osrm-backend/extractNetwork.cpp

482 lines
20 KiB
C++

/*
open source routing machine
Copyright (C) Dennis Luxen, others 2010
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU AFFERO General Public License as published by
the Free Software Foundation; either version 3 of the License, or
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
or see http://www.gnu.org/licenses/agpl.txt.
*/
#include <cassert>
#include <climits>
#include <cstdlib>
#include <iostream>
#include <string>
#include <sstream>
#include <vector>
#include <libxml/xmlreader.h>
#include "typedefs.h"
using namespace std;
struct _Node : NodeInfo{
bool trafficSignal:1;
};
struct _Way {
std::vector< NodeID > path;
enum {
notSure = 0, oneway, bidirectional, opposite
} direction;
double maximumSpeed;
bool usefull:1;
bool access:1;
short type;
};
typedef google::dense_hash_map<NodeID, _Node> NodeMap;
struct _Stats {
NodeID numberOfNodes;
NodeID numberOfEdges;
NodeID numberOfWays;
// NodeID numberOfPlaces;
// NodeID numberOfOutlines;
NodeID numberOfMaxspeed;
// NodeID numberOfZeroSpeed;
// NodeID numberOfDefaultCitySpeed;
// NodeID numberOfCityEdges;
};
struct Settings {
struct SpeedProfile {
vector< double > speed;
vector< string > names;
} speedProfile;
vector<string> accessList;
int trafficLightPenalty;
int indexInAccessListOf( const string & key)
{
for(int i = 0; i< accessList.size(); i++)
{
if(accessList[i] == key)
return i;
}
return -1;
}
};
_Way _ReadXMLWay( xmlTextReaderPtr& inputReader );
_Node _ReadXMLNode( xmlTextReaderPtr& inputReader );
double ApproximateDistance( const int lat1, const int lon1, const int lat2, const int lon2 );
_Stats stats;
Settings settings;
NodeMap AllNodes;
vector<NodeID> SignalNodes;
vector<NodeID> UsedNodes;
vector<_Way> UsedWays;
int main (int argc, char *argv[])
{
if(argc <= 1)
{
cerr << "usage: " << endl << argv[0] << " <file.osm>" << endl;
exit(-1);
}
cout << "reading input file. This may take some time ..." << flush;
/*
Default Speed Profile:
motorway 120
motorway_link 80
trunk 100
trunk_link 80
secondary 100
secondary_link 50
primary 100
primary_link 50
tertiary 100
unclassified 50
residential 50
living_street 30
service 20
*/
string names[13] = { "motorway", "motorway_link", "trunk", "trunk_link", "secondary", "secondary_link", "primary", "primary_link", "tertiary", "unclassified", "residential", "living_street", "service" };
double speeds[13] = { 120, 80, 100, 80, 100, 50, 100, 50, 100, 50, 50 , 30, 20};
settings.speedProfile.names.insert(settings.speedProfile.names.begin(), names, names+13);
settings.speedProfile.speed.insert(settings.speedProfile.speed.begin(), speeds, speeds+13);
AllNodes.set_empty_key(UINT_MAX);
xmlTextReaderPtr inputReader = xmlNewTextReaderFilename( argv[1] );
ofstream nodeFile("_nodes", ios::binary);
ofstream wayFile("_ways", ios::binary);
try {
while ( xmlTextReaderRead( inputReader ) == 1 ) {
const int type = xmlTextReaderNodeType( inputReader );
//1 is Element
if ( type != 1 )
continue;
xmlChar* currentName = xmlTextReaderName( inputReader );
if ( currentName == NULL )
continue;
if ( xmlStrEqual( currentName, ( const xmlChar* ) "node" ) == 1 ) {
stats.numberOfNodes++;
_Node node = _ReadXMLNode( inputReader );
AllNodes.insert(make_pair(node.id, node) );
if ( node.trafficSignal )
SignalNodes.push_back( node.id );
}
else if ( xmlStrEqual( currentName, ( const xmlChar* ) "way" ) == 1 ) {
stats.numberOfWays++;
_Way way = _ReadXMLWay( inputReader );
if ( way.usefull && way.access && way.path.size() ) {
for ( unsigned i = 0; i < way.path.size(); ++i ) {
