i + 1]) {
|
|
typename QueryDataT::Graph::EdgeIterator edgeID = super::_queryData.graph->FindEdgeInEitherDirection(packed_s_v_path[i], packed_s_v_path[i + 1]);
|
|
*sharingOfViaPath += super::_queryData.graph->GetEdgeData(edgeID).distance;
|
|
} else {
|
|
if (packed_s_v_path[i] == packedShortestPath[i]) {
|
|
super::UnpackEdge(packed_s_v_path[i], packed_s_v_path[i+1], partiallyUnpackedViaPath);
|
|
super::UnpackEdge(packedShortestPath[i], packedShortestPath[i+1], partiallyUnpackedShortestPath);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
//traverse partially unpacked edge and note common prefix
|
|
for (int i = 0, lengthOfPackedPath = std::min( partiallyUnpackedViaPath.size(), partiallyUnpackedShortestPath.size()) - 1; (i < lengthOfPackedPath) && (partiallyUnpackedViaPath[i] == partiallyUnpackedShortestPath[i] && partiallyUnpackedViaPath[i+1] == partiallyUnpackedShortestPath[i+1]); ++i) {
|
|
typename QueryDataT::Graph::EdgeIterator edgeID = super::_queryData.graph->FindEdgeInEitherDirection(partiallyUnpackedViaPath[i], partiallyUnpackedViaPath[i+1]);
|
|
*sharingOfViaPath += super::_queryData.graph->GetEdgeData(edgeID).distance;
|
|
}
|
|
|
|
//Second, partially unpack v-->t in reverse order until paths deviate and note lengths
|
|
int viaPathIndex = packed_v_t_path.size() - 1;
|
|
int shortestPathIndex = packedShortestPath.size() - 1;
|
|
for (; viaPathIndex > 0 && shortestPathIndex > 0; --viaPathIndex,--shortestPathIndex ) {
|
|
if (packed_v_t_path[viaPathIndex - 1] == packedShortestPath[shortestPathIndex - 1] && packed_v_t_path[viaPathIndex] == packedShortestPath[shortestPathIndex]) {
|
|
typename QueryDataT::Graph::EdgeIterator edgeID = super::_queryData.graph->FindEdgeInEitherDirection( packed_v_t_path[viaPathIndex - 1], packed_v_t_path[viaPathIndex]);
|
|
*sharingOfViaPath += super::_queryData.graph->GetEdgeData(edgeID).distance;
|
|
} else {
|
|
if (packed_v_t_path[viaPathIndex] == packedShortestPath[shortestPathIndex]) {
|
|
super::UnpackEdge(packed_v_t_path[viaPathIndex-1], packed_v_t_path[viaPathIndex], partiallyUnpackedViaPath);
|
|
super::UnpackEdge(packedShortestPath[shortestPathIndex-1] , packedShortestPath[shortestPathIndex], partiallyUnpackedShortestPath);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
viaPathIndex = partiallyUnpackedViaPath.size() - 1;
|
|
shortestPathIndex = partiallyUnpackedShortestPath.size() - 1;
|
|
for (; viaPathIndex > 0 && shortestPathIndex > 0; --viaPathIndex,--shortestPathIndex) {
|
|
if (partiallyUnpackedViaPath[viaPathIndex - 1] == partiallyUnpackedShortestPath[shortestPathIndex - 1] && partiallyUnpackedViaPath[viaPathIndex] == partiallyUnpackedShortestPath[shortestPathIndex]) {
|
|
typename QueryDataT::Graph::EdgeIterator edgeID = super::_queryData.graph->FindEdgeInEitherDirection( partiallyUnpackedViaPath[viaPathIndex - 1], partiallyUnpackedViaPath[viaPathIndex]);
|
|
*sharingOfViaPath += super::_queryData.graph->GetEdgeData(edgeID).distance;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
//finished partial unpacking spree! Amount of sharing is stored to appropriate poiner variable
|
|
}
|
|
|
|
inline int approximateAmountOfSharing(const NodeID middleNodeIDOfAlternativePath, HeapPtr & _forwardHeap, HeapPtr & _backwardHeap, const std::deque<NodeID> & packedShortestPath) {
|
|
std::deque<NodeID> packedAlternativePath;
|
|
super::RetrievePackedPathFromHeap(_forwardHeap, _backwardHeap, middleNodeIDOfAlternativePath, packedAlternativePath);
|
|
|
|
