osrm-backend/include/engine/routing_algorithms/routing_base.hpp
Michael Bell d74e7b66bd
Support snapping to multiple ways at an input location ()
This PR improves routing results by adding support for snapping to
multiple ways at input locations.

This means all edges at the snapped location can act as source/target
candidates for routing search, ensuring we always find the best route,
and not the one dependent on the edge selected.
2022-08-27 11:36:20 +01:00

458 lines
18 KiB
C++

#ifndef OSRM_ENGINE_ROUTING_BASE_HPP
#define OSRM_ENGINE_ROUTING_BASE_HPP
#include "guidance/turn_bearing.hpp"
#include "guidance/turn_instruction.hpp"
#include "engine/algorithm.hpp"
#include "engine/datafacade.hpp"
#include "engine/internal_route_result.hpp"
#include "engine/phantom_node.hpp"
#include "engine/search_engine_data.hpp"
#include "util/coordinate_calculation.hpp"
#include "util/typedefs.hpp"
#include <boost/assert.hpp>
#include <cstddef>
#include <cstdint>
#include <algorithm>
#include <functional>
#include <iterator>
#include <memory>
#include <numeric>
#include <stack>
#include <utility>
#include <vector>
namespace osrm
{
namespace engine
{
namespace routing_algorithms
{
namespace details
{
template <typename Heap>
void insertSourceInForwardHeap(Heap &forward_heap, const PhantomNode &source)
{
if (source.IsValidForwardSource())
{
forward_heap.Insert(source.forward_segment_id.id,
-source.GetForwardWeightPlusOffset(),
source.forward_segment_id.id);
}
if (source.IsValidReverseSource())
{
forward_heap.Insert(source.reverse_segment_id.id,
-source.GetReverseWeightPlusOffset(),
source.reverse_segment_id.id);
}
}
template <typename Heap>
void insertTargetInReverseHeap(Heap &reverse_heap, const PhantomNode &target)
{
if (target.IsValidForwardTarget())
{
reverse_heap.Insert(target.forward_segment_id.id,
target.GetForwardWeightPlusOffset(),
target.forward_segment_id.id);
}
if (target.IsValidReverseTarget())
{
reverse_heap.Insert(target.reverse_segment_id.id,
target.GetReverseWeightPlusOffset(),
target.reverse_segment_id.id);
}
}
} // namespace details
static constexpr bool FORWARD_DIRECTION = true;
static constexpr bool REVERSE_DIRECTION = false;
// Identify nodes in the forward(reverse) search direction that will require loop forcing
// e.g. if source and destination nodes are on the same segment.
std::vector<NodeID> getForwardLoopNodes(const PhantomEndpointCandidates &candidates);
std::vector<NodeID> getForwardLoopNodes(const PhantomCandidatesToTarget &candidates);
std::vector<NodeID> getBackwardLoopNodes(const PhantomEndpointCandidates &candidates);
std::vector<NodeID> getBackwardLoopNodes(const PhantomCandidatesToTarget &candidates);
// Find the specific phantom node endpoints for a given path from a list of candidates.
PhantomEndpoints endpointsFromCandidates(const PhantomEndpointCandidates &candidates,
const std::vector<NodeID> &path);
template <typename HeapNodeT>
inline bool force_loop(const std::vector<NodeID> &force_nodes, const HeapNodeT &heap_node)
{
// if loops are forced, they are so at the source
return !force_nodes.empty() &&
std::find(force_nodes.begin(), force_nodes.end(), heap_node.node) != force_nodes.end() &&
heap_node.data.parent == heap_node.node;
}
template <typename Heap>
void insertNodesInHeaps(Heap &forward_heap, Heap &reverse_heap, const PhantomEndpoints &endpoints)
{
details::insertSourceInForwardHeap(forward_heap, endpoints.source_phantom);
details::insertTargetInReverseHeap(reverse_heap, endpoints.target_phantom);
}
template <typename Heap>
void insertNodesInHeaps(Heap &forward_heap,
Heap &reverse_heap,
const PhantomEndpointCandidates &endpoint_candidates)
{
for (const auto &source : endpoint_candidates.source_phantoms)
{
details::insertSourceInForwardHeap(forward_heap, source);
}
for (const auto &target : endpoint_candidates.target_phantoms)
{