UsedNodes.push_back( way.path[i] );
}
if ( way.direction == _Way::opposite )
std::reverse( way.path.begin(), way.path.end() );
stats.numberOfEdges += ( int ) way.path.size() - 1;
UsedWays.push_back(way);
}
}
xmlFree( currentName );
}
sort(UsedNodes.begin(), UsedNodes.end());
UsedNodes.erase(unique(UsedNodes.begin(), UsedNodes.end()), UsedNodes.end() );
sort(SignalNodes.begin(), SignalNodes.end());
SignalNodes.erase(unique(SignalNodes.begin(), SignalNodes.end()), SignalNodes.end() );
cout << "ok" << endl;
cout << endl << "Statistics: " << endl;
cout << "All Nodes: " << stats.numberOfNodes << endl;
cout << "Used Nodes: " << UsedNodes.size() << endl;
cout << "Number of Ways: " << stats.numberOfWays << endl;
cout << "Edges in graph: " << stats.numberOfEdges << endl;
cout << "Number of ways with maxspeed information: " << stats.numberOfMaxspeed << endl;
cout << "Number of nodes with traffic lights: " << SignalNodes.size() << endl;
cout << "finished loading data" << endl;
cout << "calculated edge weights and writing to disk ..." << flush;
string name(argv[1]);
int pos=name.find(".osm"); // pos=9
if(pos!=string::npos)
{
//replace
name.replace(pos, 5, ".osrm");
} else {
name.append(".osrm");
}
ofstream fout;
fout.open(name.c_str());
fout << UsedNodes.size() << endl;
for(vector<NodeID>::size_type i = 0; i < UsedNodes.size(); i++)
{
NodeMap::iterator it = AllNodes.find(UsedNodes[i]);
assert(it!=AllNodes.end());
fout << UsedNodes[i] << " " << it->second.lon << " " << it->second.lat << "\n";
}
fout << flush;
UsedNodes.clear();
fout << stats.numberOfEdges << endl;
for(vector<_Way>::size_type i = 0; i < UsedWays.size(); i++)
{
vector< NodeID > & path = UsedWays[i].path;
double speed = UsedWays[i].maximumSpeed;
assert(UsedWays[i].type > -1 || UsedWays[i].maximumSpeed != -1);
assert(path.size()>0);
for(vector< NodeID >::size_type n = 0; n < path.size()-1; n++)
{
//insert path[n], path[n+1]
NodeMap::iterator startit = AllNodes.find(path[n]);
if(startit == AllNodes.end())
{
cerr << "Node " << path[n] << " missing albeit referenced in way. Edge skipped" << endl;
continue;
}
NodeMap::iterator targetit = AllNodes.find(path[n+1]);
if(targetit == AllNodes.end())
{
cerr << "Node << " << path[n+1] << "missing albeit reference in a way. Edge skipped" << endl;
continue;
}
double distance = ApproximateDistance(startit->second.lat, startit->second.lon, targetit->second.lat, targetit->second.lon);
if(speed == -1)
speed = settings.speedProfile.speed[UsedWays[i].type];
double weight = ( distance * 10. ) / (speed / 3.6);
double intWeight = max(1, (int) weight);
switch(UsedWays[i].direction)
{
case _Way::notSure:
fout << startit->first << " " << targetit->first << " " << max(1, (int)distance) << " " << 0 << " " << intWeight << "\n";
break;
case _Way::oneway:
fout << startit->first << " " << targetit->first << " " << max(1, (int)distance) << " " << 1 << " " << intWeight << "\n";
break;
case _Way::bidirectional:
fout << startit->first << " " << targetit->first << " " << max(1, (int)distance) << " " << 0 << " " << intWeight << "\n";
break;
case _Way::opposite:
fout << startit->first << " " << targetit->first << " " << max(1, (int)distance) << " " << 1 << " " << intWeight << "\n";
break;
default:
assert(false);
break;
}
}
}
fout.close();
cout << "ok" << endl;
} catch ( const std::exception& e ) {
cerr << "Caught Execption:" << e.what() << endl;
return false;
}
AllNodes.clear();
SignalNodes.clear();
UsedWays.clear();
xmlFreeTextReader(inputReader);
return true;
}
_Way _ReadXMLWay( xmlTextReaderPtr& inputReader ) {