if(packedShortestPath.size() < 2 || packedAlternativePath.size() < 2)
|
|
return 0;
|
|
|
|
int sharing = 0;
|
|
int aindex = 0;
|
|
//compute forward sharing
|
|
while( (packedAlternativePath[aindex] == packedShortestPath[aindex]) && (packedAlternativePath[aindex+1] == packedShortestPath[aindex+1]) ) {
|
|
// INFO("retrieving edge (" << packedAlternativePath[aindex] << "," << packedAlternativePath[aindex+1] << ")");
|
|
typename QueryDataT::Graph::EdgeIterator edgeID = super::_queryData.graph->FindEdgeInEitherDirection(packedAlternativePath[aindex], packedAlternativePath[aindex+1]);
|
|
sharing += super::_queryData.graph->GetEdgeData(edgeID).distance;
|
|
++aindex;
|
|
}
|
|
|
|
aindex = packedAlternativePath.size()-1;
|
|
int bindex = packedShortestPath.size()-1;
|
|
//compute backward sharing
|
|
while( aindex > 0 && bindex > 0 && (packedAlternativePath[aindex] == packedShortestPath[bindex]) && (packedAlternativePath[aindex-1] == packedShortestPath[bindex-1]) ) {
|
|
typename QueryDataT::Graph::EdgeIterator edgeID = super::_queryData.graph->FindEdgeInEitherDirection(packedAlternativePath[aindex], packedAlternativePath[aindex-1]);
|
|
sharing += super::_queryData.graph->GetEdgeData(edgeID).distance;
|
|
--aindex; --bindex;
|
|
}
|
|
return sharing;
|
|
}
|
|
|
|
inline void AlternativeRoutingStep(HeapPtr & _forwardHeap, HeapPtr & _backwardHeap, NodeID *middle, int *_upperbound, const int edgeBasedOffset, const bool forwardDirection, std::vector<NodeID>& searchSpaceIntersection) const {
|
|
const NodeID node = _forwardHeap->DeleteMin();
|
|
|
|
const int distance = _forwardHeap->GetKey(node);
|
|
if(_backwardHeap->WasInserted(node) ){
|
|
searchSpaceIntersection.push_back(node);
|
|
|
|
const int newDistance = _backwardHeap->GetKey(node) + distance;
|
|
if(newDistance < *_upperbound ){
|
|
if(newDistance>=0 ) {
|
|
*middle = node;
|
|
*_upperbound = newDistance;
|
|
}
|
|
}
|
|
}
|
|
|
|
int scaledDistance = (distance-edgeBasedOffset)/(1.+VIAPATH_EPSILON);
|
|
if(scaledDistance > *_upperbound){
|
|
_forwardHeap->DeleteAll();
|
|
return;
|
|
}
|
|
|
|
for ( typename QueryDataT::Graph::EdgeIterator edge = super::_queryData.graph->BeginEdges( node ); edge < super::_queryData.graph->EndEdges(node); edge++ ) {
|
|
const typename QueryDataT::Graph::EdgeData & data = super::_queryData.graph->GetEdgeData(edge);
|
|
bool forwardDirectionFlag = (forwardDirection ? data.forward : data.backward );
|
|
if(forwardDirectionFlag) {
|
|
|
|
const NodeID to = super::_queryData.graph->GetTarget(edge);
|
|
const int edgeWeight = data.distance;
|
|
|
|
assert( edgeWeight > 0 );
|
|
const int toDistance = distance + edgeWeight;
|
|
|
|
//New Node discovered -> Add to Heap + Node Info Storage
|
|
if ( !_forwardHeap->WasInserted( to ) ) {
|
|
_forwardHeap->Insert( to, toDistance, node );
|
|
|
|
}
|
|
//Found a shorter Path -> Update distance
|
|
else if ( toDistance < _forwardHeap->GetKey( to ) ) {
|
|
_forwardHeap->GetData( to ).parent = node;
|
|
_forwardHeap->DecreaseKey( to, toDistance );
|
|
//new parent
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//conduct T-Test
|
|
inline bool viaNodeCandidatePasses_T_Test( HeapPtr& existingForwardHeap, HeapPtr& existingBackwardHeap, HeapPtr& newForwardHeap, HeapPtr& newBackwardHeap, const RankedCandidateNode& candidate, const int offset, const int lengthOfShortestPath, int * lengthOfViaPath, NodeID * s_v_middle, NodeID * v_t_middle) {
|
|
std::deque < NodeID > packed_s_v_path;
|
|
std::deque < NodeID > packed_v_t_path;