details::insertTargetInReverseHeap(reverse_heap, target);
}
}
template <typename ManyToManyQueryHeap>
void insertSourceInHeap(ManyToManyQueryHeap &heap, const PhantomNodeCandidates &source_candidates)
{
for (const auto &phantom_node : source_candidates)
{
if (phantom_node.IsValidForwardSource())
{
heap.Insert(phantom_node.forward_segment_id.id,
-phantom_node.GetForwardWeightPlusOffset(),
{phantom_node.forward_segment_id.id,
-phantom_node.GetForwardDuration(),
-phantom_node.GetForwardDistance()});
}
if (phantom_node.IsValidReverseSource())
{
heap.Insert(phantom_node.reverse_segment_id.id,
-phantom_node.GetReverseWeightPlusOffset(),
{phantom_node.reverse_segment_id.id,
-phantom_node.GetReverseDuration(),
-phantom_node.GetReverseDistance()});
}
}
}
template <typename ManyToManyQueryHeap>
void insertTargetInHeap(ManyToManyQueryHeap &heap, const PhantomNodeCandidates &target_candidates)
{
for (const auto &phantom_node : target_candidates)
{
if (phantom_node.IsValidForwardTarget())
{
heap.Insert(phantom_node.forward_segment_id.id,
phantom_node.GetForwardWeightPlusOffset(),
{phantom_node.forward_segment_id.id,
phantom_node.GetForwardDuration(),
phantom_node.GetForwardDistance()});
}
if (phantom_node.IsValidReverseTarget())
{
heap.Insert(phantom_node.reverse_segment_id.id,
phantom_node.GetReverseWeightPlusOffset(),
{phantom_node.reverse_segment_id.id,
phantom_node.GetReverseDuration(),
phantom_node.GetReverseDistance()});
}
}
}
template <typename FacadeT>
void annotatePath(const FacadeT &facade,
const PhantomEndpoints &endpoints,
const std::vector<NodeID> &unpacked_nodes,
const std::vector<EdgeID> &unpacked_edges,
std::vector<PathData> &unpacked_path)
{
BOOST_ASSERT(!unpacked_nodes.empty());
BOOST_ASSERT(unpacked_nodes.size() == unpacked_edges.size() + 1);
const auto source_node_id = unpacked_nodes.front();
const auto target_node_id = unpacked_nodes.back();
const bool start_traversed_in_reverse =
endpoints.source_phantom.forward_segment_id.id != source_node_id;
const bool target_traversed_in_reverse =
endpoints.target_phantom.forward_segment_id.id != target_node_id;
BOOST_ASSERT(endpoints.source_phantom.forward_segment_id.id == source_node_id ||
endpoints.source_phantom.reverse_segment_id.id == source_node_id);
BOOST_ASSERT(endpoints.target_phantom.forward_segment_id.id == target_node_id ||
endpoints.target_phantom.reverse_segment_id.id == target_node_id);
// datastructures to hold extracted data from geometry
std::vector<NodeID> id_vector;
std::vector<SegmentWeight> weight_vector;
std::vector<SegmentDuration> duration_vector;
std::vector<DatasourceID> datasource_vector;
const auto get_segment_geometry = [&](const auto geometry_index) {
const auto copy = [](auto &vector, const auto range) {
vector.resize(range.size());
std::copy(range.begin(), range.end(), vector.begin());
};
if (geometry_index.forward)
{
copy(id_vector, facade.GetUncompressedForwardGeometry(geometry_index.id));
copy(weight_vector, facade.GetUncompressedForwardWeights(geometry_index.id));
copy(duration_vector, facade.GetUncompressedForwardDurations(geometry_index.id));
copy(datasource_vector, facade.GetUncompressedForwardDatasources(geometry_index.id));
}
else
{
copy(id_vector, facade.GetUncompressedReverseGeometry(geometry_index.id));
copy(weight_vector, facade.GetUncompressedReverseWeights(geometry_index.id));
copy(duration_vector, facade.GetUncompressedReverseDurations(geometry_index.id));
copy(datasource_vector, facade.GetUncompressedReverseDatasources(geometry_index.id));
}
};
auto node_from = unpacked_nodes.begin(), node_last = std::prev(unpacked_nodes.end());
for (auto edge = unpacked_edges.begin(); node_from != node_last; ++node_from, ++edge)
{
const auto &edge_data = facade.GetEdgeData(*edge);
const auto turn_id = edge_data.turn_id; // edge-based graph edge index
const auto node_id = *node_from; // edge-based graph node index
