osrm-backend/Contractor/EdgeBasedGraphFactory.cpp
2011-11-14 13:12:56 +01:00

198 lines
9.4 KiB
C++

/*
open source routing machine
Copyright (C) Dennis Luxen, others 2010
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU AFFERO General Public License as published by
the Free Software Foundation; either version 3 of the License, or
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
or see http://www.gnu.org/licenses/agpl.txt.
*/
#ifdef _GLIBCXX_PARALLEL
#include <parallel/algorithm>
#else
#include <algorithm>
#endif
#include <boost/foreach.hpp>
#include "EdgeBasedGraphFactory.h"
#include "../DataStructures/ExtractorStructs.h"
template<>
EdgeBasedGraphFactory::EdgeBasedGraphFactory(int nodes, std::vector<NodeBasedEdge> & inputEdges, std::vector<_Restriction> & irs, std::vector<NodeInfo> & nI)
: inputRestrictions(irs), inputNodeInfoList(nI) {
#ifdef _GLIBCXX_PARALLEL
__gnu_parallel::sort(inputRestrictions.begin(), inputRestrictions.end(), CmpRestrictionByFrom);
#else
std::sort(inputRestrictions.begin(), inputRestrictions.end(), CmpRestrictionByFrom);
#endif
std::vector< _NodeBasedEdge > edges;
edges.reserve( 2 * inputEdges.size() );
for ( typename std::vector< NodeBasedEdge >::const_iterator i = inputEdges.begin(), e = inputEdges.end(); i != e; ++i ) {
_NodeBasedEdge edge;
edge.source = i->source();
edge.target = i->target();
if(edge.source == edge.target)
continue;
edge.data.distance = (std::max)((int)i->weight(), 1 );
assert( edge.data.distance > 0 );
edge.data.shortcut = false;
edge.data.middleName.nameID = i->name();
edge.data.type = i->type();
edge.data.forward = i->isForward();
edge.data.backward = i->isBackward();
edge.data.edgeBasedNodeID = edges.size();
edges.push_back( edge );
std::swap( edge.source, edge.target );
if( edge.data.backward ) {
edge.data.forward = i->isBackward();
edge.data.backward = i->isForward();
edge.data.edgeBasedNodeID = edges.size();
edges.push_back( edge );
}
}
INFO("edges.size()=" << edges.size());
#ifdef _GLIBCXX_PARALLEL
__gnu_parallel::sort( edges.begin(), edges.end() );
#else
sort( edges.begin(), edges.end() );
#endif
_nodeBasedGraph.reset(new _NodeBasedDynamicGraph( nodes, edges ));
INFO("Converted " << inputEdges.size() << " node-based edges into " << _nodeBasedGraph->GetNumberOfEdges() << " edge-based nodes.");
}
template<>
void EdgeBasedGraphFactory::GetEdgeBasedEdges( std::vector< EdgeBasedEdge >& edges ) {
GUARANTEE(0 == edges.size(), "Vector passed to " << __FUNCTION__ << " is not empty");
GUARANTEE(0 != edgeBasedEdges.size(), "No edges in edge based graph");
BOOST_FOREACH ( EdgeBasedEdge currentEdge, edgeBasedEdges) {
edges.push_back(currentEdge);
}
}
void EdgeBasedGraphFactory::GetEdgeBasedNodes( std::vector< EdgeBasedNode> & nodes) {
for(unsigned i = 0; i < edgeBasedNodes.size(); ++i)
nodes.push_back(edgeBasedNodes[i]);
}
void EdgeBasedGraphFactory::Run() {
INFO("Generating Edge based representation of input data");
_edgeBasedGraph.reset(new _EdgeBasedDynamicGraph(_nodeBasedGraph->GetNumberOfEdges() ) );
std::vector<_Restriction>::iterator restrictionIterator = inputRestrictions.begin();
Percent p(_nodeBasedGraph->GetNumberOfNodes());
int numberOfResolvedRestrictions(0);
int nodeBasedEdgeCounter(0);
//Loop over all nodes u. Three nested loop look super-linear, but we are dealing with a number linear in the turns only.