_Way way;
way.direction = _Way::notSure;
way.maximumSpeed = -1;
way.type = -1;
way.usefull = false;
way.access = true;
if ( xmlTextReaderIsEmptyElement( inputReader ) != 1 ) {
const int depth = xmlTextReaderDepth( inputReader );
while ( xmlTextReaderRead( inputReader ) == 1 ) {
const int childType = xmlTextReaderNodeType( inputReader );
if ( childType != 1 && childType != 15 )
continue;
const int childDepth = xmlTextReaderDepth( inputReader );
xmlChar* childName = xmlTextReaderName( inputReader );
if ( childName == NULL )
continue;
if ( depth == childDepth && childType == 15 && xmlStrEqual( childName, ( const xmlChar* ) "way" ) == 1 ) {
xmlFree( childName );
break;
}
if ( childType != 1 ) {
xmlFree( childName );
continue;
}
if ( xmlStrEqual( childName, ( const xmlChar* ) "tag" ) == 1 ) {
xmlChar* k = xmlTextReaderGetAttribute( inputReader, ( const xmlChar* ) "k" );
xmlChar* value = xmlTextReaderGetAttribute( inputReader, ( const xmlChar* ) "v" );
if ( k != NULL && value != NULL ) {
if ( xmlStrEqual( k, ( const xmlChar* ) "oneway" ) == 1 ) {
if ( xmlStrEqual( value, ( const xmlChar* ) "no" ) == 1 || xmlStrEqual( value, ( const xmlChar* ) "false" ) == 1 || xmlStrEqual( value, ( const xmlChar* ) "0" ) == 1 )
way.direction = _Way::bidirectional;
else if ( xmlStrEqual( value, ( const xmlChar* ) "yes" ) == 1 || xmlStrEqual( value, ( const xmlChar* ) "true" ) == 1 || xmlStrEqual( value, ( const xmlChar* ) "1" ) == 1 )
way.direction = _Way::oneway;
else if ( xmlStrEqual( value, ( const xmlChar* ) "-1" ) == 1 )
way.direction = _Way::opposite;
} else if ( xmlStrEqual( k, ( const xmlChar* ) "junction" ) == 1 ) {
if ( xmlStrEqual( value, ( const xmlChar* ) "roundabout" ) == 1 ) {
if ( way.direction == _Way::notSure ) {
way.direction = _Way::oneway;
}
if ( way.maximumSpeed == -1 )
way.maximumSpeed = 10;
way.usefull = true;
}
} else if ( xmlStrEqual( k, ( const xmlChar* ) "highway" ) == 1 ) {
string name( ( const char* ) value );
for ( int i = 0; i < settings.speedProfile.names.size(); i++ ) {
if ( name == settings.speedProfile.names[i] ) {
way.type = i;
way.usefull = true;
break;
}
}
if ( name == "motorway" ) {
if ( way.direction == _Way::notSure ) {
way.direction = _Way::oneway;
}
} else if ( name == "motorway_link" ) {
if ( way.direction == _Way::notSure ) {
way.direction = _Way::oneway;
}
}
} else if ( xmlStrEqual( k, ( const xmlChar* ) "maxspeed" ) == 1 ) {
double maxspeed = atof(( const char* ) value );
xmlChar buffer[100];
xmlStrPrintf( buffer, 100, ( const xmlChar* ) "%.lf", maxspeed );
if ( xmlStrEqual( value, buffer ) == 1 ) {
way.maximumSpeed = maxspeed;
stats.numberOfMaxspeed++;
} else {
xmlStrPrintf( buffer, 100, ( const xmlChar* ) "%.lf kmh", maxspeed );
if ( xmlStrEqual( value, buffer ) == 1 ) {
way.maximumSpeed = maxspeed;
stats.numberOfMaxspeed++;
} else {
xmlStrPrintf( buffer, 100, ( const xmlChar* ) "%.lfkmh", maxspeed );
if ( xmlStrEqual( value, buffer ) == 1 ) {
way.maximumSpeed = maxspeed;
stats.numberOfMaxspeed++;
} else {
xmlStrPrintf( buffer, 100, ( const xmlChar* ) "%.lf km/h", maxspeed );
if ( xmlStrEqual( value, buffer ) == 1 ) {
way.maximumSpeed = maxspeed;
stats.numberOfMaxspeed++;
} else {
xmlStrPrintf( buffer, 100, ( const xmlChar* ) "%.lfkm/h", maxspeed );
if ( xmlStrEqual( value, buffer ) == 1 ) {
way.maximumSpeed = maxspeed;
stats.numberOfMaxspeed++;
}
}
}
}
}
} else {
// string key( ( const char* ) k );
// int index = -1;// settings.accessList.indexOf( key );
// if ( index != -1 ) { //&& index < way.accessPriority ) {
if ( xmlStrEqual( value, ( const xmlChar* ) "private" ) == 1