const auto geometry_index = facade.GetGeometryIndex(node_id);
get_segment_geometry(geometry_index);
BOOST_ASSERT(!id_vector.empty());
BOOST_ASSERT(!datasource_vector.empty());
BOOST_ASSERT(weight_vector.size() + 1 == id_vector.size());
BOOST_ASSERT(duration_vector.size() + 1 == id_vector.size());
const bool is_first_segment = unpacked_path.empty();
std::size_t start_index = 0;
if (is_first_segment)
{
unsigned short segment_position = endpoints.source_phantom.fwd_segment_position;
if (start_traversed_in_reverse)
{
segment_position =
weight_vector.size() - endpoints.source_phantom.fwd_segment_position - 1;
}
BOOST_ASSERT(segment_position >= 0);
start_index = static_cast<std::size_t>(segment_position);
}
const std::size_t end_index = weight_vector.size();
BOOST_ASSERT(start_index < end_index);
for (std::size_t segment_idx = start_index; segment_idx < end_index; ++segment_idx)
{
unpacked_path.push_back(
PathData{node_id,
id_vector[segment_idx + 1],
static_cast<EdgeWeight>(weight_vector[segment_idx]),
0,
static_cast<EdgeDuration>(duration_vector[segment_idx]),
0,
datasource_vector[segment_idx],
boost::none});
}
BOOST_ASSERT(!unpacked_path.empty());
const auto turn_duration = facade.GetDurationPenaltyForEdgeID(turn_id);
const auto turn_weight = facade.GetWeightPenaltyForEdgeID(turn_id);
unpacked_path.back().duration_until_turn += turn_duration;
unpacked_path.back().duration_of_turn = turn_duration;
unpacked_path.back().weight_until_turn += turn_weight;
unpacked_path.back().weight_of_turn = turn_weight;
unpacked_path.back().turn_edge = turn_id;
}
std::size_t start_index = 0, end_index = 0;
const auto source_geometry_id = facade.GetGeometryIndex(source_node_id).id;
const auto target_geometry = facade.GetGeometryIndex(target_node_id);
const auto is_local_path = source_geometry_id == target_geometry.id && unpacked_path.empty();
get_segment_geometry(target_geometry);
if (target_traversed_in_reverse)
{
if (is_local_path)
{
start_index = weight_vector.size() - endpoints.source_phantom.fwd_segment_position - 1;
}
end_index = weight_vector.size() - endpoints.target_phantom.fwd_segment_position - 1;
}
else
{
if (is_local_path)
{
start_index = endpoints.source_phantom.fwd_segment_position;
}
end_index = endpoints.target_phantom.fwd_segment_position;
}
// Given the following compressed geometry:
// U---v---w---x---y---Z
// s t
// s: fwd_segment 0
// t: fwd_segment 3
// -> (U, v), (v, w), (w, x)
// note that (x, t) is _not_ included but needs to be added later.
for (std::size_t segment_idx = start_index; segment_idx != end_index;
(start_index < end_index ? ++segment_idx : --segment_idx))
{
BOOST_ASSERT(segment_idx < static_cast<std::size_t>(id_vector.size() - 1));
unpacked_path.push_back(
PathData{target_node_id,
id_vector[start_index < end_index ? segment_idx + 1 : segment_idx - 1],
static_cast<EdgeWeight>(weight_vector[segment_idx]),
0,
static_cast<EdgeDuration>(duration_vector[segment_idx]),
0,
datasource_vector[segment_idx],
boost::none});
}
if (!unpacked_path.empty())
{
const auto source_weight = start_traversed_in_reverse
? endpoints.source_phantom.reverse_weight
: endpoints.source_phantom.forward_weight;
const auto source_duration = start_traversed_in_reverse
? endpoints.source_phantom.reverse_duration
: endpoints.source_phantom.forward_duration;
// The above code will create segments for (v, w), (w,x), (x, y) and (y, Z).
// However the first segment duration needs to be adjusted to the fact that the source
// phantom is in the middle of the segment. We do this by subtracting v--s from the
// duration.
// Since it's possible duration_until_turn can be less than source_weight here if
// a negative enough turn penalty is used to modify this edge weight during
// osrm-contract, we clamp to 0 here so as not to return a negative duration
// for this segment.