for(_NodeBasedDynamicGraph::NodeIterator u = 0; u < _nodeBasedGraph->GetNumberOfNodes(); ++u ) {
//loop over all adjacent edge (u,v)
while(restrictionIterator->fromNode < u && inputRestrictions.end() != restrictionIterator) {
++restrictionIterator;
}
for(_NodeBasedDynamicGraph::EdgeIterator e1 = _nodeBasedGraph->BeginEdges(u); e1 < _nodeBasedGraph->EndEdges(u); ++e1) {
++nodeBasedEdgeCounter;
_NodeBasedDynamicGraph::NodeIterator v = _nodeBasedGraph->GetTarget(e1);
//loop over all reachable edges (v,w)
for(_NodeBasedDynamicGraph::EdgeIterator e2 = _nodeBasedGraph->BeginEdges(v); e2 < _nodeBasedGraph->EndEdges(v); ++e2) {
_NodeBasedDynamicGraph::NodeIterator w = _nodeBasedGraph->GetTarget(e2);
//if (u,v,w) is a forbidden turn, continue
bool isTurnProhibited = false;
if( u != w ) { //only add an edge if turn is not a U-turn
if(u == restrictionIterator->fromNode) {
std::vector<_Restriction>::iterator secondRestrictionIterator = restrictionIterator;
do {
if( v == secondRestrictionIterator->viaNode && w == secondRestrictionIterator->toNode) {
isTurnProhibited = true;
}
++secondRestrictionIterator;
} while(u == secondRestrictionIterator->fromNode);
}
if( !isTurnProhibited ) { //only add an edge if turn is not prohibited
//new costs for edge based edge (e1, e2) = cost (e1) + tc(e1,e2)
const _NodeBasedDynamicGraph::NodeIterator edgeBasedSource = _nodeBasedGraph->GetEdgeData(e1).edgeBasedNodeID;
// INFO("edgeBasedSource: " << edgeBasedSource);
if(edgeBasedSource > _nodeBasedGraph->GetNumberOfEdges()) {
ERR("edgeBasedTarget" << edgeBasedSource << ">" << _nodeBasedGraph->GetNumberOfEdges());
}
const _NodeBasedDynamicGraph::NodeIterator edgeBasedTarget = _nodeBasedGraph->GetEdgeData(e2).edgeBasedNodeID;
// INFO("edgeBasedTarget: " << edgeBasedTarget);
if(edgeBasedTarget > _nodeBasedGraph->GetNumberOfEdges()) {
ERR("edgeBasedTarget" << edgeBasedTarget << ">" << _nodeBasedGraph->GetNumberOfEdges());
}
_EdgeBasedEdge newEdge;
newEdge.source = edgeBasedSource;
newEdge.target = edgeBasedTarget;
//Todo: incorporate turn costs
newEdge.data.distance = _nodeBasedGraph->GetEdgeData(e1).distance;
newEdge.data.forward = true;
newEdge.data.backward = false;
newEdge.data.via = v;
newEdge.data.nameID1 = _nodeBasedGraph->GetEdgeData(e1).middleName.nameID;
newEdge.data.nameID2 = _nodeBasedGraph->GetEdgeData(e2).middleName.nameID;
//Todo: turn type angeben
newEdge.data.turnInstruction = 0;
//create Edge for NearestNeighborlookup
edgeBasedEdges.push_back(newEdge);
EdgeBasedNode currentNode;
if(_nodeBasedGraph->GetEdgeData(e1).type != 14) {
currentNode.lat1 = inputNodeInfoList[u].lat;
currentNode.lon1 = inputNodeInfoList[u].lon;
currentNode.lat2 = inputNodeInfoList[v].lat;
currentNode.lon2 = inputNodeInfoList[v].lon;
currentNode.id = edgeBasedSource;
edgeBasedNodes.push_back(currentNode);
}
if(_nodeBasedGraph->GetEdgeData(e2).type != 14) {
currentNode.lat1 = inputNodeInfoList[v].lat;
currentNode.lon1 = inputNodeInfoList[v].lon;
currentNode.lat2 = inputNodeInfoList[w].lat;
currentNode.lon2 = inputNodeInfoList[w].lon;
currentNode.id = edgeBasedTarget;
edgeBasedNodes.push_back(currentNode);
}
} else {
++numberOfResolvedRestrictions;
}
}
}
}
p.printIncrement();
}
std::sort(edgeBasedNodes.begin(), edgeBasedNodes.end());
edgeBasedNodes.erase( std::unique(edgeBasedNodes.begin(), edgeBasedNodes.end()), edgeBasedNodes.end() );
INFO("Node-based graph contains " << nodeBasedEdgeCounter << " edges");
INFO("Edge-based graph contains " << edgeBasedEdges.size() << " edges, blowup is " << (double)edgeBasedEdges.size()/(double)nodeBasedEdgeCounter);
INFO("Edge-based graph obeys " << numberOfResolvedRestrictions << " turn restrictions, " << (inputRestrictions.size() - numberOfResolvedRestrictions )<< " skipped.");
INFO("Generated " << edgeBasedNodes.size() << " edge based nodes");
}
unsigned EdgeBasedGraphFactory::GetNumberOfNodes() const {
return edgeBasedEdges.size();
}
EdgeBasedGraphFactory::~EdgeBasedGraphFactory() {
}