|| xmlStrEqual( value, ( const xmlChar* ) "no" ) == 1
|| xmlStrEqual( value, ( const xmlChar* ) "agricultural" ) == 1
|| xmlStrEqual( value, ( const xmlChar* ) "forestry" ) == 1
|| xmlStrEqual( value, ( const xmlChar* ) "delivery" ) == 1
) {
way.access = false;
}
else if ( xmlStrEqual( value, ( const xmlChar* ) "yes" ) == 1
|| xmlStrEqual( value, ( const xmlChar* ) "designated" ) == 1
|| xmlStrEqual( value, ( const xmlChar* ) "official" ) == 1
|| xmlStrEqual( value, ( const xmlChar* ) "permissive" ) == 1
) {
way.access = true;
}
// }
}
if ( k != NULL )
xmlFree( k );
if ( value != NULL )
xmlFree( value );
}
} else if ( xmlStrEqual( childName, ( const xmlChar* ) "nd" ) == 1 ) {
xmlChar* ref = xmlTextReaderGetAttribute( inputReader, ( const xmlChar* ) "ref" );
if ( ref != NULL ) {
way.path.push_back( atoi(( const char* ) ref ) );
xmlFree( ref );
}
}
xmlFree( childName );
}
}
return way;
}
_Node _ReadXMLNode( xmlTextReaderPtr& inputReader ) {
_Node node;
node.trafficSignal = false;
xmlChar* attribute = xmlTextReaderGetAttribute( inputReader, ( const xmlChar* ) "lat" );
if ( attribute != NULL ) {
node.lat = static_cast<NodeID>(100000*atof(( const char* ) attribute ) );
xmlFree( attribute );
}
attribute = xmlTextReaderGetAttribute( inputReader, ( const xmlChar* ) "lon" );
if ( attribute != NULL ) {
node.lon = static_cast<NodeID>(100000*atof(( const char* ) attribute ));
xmlFree( attribute );
}
attribute = xmlTextReaderGetAttribute( inputReader, ( const xmlChar* ) "id" );
if ( attribute != NULL ) {
node.id = atoi(( const char* ) attribute );
xmlFree( attribute );
}
if ( xmlTextReaderIsEmptyElement( inputReader ) != 1 ) {
const int depth = xmlTextReaderDepth( inputReader );
while ( xmlTextReaderRead( inputReader ) == 1 ) {
const int childType = xmlTextReaderNodeType( inputReader );
// 1 = Element, 15 = EndElement
if ( childType != 1 && childType != 15 )
continue;
const int childDepth = xmlTextReaderDepth( inputReader );
xmlChar* childName = xmlTextReaderName( inputReader );
if ( childName == NULL )
continue;
if ( depth == childDepth && childType == 15 && xmlStrEqual( childName, ( const xmlChar* ) "node" ) == 1 ) {
xmlFree( childName );
break;
}
if ( childType != 1 ) {
xmlFree( childName );
continue;
}
if ( xmlStrEqual( childName, ( const xmlChar* ) "tag" ) == 1 ) {
xmlChar* k = xmlTextReaderGetAttribute( inputReader, ( const xmlChar* ) "k" );
xmlChar* value = xmlTextReaderGetAttribute( inputReader, ( const xmlChar* ) "v" );
if ( k != NULL && value != NULL ) {
if ( xmlStrEqual( k, ( const xmlChar* ) "highway" ) == 1 ) {
if ( xmlStrEqual( value, ( const xmlChar* ) "traffic_signals" ) == 1 )
node.trafficSignal = true;
}
}
if ( k != NULL )
xmlFree( k );
if ( value != NULL )
xmlFree( value );
}
xmlFree( childName );
}
}
return node;
}
double ApproximateDistance( const int lat1, const int lon1, const int lat2, const int lon2 ) {
static const double DEG_TO_RAD = 0.017453292519943295769236907684886;
///Earth's quatratic mean radius for WGS-84
static const double EARTH_RADIUS_IN_METERS = 6372797.560856;
double latitudeArc = ( lat1/100000. - lat2/100000. ) * DEG_TO_RAD;
double longitudeArc = ( lon1/100000. - lon2/100000. ) * DEG_TO_RAD;
double latitudeH = sin( latitudeArc * 0.5 );
latitudeH *= latitudeH;
double lontitudeH = sin( longitudeArc * 0.5 );
lontitudeH *= lontitudeH;
double tmp = cos( lat1/100000. * DEG_TO_RAD ) * cos( lat2/100000. * DEG_TO_RAD );
double distanceArc = 2.0 * asin( sqrt( latitudeH + tmp * lontitudeH ) );
return EARTH_RADIUS_IN_METERS * distanceArc;
}