// TODO this creates a scenario where it's possible the duration from a phantom
// node to the first turn would be the same as from end to end of a segment,
// which is obviously incorrect and not ideal...
unpacked_path.front().weight_until_turn =
std::max(unpacked_path.front().weight_until_turn - source_weight, 0);
unpacked_path.front().duration_until_turn =
std::max(unpacked_path.front().duration_until_turn - source_duration, 0);
}
}
template <typename Algorithm>
double getPathDistance(const DataFacade<Algorithm> &facade,
const std::vector<PathData> &unpacked_path,
const PhantomNode &source_phantom,
const PhantomNode &target_phantom)
{
using util::coordinate_calculation::detail::DEGREE_TO_RAD;
using util::coordinate_calculation::detail::EARTH_RADIUS;
double distance = 0;
double prev_lat =
static_cast<double>(util::toFloating(source_phantom.location.lat)) * DEGREE_TO_RAD;
double prev_lon =
static_cast<double>(util::toFloating(source_phantom.location.lon)) * DEGREE_TO_RAD;
double prev_cos = std::cos(prev_lat);
for (const auto &p : unpacked_path)
{
const auto current_coordinate = facade.GetCoordinateOfNode(p.turn_via_node);
const double current_lat =
static_cast<double>(util::toFloating(current_coordinate.lat)) * DEGREE_TO_RAD;
const double current_lon =
static_cast<double>(util::toFloating(current_coordinate.lon)) * DEGREE_TO_RAD;
const double current_cos = std::cos(current_lat);
const double sin_dlon = std::sin((prev_lon - current_lon) / 2.0);
const double sin_dlat = std::sin((prev_lat - current_lat) / 2.0);
const double aharv = sin_dlat * sin_dlat + prev_cos * current_cos * sin_dlon * sin_dlon;
const double charv = 2. * std::atan2(std::sqrt(aharv), std::sqrt(1.0 - aharv));
distance += EARTH_RADIUS * charv;
prev_lat = current_lat;
prev_lon = current_lon;
prev_cos = current_cos;
}
const double current_lat =
static_cast<double>(util::toFloating(target_phantom.location.lat)) * DEGREE_TO_RAD;
const double current_lon =
static_cast<double>(util::toFloating(target_phantom.location.lon)) * DEGREE_TO_RAD;
const double current_cos = std::cos(current_lat);
const double sin_dlon = std::sin((prev_lon - current_lon) / 2.0);
const double sin_dlat = std::sin((prev_lat - current_lat) / 2.0);
const double aharv = sin_dlat * sin_dlat + prev_cos * current_cos * sin_dlon * sin_dlon;
const double charv = 2. * std::atan2(std::sqrt(aharv), std::sqrt(1.0 - aharv));
distance += EARTH_RADIUS * charv;
return distance;
}
template <typename AlgorithmT>
InternalRouteResult extractRoute(const DataFacade<AlgorithmT> &facade,
const EdgeWeight weight,
const PhantomEndpointCandidates &endpoint_candidates,
const std::vector<NodeID> &unpacked_nodes,
const std::vector<EdgeID> &unpacked_edges)
{
InternalRouteResult raw_route_data;
// No path found for both target nodes?
if (INVALID_EDGE_WEIGHT == weight)
{
return raw_route_data;
}
auto phantom_endpoints = endpointsFromCandidates(endpoint_candidates, unpacked_nodes);
raw_route_data.leg_endpoints = {phantom_endpoints};
raw_route_data.shortest_path_weight = weight;
raw_route_data.unpacked_path_segments.resize(1);
raw_route_data.source_traversed_in_reverse.push_back(
(unpacked_nodes.front() != phantom_endpoints.source_phantom.forward_segment_id.id));
raw_route_data.target_traversed_in_reverse.push_back(
(unpacked_nodes.back() != phantom_endpoints.target_phantom.forward_segment_id.id));
annotatePath(facade,
phantom_endpoints,
unpacked_nodes,
unpacked_edges,
raw_route_data.unpacked_path_segments.front());
return raw_route_data;
}
template <typename FacadeT> EdgeDistance computeEdgeDistance(const FacadeT &facade, NodeID node_id)
{
const auto geometry_index = facade.GetGeometryIndex(node_id);
EdgeDistance total_distance = 0.0;
auto geometry_range = facade.GetUncompressedForwardGeometry(geometry_index.id);
for (auto current = geometry_range.begin(); current < geometry_range.end() - 1; ++current)
{
total_distance += util::coordinate_calculation::greatCircleDistance(
facade.GetCoordinateOfNode(*current), facade.GetCoordinateOfNode(*std::next(current)));
}
return total_distance;
}
} // namespace routing_algorithms
} // namespace engine
} // namespace osrm
#endif // OSRM_ENGINE_ROUTING_BASE_HPP