|
|
|
|
super::_queryData.InitializeOrClearSecondThreadLocalStorage();
|
|
*s_v_middle = UINT_MAX;
|
|
int upperBoundFor_s_v_Path = INT_MAX;
|
|
//compute path <s,..,v> by reusing forward search from s
|
|
newBackwardHeap->Insert(candidate.node, 0, candidate.node);
|
|
while (newBackwardHeap->Size() > 0) {
|
|
super::RoutingStep(newBackwardHeap, existingForwardHeap, s_v_middle, &upperBoundFor_s_v_Path, 2*offset, false);
|
|
}
|
|
|
|
if(INT_MAX == upperBoundFor_s_v_Path)
|
|
return false;
|
|
|
|
//compute path <v,..,t> by reusing backward search from t
|
|
*v_t_middle = UINT_MAX;
|
|
int upperBoundFor_v_t_Path = INT_MAX;
|
|
newForwardHeap->Insert(candidate.node, 0, candidate.node);
|
|
while (newForwardHeap->Size() > 0) {
|
|
super::RoutingStep(newForwardHeap, existingBackwardHeap, v_t_middle, &upperBoundFor_v_t_Path, 2*offset, true);
|
|
}
|
|
|
|
if(INT_MAX == upperBoundFor_v_t_Path)
|
|
return false;
|
|
|
|
*lengthOfViaPath = upperBoundFor_s_v_Path + upperBoundFor_v_t_Path;
|
|
|
|
//retrieve packed paths
|
|
super::RetrievePackedPathFromHeap(existingForwardHeap, newBackwardHeap, *s_v_middle, packed_s_v_path);
|
|
super::RetrievePackedPathFromHeap(newForwardHeap, existingBackwardHeap, *v_t_middle, packed_v_t_path);
|
|
|
|
NodeID s_P = *s_v_middle, t_P = *v_t_middle;
|
|
const int T_threshold = VIAPATH_EPSILON * lengthOfShortestPath;
|
|
int unpackedUntilDistance = 0;
|
|
|
|
std::stack<UnpackEdge> unpackStack;
|
|
//Traverse path s-->v
|
|
for (unsigned i = packed_s_v_path.size() - 1; (i > 0) && unpackStack.empty(); --i) {
|
|
typename QueryDataT::Graph::EdgeIterator edgeID = super::_queryData.graph->FindEdgeInEitherDirection( packed_s_v_path[i - 1], packed_s_v_path[i]);
|
|
int lengthOfCurrentEdge = super::_queryData.graph->GetEdgeData(edgeID).distance;
|
|
if (lengthOfCurrentEdge + unpackedUntilDistance >= T_threshold) {
|
|
unpackStack.push(std::make_pair(packed_s_v_path[i - 1], packed_s_v_path[i]));
|
|
} else {
|
|
unpackedUntilDistance += lengthOfCurrentEdge;
|
|
s_P = packed_s_v_path[i - 1];
|
|
}
|
|
}
|
|
|
|
while (!unpackStack.empty()) {
|
|
const UnpackEdge viaPathEdge = unpackStack.top();
|
|
unpackStack.pop();
|
|
typename QueryDataT::Graph::EdgeIterator edgeIDInViaPath = super::_queryData.graph->FindEdgeInEitherDirection(viaPathEdge.first, viaPathEdge.second);
|
|
if(UINT_MAX == edgeIDInViaPath)
|
|
return false;
|
|
typename QueryDataT::Graph::EdgeData currentEdgeData = super::_queryData.graph->GetEdgeData(edgeIDInViaPath);
|
|
bool IsViaEdgeShortCut = currentEdgeData.shortcut;
|
|
if (IsViaEdgeShortCut) {
|
|
const NodeID middleOfViaPath = currentEdgeData.id;
|
|
typename QueryDataT::Graph::EdgeIterator edgeIDOfSecondSegment = super::_queryData.graph->FindEdgeInEitherDirection(middleOfViaPath, viaPathEdge.second);
|
|
int lengthOfSecondSegment = super::_queryData.graph->GetEdgeData(edgeIDOfSecondSegment).distance;
|
|
//attention: !unpacking in reverse!
|
|
//Check if second segment is the one to go over treshold? if yes add second segment to stack, else push first segment to stack and add distance of second one.
|
|
if (unpackedUntilDistance + lengthOfSecondSegment >= T_threshold) {
|
|
unpackStack.push(std::make_pair(middleOfViaPath, viaPathEdge.second));
|
|
} else {
|
|
unpackedUntilDistance += lengthOfSecondSegment;
|
|
unpackStack.push(std::make_pair(viaPathEdge.first, middleOfViaPath));
|
|
}
|
|
} else {
|
|
// edge is not a shortcut, set the start node for T-Test to end of edge.
|
|
unpackedUntilDistance += currentEdgeData.distance;
|
|
s_P = viaPathEdge.first;
|
|
}
|
|
}
|
|
|
|
int lengthOfPathT_Test_Path = unpackedUntilDistance;
|
|
unpackedUntilDistance = 0;
|
|
//Traverse path s-->v
|
|
for (unsigned i = 0, lengthOfPackedPath = packed_v_t_path.size() - 1; (i < lengthOfPackedPath) && unpackStack.empty(); ++i) {
|
|
typename QueryDataT::Graph::EdgeIterator edgeID = super::_queryData.graph->FindEdgeInEitherDirection( packed_v_t_path[i], packed_v_t_path[i + 1]);
|
|
int lengthOfCurrentEdge = super::_queryData.graph->GetEdgeData(edgeID).distance;
|
|
if (lengthOfCurrentEdge + unpackedUntilDistance >= T_threshold) {
|
|
unpackStack.push( std::make_pair(packed_v_t_path[i], packed_v_t_path[i + 1]));
|
|
} else {
|
|
unpackedUntilDistance += lengthOfCurrentEdge;
|
|
t_P = packed_v_t_path[i + 1];
|
|
}
|
|
}
|
|
|
|
while (!unpackStack.empty()) {
|
|
const UnpackEdge viaPathEdge = unpackStack.top();
|
|
unpackStack.pop();
|
|
typename QueryDataT::Graph::EdgeIterator edgeIDInViaPath = super::_queryData.graph->FindEdgeInEitherDirection(viaPathEdge.first, viaPathEdge.second);
|
|
if(UINT_MAX == edgeIDInViaPath)
|
|
return false;
|
|
typename QueryDataT::Graph::EdgeData currentEdgeData = super::_queryData.graph->GetEdgeData(edgeIDInViaPath);
|
|
const bool IsViaEdgeShortCut = currentEdgeData.shortcut;
|
|
if (IsViaEdgeShortCut) {
|
|
const NodeID middleOfViaPath = currentEdgeData.id;
|
|
typename QueryDataT::Graph::EdgeIterator edgeIDOfFirstSegment = super::_queryData.graph->FindEdgeInEitherDirection(viaPathEdge.first, middleOfViaPath);
|
|
int lengthOfFirstSegment = super::_queryData.graph->GetEdgeData( edgeIDOfFirstSegment).distance;
|
|
//Check if first segment is the one to go over treshold? if yes first segment to stack, else push second segment to stack and add distance of first one.
|
|
if (unpackedUntilDistance + lengthOfFirstSegment >= T_threshold) {
|
|
unpackStack.push( std::make_pair(viaPathEdge.first, middleOfViaPath));
|
|
} else {
|
|
unpackedUntilDistance += lengthOfFirstSegment;
|
|
unpackStack.push( std::make_pair(middleOfViaPath, viaPathEdge.second));
|
|
}
|
|
} else {
|
|
// edge is not a shortcut, set the start node for T-Test to end of edge.
|
|
unpackedUntilDistance += currentEdgeData.distance;
|
|
t_P = viaPathEdge.second;
|
|
}
|
|
}
|
|
|
|
lengthOfPathT_Test_Path += unpackedUntilDistance;
|
|
//Run actual T-Test query and compare if distances equal.
|
|
HeapPtr& forwardHeap = super::_queryData.forwardHeap3;
|
|
HeapPtr& backwardHeap = super::_queryData.backwardHeap3;
|
|
super::_queryData.InitializeOrClearThirdThreadLocalStorage();
|
|
int _upperBound = INT_MAX;
|
|
NodeID middle = UINT_MAX;
|
|
forwardHeap->Insert(s_P, 0, s_P);
|
|
backwardHeap->Insert(t_P, 0, t_P);
|
|
//exploration from s and t until deletemin/(1+epsilon) > _lengthOfShortestPath
|
|
while (forwardHeap->Size() + backwardHeap->Size() > 0) {
|
|
if (forwardHeap->Size() > 0) {
|
|
super::RoutingStep(forwardHeap, backwardHeap, &middle, &_upperBound, offset, true);
|
|
}
|
|
if (backwardHeap->Size() > 0) {
|
|
super::RoutingStep(backwardHeap, forwardHeap, &middle, &_upperBound, offset, false);
|
|
}
|
|
}
|
|
return (_upperBound <= lengthOfPathT_Test_Path);
|
|
}
|
|
};
|
|
|
|
#endif /* ALTERNATIVEROUTES_H_ */
|